论文中文题名: | 改进生成对抗网络的图像数据增强算法 |
姓名: | |
学号: | 19207040014 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 081002 |
学科名称: | 工学 - 信息与通信工程 - 信号与信息处理 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 智能信息处理 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2022-06-20 |
论文答辩日期: | 2022-06-10 |
论文外文题名: | Image Data Enhancement Algorithm Based on Improved Generative Adversarial Networks |
论文中文关键词: | 深度卷积生成对抗网络 ; 本征维数 ; 相对判别器 ; 残差网络 ; 图像数据增强 |
论文外文关键词: | Deep Convolutional Generative Adversarial Network ; Intrinsic Dimension ; Relativistic Discriminator ; Residual Network ; Image Dataset Enhancement |
论文中文摘要: |
在深度学习中,数据的体量和质量是影响模型性能的重要因素。深度卷积生成对抗网络作为一种新型无监督模型,采用生成器和判别器的对抗学习思想生成新的图像数据集,解决了传统数据增强方法无法提取更多图像细节的缺陷,但存在生成图像质量较差、模型不稳定的问题。针对以上问题,本文从外部输入噪声维数和内部结构两个方面对深度卷积生成对抗网络模型进行改进,提出一种基于相对判别器的深度残差卷积生成对抗网络模型。主要工作如下: |
论文外文摘要: |
The volume and quality of data are important factors that influence model performance in deep learning. As a new type of unsupervised model, Deep Convolutional Generative Adversarial Network uses the adversarial learning idea of generator and discriminator to generate new image datasets, which solves the problem that traditional data enhancement methods cannot extract more image details, but this model has the problems of poor image quality and unstable model. In view of the above problems, this thesis improves the Deep Convolutional Generative Adversarial Network model from two aspects of external input noise dimension and internal structure, and proposes a Relativistic and Residual Deep Convolutional Generative Adversarial Network. The main work is as follows: The adaptive maximum likelihood dimension estimation algorithm is proposed to estimate the image intrinsic dimension in response to the negative bias phenomenon in the estimation of the image intrinsic dimension by the maximum likelihood dimension algorithm. By weighting and summing the intrinsic dimensions obtained by the maximum likelihood estimation algorithm and then taking the average value, the contribution of irrelevant data points is weakened, and the role of data points in important regions is strengthened. The optimal noise input dimension of the network is determined based on the results. The experimental results show that the use of the improved maximum likelihood dimension estimation algorithm to estimate the intrinsic dimension of the image can reduce the calculation amount of the model and improve the generation effect of the model. A Relativistic and Residual Deep Convolutional Generative Adversarial Network is proposed to address the problems of poor image quality and model collapse. Firstly, the SeLU activation function and the relative discriminator are used as the discriminator structure of the Generative Adversarial Network to enhance the quality and diversity of the generated images. And then, a residual block is introduced into the existing generator, which improves the ability of the model to capture image detail features while improving the stability of the model. Through experimental simulations on the MNIST, fashion-MNIST and MSTAR datasets, the results show that, compared with the Deep Convolutional Generative Adversarial Network, the FID of the improved algorithm in this thesis on the three datasets are reduced by 29.60%, 18.71%, 1.90% respectively, and the image data enhancement effect is significantly improved. |
参考文献: |
[1]张蔚敏, 蒋阿芳, 纪学毅. 人工智能芯片产业现状[J]. 电信网技术, 2018(2):67-71. [2]王哲. 2021年中国人工智能产业发展形势展望[R]. 北京: 国家工业和信息化部中国电子信息产业发展研究院, 2021. [3]王坤峰, 苟超, 段艳杰, 等. 生成式对抗网络GAN的研究进展与展望[J]. 自动化学报, 2017, 43(3): 321-332. [15]吴少乾, 李西明. 生成对抗网络的研究进展综述[J]. 计算机科学与探索, 2020, 14(3): 377-388. [18]梁俊杰, 韦舰晶, 蒋正锋. 生成对抗网络GAN综述[J]. 计算机科学与探索, 2020, 14(1): 1-17. [20]代亮, 梅洋, 李曙光, 等. 基于对称残差U型网络的路网交通流量数据修复[J]. 交通运输系统工程与信息, 2020, 20(5): 93-99. [21]黄淑英, 汪斌, 李红霞, 等. 基于生成对抗网络的图像去雾算法[J]. 模式识别与人工智能, 2021, 34(11): 990-1003. [22]全海燕, 王涛, 郑志清. 加性频域分解的生成对抗网络语音去混响[J/OL]. 工程科学与技术, 2022-03-10. [23]张晓峰, 吴刚. 基于生成对抗网络的数据增强方法[J]. 计算机系统应用, 2019, 28(10): 201-206. [24]王超学, 张涛, 马春森. 面向不平衡数据集的改进型SMOTE算法[J]. 计算机科学与探索, 2014, 8(6): 91-98. [25]黎旭, 陈家兑, 吴永明, 等. 基于改进SMOTE的制造过程不平衡数据分类策略[J/OL]. 计算机工程与应用, 2022-01-28. [26]梅大成, 陈江, 郑涛. 边界与密度适应的SMOTE算法研究[J/OL]. 计算机应用研究, 2022-03-19. [30]陈佛计, 朱枫, 吴清潇, 等. 生成对抗网络及其在图像生成中的应用研究综述[J]. 计算机学报, 2021, 44(02): 347-369. [34]甘岚, 沈鸿飞, 王瑶, 等. 基于改进DCGAN的数据增强方法[J]. 计算机应用, 2021, 41(5): 1305-1313. [35]裴卉宁, 谭昭芸, 张金勇, 等. DCGAN在汽车造型设计模型中的应用[J/OL]. 机械科学与技术, 2021-07-12. [36]丁斌, 夏雪, 梁雪峰. 基于深度生成对抗网络的海杂波数据增强方法[J]. 电子与信息学报, 2021, 43(7): 1985-1991. [39]杨毅, 卢诚波, 徐根海. 面向不平衡数据集的一种精化Borderline-SMOTE方法[J]. 复旦学报(自然科学版), 2017, 56(05): 537-544. [42]魏富强, 古兰拜尔·吐尔洪, 买日旦·吾守尔. 生成对抗网络及其应用研究综述[J]. 计算机工程与应用, 2021, 57(19): 18-31. [43]胡龙辉, 王朝立, 孙占全, 等. 基于WGAN的图像识别方法[J]. 控制工程, 2020, 27(12): 2168-2175. [44]段雪源, 付钰, 王坤. 基于VAE-WGAN的多维时间序列异常检测方法[J/OL]. 通信学报: 2022-03-20. [45]张哲新, 原俊青, 郭欢磊, 等.多判别器协同框架:高品质图像的谱归一生成对抗网络[J].小型微型计算机系统, 2021, 42(1): 201-207. [46]杨明. 面向分类的高光谱影像特征提取技术研究[D]. 解放军信息工程大学, 2012. [47]张荣国, 姚晓玲, 赵建, 等. 融入局部几何特征的流形谱聚类图像分割[J]. 模式识别与人工智能, 2020, 33(04): 313-324. [50]郭伟, 庞晨. 改进生成式对抗网络的图像数据集增强算法[J]. 电讯技术: 2022, 62, (03): 281-287. |
中图分类号: | TP391.41 |
开放日期: | 2022-06-21 |