- 无标题文档
查看论文信息

论文中文题名:

 中国“一带一路”沿线城市碳排放的时空演变特征与影响因素研究    

姓名:

 邹梦瑶    

学号:

 18202001002    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 020205    

学科名称:

 经济学 - 应用经济学 - 产业经济学    

学生类型:

 硕士    

学位级别:

 经济学硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 管理学院    

专业:

 产业经济学    

研究方向:

 能源经济与管理    

第一导师姓名:

 郭莉    

第一导师单位:

  西安科技大学    

论文提交日期:

 2021-06-15    

论文答辩日期:

 2021-05-31    

论文外文题名:

 Research on the Temporal and Spatial Evolution Characteristics and Influencing Factors of Carbon Emissions in Cities Along the “the Belt and Road”    

论文中文关键词:

 “一带一路” ; 碳排放 ; 时空演变 ; 影响因素 ; 空间杜宾模型    

论文外文关键词:

 “The Belt and Road” ; Carbon emission ; Temporal and spatial evolution ; Influencing factors ; Spatial Dubin model    

论文中文摘要:

在全球气候变暖的背景下,寻求碳排放时空演变的影响因素不仅是中国实现节能减排目标的重要途径,同时也是倒逼经济发展方式转变的关键依据。论文基于能源平衡表法,从自上而下的角度测算出中国“一带一路”沿线140个城市2008-2018年的碳排放,进而构建邻接、地理和经济距离空间权重矩阵,并从时序和空间两个方面分析中国“一带一路”沿线城市碳排放的时空演变特征。接着在分析碳排放的空间相关性的基础上,对中国“一带一路”沿线城市采用空间杜宾模型进行碳排放时空演变的影响因素实证分析,并对中国“一带一路”沿线城市根据地理划分为西北地区、东北地区、西南及内陆地区、东部沿海地区共四大地区,对不同地区的碳排放时空演变的影响因素实证分析,进而为碳减排提出建议。

通过理论研究和实证分析,主要得出以下结论:(1)时序演变特征中,中国“一带一路”沿线城市碳排放整体呈现波动上升的态势且趋势明显;空间演变特征中,在邻接、地理和经济距离这三个空间权重矩阵下,中国“一带一路”沿线城市在研究时期内碳排放的空间正相关特征高度显著,碳排放空间集聚性稍有减弱,基本上呈现出北高南低的特征,但低范围内的城市持续增多。(2)人均GDP、年末常住人口数和外商直接投资对城市碳排放存在显著的促进作用,城镇居民人均可支配收入对城市碳排放有抑制作用。人均GDP、年末常住人口数、第二产业产业值所占GDP总量、城镇居民人均可支配收入对周边城市碳排放存在显著的空间溢出效应。(3)对于西北地区,人均GDP、年末常住人口数、第二产业产业值所占GDP总量和外商直接投资对城市碳排放存在显著的促进作用,城镇居民人均可支配收入对城市碳排放有抑制作用,人均GDP、年末常住人口数和城镇居民人均可支配收入对周边城市碳排放存在显著的空间溢出效应;对于东北地区,人均GDP、年末常住人口数和第二产业产业值所占GDP总量对城市碳排放存在显著的促进作用,外商直接投资对城市碳排放存在显著的抑制作用;对于西南及内陆地区,人均GDP、年末常住人口数、第二产业产业值所占GDP总量和外商直接投资对城市碳排放存在显著的促进作用,城镇居民人均可支配收入对城市碳排放有抑制作用;对于东部沿海地区,人均GDP、年末常住人口数和外商直接投资对城市碳排放存在显著的促进作用,城镇居民人均可支配收入对城市碳排放有抑制作用,人均GDP和第二产业产业值所占GDP总量对周边城市碳排放存在显著的促进作用。

论文外文摘要:

In the context of global warming, seeking the factors that influence the temporal and spatial evolution of carbon emissions is not only an important way for China to achieve energy conservation and emission reduction goals, but also a key basis for forcing the transformation of economic development patterns. Based on the energy balance method, the paper calculates the carbon emissions of 140 cities along China’s “the Belt and Road” from a top-down perspective from 2008 to 2018, and then constructs a spatial weight matrix of adjacency, geographic and economic distance, and from time series and space Two aspects analyze the characteristics of the temporal and spatial evolution of carbon emissions in cities along China’s “the Belt and Road”. Then, on the basis of analyzing the spatial correlation of carbon emissions, the spatial Dubin model is used to carry out an empirical analysis of the influencing factors of the temporal and spatial evolution of carbon emissions in the cities along China’s “the Belt and Road”, and the cities along China’s “the Belt and Road” are divided into There are four major regions in Northwest China, Northeast China, Southwest and inland areas, and eastern coastal areas. Empirical analysis of the influencing factors of the temporal and spatial evolution of carbon emissions in different regions has been conducted, and recommendations for carbon emission reductions are made.

Through theoretical research and empirical analysis, the main conclusions are as follows: (1) In the characteristics of time series evolution, the overall carbon emissions of cities along China’s “the Belt and Road” show a trend of rising volatility and a clear trend; in the characteristics of spatial evolution, under the three spatial weight matrices of adjacency, geographic and economic distance, China’s “the Belt and Road” During the study period, the spatial positive correlation characteristics of carbon emissions in cities were highly significant, and the spatial agglomeration of carbon emissions was slightly weakened, basically showing the characteristics of high north and low south, but the number of cities in the low range continued to increase. (2) Per capita GDP, the number of permanent residents at the end of the year, and foreign direct investment have a significant promotion effect on urban carbon emissions, and the per capita disposable income of urban residents has an inhibitory effect on urban carbon emissions. Per capita GDP, the number of permanent residents at the end of the year, the total GDP of the secondary industry, and the per capita disposable income of urban residents have significant spatial spillover effects on the carbon emissions of surrounding cities. (3) For the Northwest region, per capita GDP, the number of permanent residents at the end of the year, the total GDP of the secondary industry and foreign direct investment have a significant promotion effect on urban carbon emissions, and the per capita disposable income of urban residents has a depressing effect on urban carbon emissions. Per capita GDP, the number of permanent residents at the end of the year, and the per capita disposable income of urban residents have significant spatial spillover effects on the carbon emissions of surrounding cities; for the Northeast, the per capita GDP, the number of permanent residents at the end of the year, and the total GDP of the secondary industry have an impact on the city Carbon emissions have a significant role in promoting carbon emissions, and foreign direct investment has a significant inhibitory effect on urban carbon emissions; for the southwest and inland regions, per capita GDP, year-end permanent population, secondary industry industry value as a share of total GDP and foreign direct investment It has a significant role in promoting urban carbon emissions. The per capita disposable income of urban residents has a depressing effect on urban carbon emissions; for the eastern coastal areas, per capita GDP, the number of permanent residents at the end of the year, and foreign direct investment have a significant role in promoting urban carbon emissions. The per capita disposable income of urban residents has an inhibitory effect on urban carbon emissions, and the per capita GDP and the total GDP of the secondary industry industry value have a significant role in promoting carbon emissions in surrounding cities.

参考文献:

[1] Machado G, Schaeffer R, Worrell E. Energy and carbon embodied in the international trade of Brazil: an input-output approach-ScienceDirect[J]. Ecological Economics, 2001, 39(3):409-424.

[2] Pachauri S, Spreng D. Direct and indirect energy requirements of households in India[J]. Energy Policy, 2002, 30(6):511-523.

[3] Sanchez-Choliz J, Duarte R. CO2 emissions embodied in international trade: evidence for Spain[J]. Energy Policy, 2004, 32(18):1999-2005.

[4] Mongelli I, Tassielli G, Notarnicola B. Global warming agreements, international trade and energy/carbon embodiments: an input-output approach to the Italian case[J]. Energy Policy, 2006, 34(1):88-100.

[5] Minx J C, Wiedmann T, Wood R, et al. Input-output analysis and carbon footprinting: an overview of applications[J]. Economic Systems Research, 2009, 21(3):187-216.

[6] Duarte R, Mainar A, Sánchez-Chóliz J. The impact of household consumption patterns on emissions in Spain[J]. Energy Economics, 2010, 32(1):176-185.

[7] Chand T R K, Badarinath K V S, Elvidge C D. et al. Spatial characterization of electrical power consumption patterns over India using temporal DMSP-OLS night-time satellite data[J]. International Journal of Remote Sensing, 2009, 30(3):647-661.

[8] Ghosh T, Elvidge C D, Sutton P C, et al. Creating a Global Grid of Distributed Fossil Fuel CO, Emissions from Nighttime Satellite Imagery[J]. Energies, 2010, 3(12):1895-1913.

[9] Oda T, Maksyutov S. A very high-resolution (1 km×1 km) global fossil fuel CO2 emission inventory derived using a point source database and satellite observations of nighttime lights[J]. Atmospheric Chemistry and Physics, 2011, 11(2):16307-16344.

[10] Ang B W, Zhang F Q, Choi K H. Factorizing Changes in Energy ano Environmental Indicators through Decomposition[J]. Energy, 1998, 23(6):489-495.

[11] Ang B W, Liu F L. A New Energy Decomposition Method: Perfect in Decomposition and Consistent in Aggregation[J]. Energy, 2001, 26(6): 537-548.

[12] Gonzalez P F, Landajo M, Presno M J. Tracking European Union CO2 emissions through LMDI (logarithmic-mean Divisia index) decomposition. The activity revaluation approach[J]. Energy, 2014, 73(7):741-750.

[13] Martinez-Zarzoso I, Maruotti A. The impact of urbanization on CO2 emissions Evidence from developing countries[J]. Ecological Economics, 2008, 70(7): 1344-1353.

[14] Tadhg O M. Decomposition of Ireland's carbon emissions from 1990 to 2010: an extended Kaya identity[J]. Energy Policy, 2013(59):573-581.

[15] Lin B, Ahmad I. Analysis of energy related carbon dioxide emission and reduction potential in Pakistan[J]. Journal of Cleaner Production, 2017, 143: 278-287.

[16] Houghton R A, Hackler J L. Sources and sinks of carbon from land-use change in China[J]. Global Biogeochemical Cycles, 2003, 17(2):1034-1047.

[17] Maddison D. Environmental Kuznets curves: A spatial econometric approach[J]. Journal of Environmental Economics and Management, 2006, 51(2):218-230.

[18] Maddison D. Modelling sulphur emissions in Europe: a spatial econometric approach[J]. Oxford Economic Papers, 2007, 59(4):726-743.

[19] Auffhammer M, Carson R T. Forecasting the path of China's CO2 emissions using province-level information[J]. Journal of Environmental Economics & Management, 2008, 55(3):229-247.

[20] Rupasingha A, Goetz S J, DebertinD L, et al. The environmental Kuznets curve for US counties: A spatial econometric analysis with extensions[J]. Papers in Regional Science, 2010, 83(2):407-424.

[21] Marbuah G, Amuakwa F. Spatial analysis of emissions in Sweden[J]. Energy Economics, 2017, 68: 383-394.

[22] 景侨楠,侯慧敏,白宏涛,徐鹤.自上而下的城市能源消耗碳排放估算方法[J].中国环境科学,2019,39(01):420-427.

[23] 王晓平,冯庆,宋金昭.成渝城市群碳排放量空间关联结构演化及影响因素[J].中国环境科学,2020,40(09):4123-4134.

[24] 许燕燕,周廷刚,李洪忠,朱文东,杨永健.基于DMSP/OLS夜间灯光数据的成渝城市群碳排放量时空动态特征研究[J].环境污染与防治,2019,41(12):1504-1511.

[25] 于博,杨旭,吴相利.哈长城市群县域碳排放量空间溢出效应及影响因素研究——基于NPP-VIIRS夜间灯光数据的实证[J].环境科学学报,2020,40(02):697-706.

[26] 邵克俭,董东林,林刚,刘贺丹,徐祚荣,陈金平.华北矿业型城市长序列能源消费碳排放特征[J].中国矿业,2020,29(09):39-45.

[27] 吕倩,刘海滨.基于夜间灯光数据的黄河流域能源消费碳排放时空演变多尺度分析[J].经济地理,2020,40(12):12-21.

[28] 邓吉祥,刘晓,王铮.中国碳排放的区域差异及演变特征分析与因素分解[J].自然资源学报,2014,29(02):189-200.

[29] 方齐云,吴光豪.城市二氧化碳排放量和经济增长的脱钩分析——以武汉市为例[J].城市问题,2016(03):56-61.

[30] 王彩明,李健.基于LMDI的河北省能源消费碳排放量核算及影响因素实证分析[J].科技管理研究,2017,37(10):258-266.

[31] 姚成胜,钱双双,毛跃华,李政通.中国畜牧业碳排放量变化的影响因素分解及空间分异[J].农业工程学报,2017,33(12):10-19.

[32] 魏营,杨高升.低碳试点城市工业碳排放量脱钩因素分解研究——以镇江市为例[J].资源开发与市场,2018,34(06):766-773.

[33] 尚梅,张风斌,胡振.家庭异质性视角下城乡居民家庭碳排放研究——以陕西为例[J].生态经济,2021,37(02):13-21+34.

[34] 彭智敏,向念.中部四省城市碳排放量影响因素的实证研究——基于地级以上城市面板数据[J].当代经济,2018(21):61-63.

[35] 肖德,陈婉.“一带一路”沿线省份对外直接投资碳排放效应研究[J].湖北大学学报(哲学社会科学版),2018,45(01):118-125.

[36] 裴祥宇.“一带一路”沿线省份碳排放的影响因素及启示[J].福建师范大学学报(哲学社会科学版),2019(02):34-39+169.

[37] 李垄,王奇.基于文献计量方法的碳排放责任分配研究发展态势分析环境科学学报[J],2019,39(07):2410-2433.

[38] 李健,王铮,朴胜任.大型工业城市碳排放量影响因素分析及趋势预测——基于PLS-STIRPAT模型的实证研究[J].科技管理研究,2016,36(07):229-234.

[39] 虞文宝,宋晓谕,简富缋.丝绸之路经济带节点城市人文驱动因素对环境的影响[J].冰川冻土,2017,39(01):200-206.

[40] 王丽,欧阳慧,马永欢.经济社会发展对环境影响的再认识——基于IPAT模型的城市碳排放量分析[J].宏观经济研究,2017(10):161-168.

[41] 杨青林,赵荣钦,丁明磊,满洲,王帅,余娇,杨文娟.中国城市碳排放的空间格局及影响机制——基于285个地级市截面数据的分析[J].资源开发与市场,2018,34(09):1243-1249.

[42] 陈占明,吴施美,马文博,刘晓曼,蔡博峰,刘婧文,贾小平,张明,陈洋,徐丽笑,赵晶,王思亓.中国地级以上城市二氧化碳排放的影响因素分析:基于扩展的STIRPAT模型[J].中国人口·资源与环境,2018,28(10):45-54.

[43] 孙艳伟,李加林,李伟芳,马仁锋.海岛城市碳排放测度及其影响因素分析——以浙江省舟山市为例[J].地理研究,2018,37(05):1023-1033.

[44] 彭智敏,向念,夏克郁.长江经济带地级城市金融发展与碳排放量关系研究[J].湖北社会科学,2018(11):32-38.

[45] 张琳杰,崔海洋.长江中游城市群产业结构优化对碳排放量的影响[J].改革,2018(11):130-138.

[46] 王博,吴天航,冯淑怡.地方政府土地出让干预对区域工业碳排放影响的对比分析——以中国8大经济区为例[J].地理科学进展,2020,39(09):1436-1446.

[47] 唐晓灵,康铭敏.我国东西部城市碳排放量差异性比较研究——基于对上海市和西安市的数据分析[J].价格理论与实践,2020(05):169-172+176.

[48] 王雅晴,谭德明,张佳田,孟楠,韩宝龙,欧阳志云.我国城市发展与能源碳排放关系的面板数据分析[J].生态学报,2020,40(21):7897-7907.

[49] 田泽,张怀婧,黄萌萌,任芳容.扬子江城市群工业能源碳排放与经济增长脱钩水平及驱动因素[J].资源与产业,2020,22(06):29-36.

[50] 梅林海,蔡慧敏.中国南北地区生活消费人均碳排放影响因素比较——基于空间计量分析[J].生态经济,2015,31(07):45-50.

[51] 陈珍启,林雄斌,李莉,李贵才.城市空间形态影响碳排放吗?——基于全国110个地级市数据的分析[J].生态经济,2016,32(10):22-26.

[52] 刘慧.长三角城市群生产性服务业集聚对碳排放量的影响及空间效应——基于面板数据的计量分析[J].商业经济研究,2017(17):166-168.

[53] 韩峰,谢锐.生产性服务业集聚降低碳排放量了吗?——对我国地级及以上城市面板数据的空间计量分析[J].数量经济技术经济研究,2017,34(03):40-58.

[54] 张梅,黄贤金,揣小伟.中国城市碳排放量核算及影响因素研究[J].生态经济,2019,35(09):13-19+74.

[55] 田建国,王玉海.财政分权、地方政府竞争和碳排放空间溢出效应分析[J].中国人口·资源与环境,2018,28(10):36-44.

[56] 周莹莹,孙玉宇.长江经济带城市碳排放量的空间关联性研究[J].北京交通大学学报(社会科学版),2018,17(02):52-60.

[57] 李庆.长江经济带城市二氧化碳排放量空间异质性分析[J].生态经济,2020,36(12):21-26+33.

[58] 荣培君,张丽君,秦耀辰,刘荣增,郑智成.城市居民嵌入式碳排放量空间差异及影响因素[J].经济地理,2018,38(06):178-186.

[59] 丁凡琳,陆军,赵文杰.城市居民生活能耗碳排放量测算及空间相关性研究——基于287个地级市的数据[J].经济问题探索,2019(05):40-49.

[60] 王素凤,赵嘉欣.长三角城市居民家庭直接能耗碳排放量空间特征及影响因素研究[J].中国环境管理,2020,12(02):131-137.

[61] 庞庆华,杨田田,李涵.城市碳排放量、产业结构和区域创新的空间联系——基于江苏省13个地级市的数据分析[J].华东经济管理,2018,32(12):20-26.

[62] 邱立新,袁赛.政府干预、时空效应与典型城市碳减排[J].软科学,2019,33(05):123-128.

[63] 高壮飞,叶瑞克.闽浙皖城市群碳排放量市际时空差异及产业关联分析[J].科技与经济,2019,32(02):16-20.

[64] 王少剑,高爽,黄永源,史晨怡.基于超效率SBM模型的中国城市碳排放量绩效时空演变格局及预测[J].地理学报,2020,75(06):1316-1330.

[65] 杨夏星.武汉城市空间形态与碳排放量的关系研究[J].当代经济,2020(03):81-83.

[66] 吴长兰,王东,苏彦涛.广东省市域碳排放量时空分异特征及影响因素——基于EDGAR数据的分析[J].地域研究与开发,2020,39(01):127-132+151.

[67] 世界环境与发展委员会国家环保局外事办公室译:《我们共同的未来》,北京:世界知识出版社,1989,2-32.

[68] 朱静敏.中国沿海地区海洋经济效率时空演化及影响因素[D].大连:辽宁师范大学,2019.

[69] Anselin L.Thirty years of spatial econometrics[J].Papers in Regional Science.2010,89(1):3-25.

[70] Anselin L.Spatial Econometrics:Methods and Models[M].Springer Netherlands.1988.

中图分类号:

  F124.5     

开放日期:

 2021-06-15    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式