论文中文题名: |
主动脉瓣流固耦合的计算机仿真与分析
|
姓名: |
程洁
|
学号: |
21208103032
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
070104
|
学科名称: |
理学 - 数学 - 应用数学
|
学生类型: |
硕士
|
学位级别: |
理学硕士
|
学位年度: |
2024
|
培养单位: |
西安科技大学
|
院系: |
计算机科学与技术学院
|
专业: |
应用数学
|
研究方向: |
流固耦合
|
第一导师姓名: |
许晓阳
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2024-06-14
|
论文答辩日期: |
2024-05-30
|
论文外文题名: |
Computer Simulation and Analysis of Aortic Valve Fluid-Structure Interaction
|
论文中文关键词: |
主动脉瓣 ; 有限元 ; 流固耦合 ; 力学性能 ; 材料模型
|
论文外文关键词: |
Aortic valve ; Finite elements ; Fluid-structure interaction ; Mechanical properties ; Material model
|
论文中文摘要: |
︿
心脏瓣膜是维持心脏功能和调节血液循环的重要结构,其中主动脉瓣处于高速血流区域,承受着较大的压力和周期性负荷,是心脏瓣膜中发病率最高的部位之一。对主动脉瓣力学性能的研究能够为相关疾病的诊断和治疗提供理论依据。目前,计算机仿真已成为研究主动脉瓣的一个重要手段。本文首先对Poiseuille流和圆柱体后弹性梁的流致振动进行仿真,并将其仿真解与解析解或基准算例进行比较分析,以验证通过有限元方法求解FSI问题的准确性和有效性。随后,建立基于任意拉格朗日-欧拉法的主动脉瓣FSI模型,对单叶式主动脉瓣、钙化性主动脉瓣以及具有不同材料特性的主动脉瓣进行仿真分析,从而进一步揭示不同因素对主动脉瓣力学性能的影响及其力学特性与瓣膜疾病之间的潜在关联。
本文的主要内容如下:
(1) 单叶式主动脉瓣的研究大多集中在对患者的相关疾病进行统计分析,而缺少对其力学性能的研究。因此,对不同血流流量下的单叶式主动脉瓣进行了FSI仿真和深入地力学性能分析。结果显示,单叶式主动脉瓣相较于正常主动脉瓣表现为狭窄,具有过高的跨瓣压差(Transvalvular pressure gradients, TPG);低血流流量下的单叶式主动脉瓣具有低血流速度的同时具有低TPG,从而形成一种特殊的亚组;瓣膜在心脏收缩中期承受的流体剪切应力较高,而过高的流体剪切应力会增加瓣膜钙化的风险。
(2) 由于二维模型和计算流体力学方法的局限性,建立了三维钙化性主动脉瓣FSI模型,以深入分析不同钙化程度下主动脉瓣的力学性能。结果显示,随着钙化程度的增加,瓣叶在开合过程中的活动受到限制,导致瓣膜的血流速度、血流压力、TPG以及第一主应力值逐步增加,而应变值则逐渐降低。这一变化过程加剧了主动脉瓣狭窄的情况,并且可能会形成一个恶性循环,进一步影响心脏功能。
(3) 选择合适的材料模型来分析和预测主动脉瓣的力学性能仍然具有挑战性。因此,建立了3种不同材料特性的主动脉瓣FSI模型,并分析了不同材料模型对主动脉瓣力学性能的影响。结果表明,在仿真模拟中,主动脉壁材料模型的选取对主动脉瓣的血流动力学影响通常较小;瓣叶的线弹性材料特性导致仿真结果表现出类似于主动脉瓣硬化的⾏为;在材料变形范围内,可以采用线弹性材料模型来快速评估主动脉瓣的性能。
﹀
|
论文外文摘要: |
︿
Heart valves are essential structures for maintaining cardiac function and regulating blood circulation. The aortic valve, located in a high-speed blood flow area, endures significant pressure and cyclic loading, making it one of the most susceptible sites to disease among the heart valves. Studying the mechanical properties of the aortic valve can provide a theoretical basis for the diagnosis and treatment of related diseases. Currently, computer simulations have become an important means of studying the aortic valve. This paper initially simulated the Poiseuille flow and the flow-induced vibration of an elastic beam behind a cylinder, comparing the simulation results with analytical or benchmark examples to verify the accuracy and effectiveness of using the finite element method to solve FSI problems. Subsequently, aortic valve FSI models utilizing the Arbitrary Lagrangian-Eulerian method were developed to simulate and analyze the unicuspid aortic valve, calcific aortic valve, and aortic valves with different material properties, further elucidating the impacts of several factors on the mechanical performance of the aortic valves and their potential links to valve diseases.
The main contents of this paper are as follows:
(1) Research on unicuspid aortic valves mostly focuses on statistical analysis of related diseases in patients, lacking studies on their mechanical properties. Therefore, FSI simulations and in-depth mechanical performance analyses of unicuspid aortic valves under different blood flows were conducted. The results show that, compared to normal aortic valves, the unicuspid aortic valve appears narrower, exhibiting excessively high transvalvular pressure gradients (TPG); under conditions of low blood flow, the unicuspid aortic valve displays low blood flow velocity and TPG, forming a unique subgroup; the valve experiences higher fluid shear stress during mid-systolic cardiac contraction, which can increase the risk of valve calcification.
(2) Due to the limitations of two-dimensional models and computational fluid dynamics methods, a three-dimensional calcific aortic valve FSI model was established to analyze the mechanical performance of the aortic valve at different stages of calcification. The results show that with advancing calcification, leaflet mobility during valve operation is restricted, progressively increasing blood flow velocity, pressure, TPG, and principal stress, while decreasing strain. This progression exacerbates the condition of aortic stenosis and may form a vicious cycle, further impacting cardiac function.
(3) Choosing an appropriate material model to analyze and predict the mechanical performance of the aortic valve remains challenging. Therefore, FSI models of the aortic valve with three different material properties were established, and the effects of these material models on the mechanical performance of the aortic valve were analyzed. The results indicate that in simulations, the choice of material model for the aortic wall typically has a minor impact on the hemodynamics of the aortic valve; the linear elastic properties of the valve leaflets lead to simulation results exhibiting behaviors similar to aortic valve hardening; within the range of material deformation, the linear elastic material model can be used for a rapid assessment of the aortic valve's performance.
﹀
|
参考文献: |
︿
[1] 马丽媛, 王增武, 樊静, 等. 《中国心血管健康与疾病报告2022》要点解读[J]. 中国全科医学, 2023, 26(32): 3975-3994. [2] Tsao C W, Aday A W, Almarzooq Z I, et al. Heart disease and stroke statistics—2023 update: a report from the American Heart Association[J]. Circulation, 2023, 147(8): e93-e621. [3] Woodruff R C, Tong X, Khan S S, et al. Trends in cardiovascular disease mortality rates and excess deaths, 2010–2022[J]. American Journal of Preventive Medicine, 2024, 66(4): 582-589. [4] Ozer N. Valvular heart disease epidemiology: a Turkish perspective[J]. Turk Kardiyol Dern Ars. 2013, 41(1): 11-13. [5] 马丽媛, 王增武, 樊静, 等. 《中国心血管健康与疾病报告2021》要点解读[J]. 中国全科医学, 2022, 25(27): 3331. [6] Bhatt H, Sanghani D, Julliard K, et al. Is mitral annular calcification associated with atherosclerotic risk factors and severity and complexity of coronary artery disease[J]. Angiology, 2014, 46: 3086-3098. [7] Fox C S, Vasan R S, Parise H, et al. Mitral annular calcification predicts cardiovascular morbidity and mortality: the Framingham Heart Study[J]. Circulation, 2003, 107: 1492-1496. [8] 董念国, 曹红, 周廷文, 等. 心脏瓣膜病治疗进展[J]. 临床心血管病杂志, 2022, 38(6): 429-432. [9] Praz F, Beyersdorf F, Haugaa K, et al. Valvular heart disease: from mechanisms to management[J]. The Lancet, 2024; 23: 2755. [10] Weich H, Herbst P, Smit F, et al. Transcatheter heart valve interventions for patients with rheumatic heart disease[J]. Frontiers in Cardiovascular Medicine, 2023, 10: 1234165. [11] Zimmerman M S, Smith A G C, Sable C A, et al. Global, regional, and national burden of congenital heart disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017[J]. The Lancet Child & Adolescent Health, 2020, 4(3): 185-200. [12] Toma M, Singh-Gryzbon S, Frankini E, et al. Clinical impact of computational heart valve models[J]. Materials, 2022, 15(9): 3302. [13] 朱宏伟, 袁泉, 刘杏铭, 等. 经导管主动脉瓣流固耦合分析[J]. 中国组织工程研究, 2019, 23(10): 1599-1604. [14] Hoffman J I E, Christianson R. Congenital heart disease in a cohort of 19,502 births with long-term follow-up[J]. The American Journal of Cardiology, 1978, 42(4): 641-647. [15] Edwards J E. Pathologic aspects of cardiac valvular insufficiencies[J]. AMA Archives of Surgery, 1958, 77(4): 634-649. [16] Mladenovic Z, Vranes D, Obradovic S, et al. Diagnostic significance of three‐dimensional echocardiography in asymptomatic unicuspid aortic valve[J]. Echocardiography, 2018, 35(8): 1247-1249. [17] Perzanowska-Brzeszkiewicz K, Lisicka M, Wróbel K, et al. Severe stenosis of a unicuspid aortic valve[J]. Kardiologia Polska (Polish Heart Journal), 2022, 80(11): 1148-1149. [18] 胡萍, 何亚峰, 马小静. 超声心动图诊断先天性主动脉瓣单瓣畸形1例[J]. 临床超声医学杂志, 2019, 21(5): 326. [19] 黄国倩, 蒋宇雯, 颜平, 等. 三维超声心动图定量评价二尖瓣反流患者的二尖瓣及瓣环几何构型[J]. 中国介入影像与治疗学, 2009, 6(4): 352-355. [20] Pan J. Unicuspid aortic valve: a rare congenital anomaly[J]. Cardiology, 2022, 147(2): 207-215. [21] Aikawa E, Schoen F J. Calcific and degenerative heart valve disease[M]//Willis MS, Homeister JW, Stone JR. Cellular and molecular pathobiology of cardiovascular disease. Amsterdam: Academic Press, 2014: 161-180. [22] Kamaltdinov M R, Kuchumov A G. Application of a mathematical model of systemic circulation for determination of blood flow parameters after modified blalock-taussig shunt operation in newborns[J]. Russian Journal of Biomechanics, 2021, 25(3): 313-330. [23] Nowak M, Divo E, Adamczyk W P. Fluid–structure interaction methods for the progressive anatomical and artificial aortic valve stenosis[J]. International Journal of Mechanical Sciences, 2022, 227: 107410. [24] Lai C Q, Lim G L, Jamil M, et al. Fluid mechanics of blood flow in human fetal left ventricles based on patient-specific 4D ultrasound scans[J]. Biomechanics and Modeling in Mechanobiology, 2016, 15: 1159-1172. [25] Meijerink F, Wijdh-den Hamer I J, Bouma W, et al. Intraoperative post-annuloplasty three-dimensional valve analysis does not predict recurrent ischemic mitral regurgitation[J]. Journal of Cardiothoracic Surgery, 2020, 15: 1-8. [26] Roy D, Mazumder O, Sinha A, et al. Multimodal cardiovascular model for hemodynamic analysis: simulation study on mitral valve disorders[J]. Plos One, 2021, 16(3): e0247921. [27] Bianchi M, Marom G, Ghosh R P, et al. Patient-specific simulation of transcatheter aortic valve replacement: impact of deployment options on paravalvular leakage[J]. Biomechanics and Modeling in Mechanobiology, 2019, 18: 435-451. [28] Chen H, Yeats B, Swamy K, et al. Image registration-based method for reconstructing transcatheter heart valve geometry from patient-specific CT scans[J]. Annals of Biomedical Engineering, 2022, 50(7): 805-815. [29] Emendi M, Sturla F, Ghosh R P, et al. Patient-specific bicuspid aortic valve biomechanics: a magnetic resonance imaging integrated fluid–structure interaction approach[J]. Annals of Biomedical Engineering, 2021, 49: 627-641. [30] Lee J H, Rygg A D, Kolahdouz E M, et al. Fluid–structure interaction models of bioprosthetic heart valve dynamics in an experimental pulse duplicator[J]. Annals of Biomedical Engineering, 2020, 48: 1475-1490. [31] Luraghi G, Migliavacca F, García-González A, et al. On the modeling of patient-specific transcatheter aortic valve replacement: a fluid–structure interaction approach[J]. Cardiovascular Engineering and Technology, 2019, 10: 437-455. [32] Emmert M Y, Schmitt B A, Loerakker S, et al. Computational modeling guides tissue-engineered heart valve design for long-term in vivo performance in a translational sheep model[J]. Science Translational Medicine, 2018, 10(440): eaan4587. [33] McNally A, Madan A, Sucosky P. Morphotype-dependent flow characteristics in bicuspid aortic valve ascending aortas: a benchtop particle image velocimetry study[J]. Frontiers in Physiology, 2017, 8: 44. [34] Mourato A, Valente R, Xavier J, et al. Computational modelling and simulation of fluid structure interaction in aortic aneurysms: a systematic review and discussion of the clinical potential[J]. Applied Sciences, 2022, 12(16): 8049. [35] Le T B, Usta M, Aidun C, et al. Computational methods for fluid-structure interaction simulation of heart valves in patient-specific left heart anatomies[J]. Fluids, 2022, 7(3): 94. [36] Kuchumov A G, Gilev V, Popov V, et al. Non-Newtonian flow of pathological bile in the biliary system: experimental investigation and CFD simulations[J]. Korea-Australia Rheology Journal, 2014, 26: 81-90. [37] Kuchumov A G, Khairulin A, Shmurak M, et al. The effects of the mechanical properties of vascular grafts and an anisotropic hyperelastic aortic model on local hemodynamics during modified Blalock–Taussig shunt operation, assessed using FSI simulation[J]. Materials, 2022, 15(8): 2719. [38] Kuchumov A G, Vedeneev V, Samartsev V, et al. Patient-specific fluid–structure interaction model of bile flow: comparison between 1-way and 2-way algorithms[J]. Computer Methods in Biomechanics and Biomedical Engineering, 2021, 24(15): 1693-1717. [39] Zakerzadeh R, Hsu M C, Sacks M S. Computational methods for the aortic heart valve and its replacements[J]. Expert Review of Medical Devices, 2017, 14(11): 849-866. [40] Tahir A M, Mutlu O, Bensaali F, et al. Latest developments in adapting deep learning for assessing TAVR procedures and outcomes[J]. Journal of Clinical Medicine, 2023, 12(14): 4774. [41] McLoone M, Quinlan N J. Coupling of the meshless finite volume particle method and the finite element method for fluid–structure interaction with thin elastic structures[J]. European Journal of Mechanics-B/Fluids, 2022, 92: 117-131. [42] Morany A, Lavon K, Gomez Bardon R, et al. Fluid–structure interaction modeling of compliant aortic valves using the lattice Boltzmann CFD and FEM methods[J]. Biomechanics and Modeling in Mechanobiology, 2023, 22(3): 837-850. [43] Pil N, Kuchumov A G, Kadyraliev B, et al. Influence of aortic valve leaflet material model on hemodynamic features in healthy and pathological states[J]. Mathematics, 2023, 11(2): 428. [44] Mohammadi H, Cartier R, Mongrain R. Review of numerical methods for simulation of the aortic root: present and future directions[J]. International Journal for Computational Methods in Engineering Science and Mechanics, 2016, 17(3): 182-195. [45] Lee J H, Rygg A D, Kolahdouz E M, et al. Fluid–structure interaction models of bioprosthetic heart valve dynamics in an experimental pulse duplicator[J]. Annals of Biomedical Engineering, 2020, 48: 1475-1490. [46] Van Loon R, Anderson P D, Van de Vosse F N, et al. Comparison of various fluid–structure interaction methods for deformable bodies[J]. Computers and Structures, 2007, 85(11-14): 833-843. [47] 高燕, 黄国英. 先天性心脏病病因及流行病学研究进展[J]. 中国循证儿科杂志, 2008, 3(3): 213. [48] Vervoort D, Jin H, Edwin F, et al. Global access to comprehensive care for pediatric and congenital heart disease[J]. CJC Pediatric and Congenital Heart Disease, 2023,6: 453-463. [49] 杨岷, 夏黎明. 单叶主动脉瓣畸形的 MRI 研究[J]. 放射学实践, 2009, 24(1): 96. [50] Slostad B D, Witt C M, O’Leary P W, et al. Unicuspid aortic valve: demographics, comorbidities, echocardiographic features, and long-term outcomes[J]. Circulation, 2019, 140(22): 1853-1855. [51] Naito S, Sequeira-Gross T, Petersen J, et al. Focus on a rare clinical entity: unicuspid aortic valve disease[J]. Expert Review of Cardiovascular Therapy, 2020, 18(9): 625-633. [52] Hassanabad A F, Kim T, Adams C. A rare and unique case: aortic valve replacement in a young adult with a stenotic unicommissural unicuspid aortic valve[J]. Future Cardiology, 2024, 20(1): 5-10. [53] Yoganathan A P, He Z, Casey Jones S. Fluid mechanics of heart valves[J]. Annual Review of Biomedical Engineering, 2004, 6: 331-362. [54] Fries R, Graeter T, Aicher D, et al. In vitro comparison of aortic valve movement after valve-preserving aortic replacement[J]. The Journal of Thoracic and Cardiovascular Surgery, 2006, 132(1): 32-37. [55] 王圣, 任培军, 陈现杰, 等. 不同治疗方式对高龄钙化性主动脉瓣重度狭窄患者预后的影响[J]. 临床心血管病杂志, 2019, 35(6): 540-543. [56] 刘镕珲, 金昌, 冯文韬, 等. 不同钙化模式对经导管主动脉瓣膜植入效果影响的数值模拟研究[J]. 医用生物力学, 2017, 32(6): 506-512. [57] Qin T, Caballero A, Mao W, et al. The role of stress concentration in calcified bicuspid aortic valve[J]. Journal of the Royal Society Interface, 2020, 17(167): 20190893. [58] Xie R, Han X, Xiong T, et al. Numerical investigation of calcification effects on aortic valve motions and ambient flow characteristics[J]. Journal of Fluids and Structures, 2024, 124: 104014. [59] Kivi A R, Sedaghatizadeh N, Cazzolato B S, et al. Fluid structure interaction modelling of aortic valve stenosis: effects of valve calcification on coronary artery flow and aortic root hemodynamics[J]. Computer Methods and Programs in Biomedicine, 2020, 196: 105647. [60] 薛贺波. 钙化性主动脉瓣病变及主动脉瓣置换术血流动力学研究[D]. 北京: 北京工业大学, 2021. [61] Soares A L F, van Geemen D, van den Bogaerdt A J, et al. Mechanics of the pulmonary valve in the aortic position[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 29: 557-567. [62] Piatti F, Sturla F, Marom G, et al. Hemodynamic and thrombogenic analysis of a trileaflet polymeric valve using a fluid–structure interaction approach[J]. Journal of Biomechanics, 2015, 48(13): 3641-3649. [63] Li J, Luo X Y, Kuang Z B. A nonlinear anisotropic model for porcine aortic heart valves[J]. Journal of Biomechanics, 2001, 34(10): 1279-1289. [64] Sun W, Abad A, Sacks M S. Simulated bioprosthetic heart valve deformation under quasi-static loading[J]. Journal of Biomechanical Engineering, 2005, 127(6): 905-914. [65] Koch T M, Reddy B D, Zilla P, et al. Aortic valve leaflet mechanical properties facilitate diastolic valve function[J]. Computer Methods in Biomechanics and Biomedical Engineering, 2010, 13(2): 225-234. [66] Sturla F, Ronzoni M, Vitali M, et al. Impact of different aortic valve calcification patterns on the outcome of transcatheter aortic valve implantation: a finite element study[J]. Journal of Biomechanics, 2016, 49(12): 2520-2530. [67] Stein S, Wysession M. An introduction to seismology, earthquakes, and earth structure[M]. Hoboken: John Wiley & Sons, 2009: 39. [68] Wierzbicki T. Mechanical engineering» structural mechanics[M]. Long Beach: Engineering Libre Texts, 2013: 33. [69] Eraslan A N. Von Mises’ yield criterion and nonlinearly hardening rotating shafts[J]. Acta Mechanica, 2004, 168(3): 129-144. [70] Craig Jr R R, Taleff E M. Mechanics of materials[M]. Hoboken: John Wiley & Sons, 2020: 69. [71] Li C, Tang D, Yao J, et al. Bioprosthetic valve size selection to optimize aortic valve replacement surgical outcome: a fluid-structure interaction modeling study[J]. Computer Modeling in Engineering & Sciences, 2021, 127(1): 159-174. [72] Rugonyi S, Bathe K J. On finite element analysis of fluid flows fully coupled with structural interactions[J]. CMES- Computer Modeling in Engineering and Sciences, 2001, 2(2): 195-212. [73] Bathe K J, Zhang H, Ji S. Finite element analysis of fluid flows fully coupled with structural interactions[J]. Computers & Structures, 1999, 72(1-3): 1-16. [74] Runnemalm H, Hyun S. Three-dimensional welding analysis using an adaptive mesh scheme[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 189(2): 515-523. [75] Mohammadi H, Boughner D, Millon L E, et al. Design and simulation of a poly (vinyl alcohol)—bacterial cellulose nanocomposite mechanical aortic heart valve prosthesis[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2009, 223(6): 697-711. [76] Turek S, Hron J. Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow[M]. Berlin: Springer Berlin Heidelberg, 2006: 380-384. [77] Haj-Ali R, Marom G, Zekry S B, et al. A general three-dimensional parametric geometry of the native aortic valve and root for biomechanical modeling[J]. Journal of Biomechanics, 2012, 45(14): 2392-2397. [78] Yan W, Li J, Wang W, et al. A fluid–structure interaction study of different bicuspid aortic valve phenotypes throughout the cardiac cycle[J]. Frontiers in Physiology, 2021, 12: 716015-716028. [79] Ranga A, Mongrain R, Galaz R M, et al. Large-displacement 3D structural analysis of an aortic valve model with nonlinear material properties[J]. Journal of Medical Engineering & Technology, 2004, 28(3): 95-103. [80] Seaman C, McNally A, Biddle S, et al. Generation of simulated calcific lesions in valve leaflets for flow studies[J]. J Heart Valve Dis, 2015, 24(1): 115-25. [81] Avanzini A. Influence of leaflet’s matrix stiffness and fiber orientation on the opening dynamics of a prosthetic trileaflet heart valve[J]. Journal of Mechanics in Medicine and Biology, 2017, 17(06): 1750096-1750113. [82] Tango A M, Salmonsmith J, Ducci A, et al. Validation and extension of a fluid–structure interaction model of the healthy aortic valve[J]. Cardiovascular Engineering and Technology, 2018, 9: 739-751. [83] 刘蕾, 游云, 廖福龙. 剪切诱导血小板聚集机制及其治疗进展[J]. 药学学报, 2020, 55(11): 2501-2509. [84] 姚文瑛, 许松林, 吴云, 等. 基于计算流体力学的血液和血栓通过静脉瓣时流动分析[J]. 大连理工大学学报, 2020, 60(4): 339-348. [85] Writing Committee Members, Otto C M, Nishimura R A, et al. 2020 ACC/AHA guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines[J]. Journal of the American College of Cardiology, 2021, 77(4): e25-e197. [86] 郭颖, 张瑞生. 中国成人心脏瓣膜病超声心动图规范化检查专家共识[J]. 中国循环杂志, 2021, 36(02): 109-125. [87] Stewart B F, Siscovick D, Lind B K, et al. Clinical factors associated with calcific aortic valve disease[J]. Journal of the American College of Cardiology, 1997, 29(3): 630-634. [88] Joda A, Jin Z, Haverich A, et al. Multiphysics simulation of the effect of leaflet thickness inhomogeneity and material anisotropy on the stress–strain distribution on the aortic valve[J]. Journal of Biomechanics, 2016, 49(12): 2502-2512. [89] Conti C A, Votta E, Della Corte A, et al. Dynamic finite element analysis of the aortic root from MRI-derived parameters[J]. Medical Engineering & Physics, 2010, 32(2): 212-221. [90] Wald S, Liberzon A, Avrahami I. A numerical study of the hemodynamic effect of the aortic valve on coronary flow[J]. Biomechanics and Modeling in Mechanobiology, 2018, 17(2): 319-338. [91] Otto C M, Prendergast B. Aortic-valve stenosis—from patients at risk to severe valve obstruction[J]. New England Journal of Medicine, 2014, 371(8): 744-756. [92] May-Newman K, Lam C, Yin F C P. A hyperelastic constitutive law for aortic valve tissue[J]. Journal of Biomechanical Engineering, 2009, 131(8): 081009-081016. [93] Luraghi G, Matas J F R, Beretta M, et al. The impact of calcification patterns in transcatheter aortic valve performance: a fluid-structure interaction analysis[J]. Computer Methods in Biomechanics and Biomedical Engineering, 2020, 24(4): 375-383. [94] Yeh H H. Biomechanical modeling and hemorheological assessment of ascending thoracic aortic aneurysm, aortic heart valve, and blood clot[D]. Vancouver: University of British Columbia, 2019. [95] Otto C M, Nishimura R A, Bonow R O, et al. 2020 ACC/AHA guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines[J]. Journal of the American College of Cardiology, 2021, 77(4): 450-500. [96] Baumgartner H, Hung J, Bermejo J, et al. Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice[J]. European Journal of Echocardiography, 2009, 10(1): 1-25. [97] Halevi R, Hamdan A, Marom G, et al. Fluid–structure interaction modeling of calcific aortic valve disease using patient-specific three-dimensional calcification scans[J]. Medical & Biological Engineering & Computing, 2016, 54: 1683-1694. [98] Yap C H, Kim H S, Balachandran K, et al. Dynamic deformation characteristics of porcine aortic valve leaflet under normal and hypertensive conditions[J]. American Journal of Physiology-Heart and Circulatory Physiology, 2010, 298(2): H395-H405. [99] Ben-Saadon S, Gavriel M, Zaretsky U, et al. Tissue-engineered arterial intima model exposed to steady wall shear stresses[J]. Journal of Biomechanics, 2021, 117: 110236. [100] Samady H, Eshtehardi P, McDaniel M C, et al. Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease[J]. Circulation, 2011, 124(7): 779-788.
﹀
|
中图分类号: |
O35
|
开放日期: |
2024-06-14
|