论文中文题名: |
神府兰炭粉成浆性及其成浆机理的分子模拟研究
|
姓名: |
孟茁越
|
学号: |
17112079002
|
保密级别: |
保密(2年后开放)
|
论文语种: |
chi
|
学科代码: |
081902
|
学科名称: |
工学 - 矿业工程 - 矿物加工工程
|
学生类型: |
博士
|
学位级别: |
工学博士
|
学位年度: |
2021
|
培养单位: |
西安科技大学
|
院系: |
化学与化工学院
|
专业: |
矿物加工工程
|
研究方向: |
煤炭洁净利用
|
第一导师姓名: |
杨志远
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2021-06-18
|
论文答辩日期: |
2021-06-03
|
论文外文题名: |
On the slurry ability of Shenfu semi-coke powder and molecular simulation of its pulping mechanism
|
论文中文关键词: |
神府兰炭 ; 浆体燃料 ; 成浆特性 ; 分散剂 ; 分子模拟 ; 微观机理
|
论文外文关键词: |
Shenfu semi-coke ; Fuel slurry ; Slurry ability ; Dispersant ; Molecular simulation ; Micro mechanism
|
论文中文摘要: |
︿
陕北兰炭(半焦)产量在全国排名第一,且逐年增加,在兰炭生产、运输过程中产生了大量的兰炭粉,因粒径过小无法满足工艺要求被作为低价燃料直接出售或作为废弃物堆弃处理,造成了严重的资源浪费及环境污染,如何实现兰炭粉的合理利用成为了企业和社会迫切关注的问题。因燃烧时的污染物排放量远低于原煤,兰炭被认为是一种极具潜力的清洁能源,利用兰炭粉制浆不仅可以获得一种新型高效的浆体燃料,缓解石油供需紧张,同时可以拓展兰炭下游产业链,极大限度地提高兰炭资源利用率。但由于兰炭在热解过程中挥发分缺失、孔隙发达且润湿性差,导致高浓度兰炭浆的制备受到极大限制。针对以上问题,本文采用价格低廉的兰炭粉代替原煤,在优化兰炭浆制备工艺的基础上,引入焦化废水、煤泥作为第二相制浆,以期制备出高性能兰炭浆,同时实现废弃物资源化利用。基于实验研究结果,借助分子模拟手段进一步探究分散剂反应活性及兰炭浆体系内物质的微观作用机制,旨在从分子层面上揭示了兰炭浆的浆体特性及稳定机理,为兰炭浆及其他浆体燃料的提浓、降粘技术提供一定的理论依据和技术支持。
以陕北神府兰炭粉为研究对象,采用单因素分析法,探讨不同粒度级配、分散剂种类及用量对兰炭成浆性的影响,得到最佳的神府兰炭制浆工艺。相比于Alfred级配标准,Texaco级配条件下兰炭颗粒粒度分布范围更宽,兰炭浆具有较低的稳定性指数和较少的析水率;分散剂主要通过改善兰炭表面润湿性,增加兰炭颗粒间静电斥力而达到分散作用;在Texaco级配条件下,添加0.8 wt% SH分散剂兰炭浆的综合性能最好,最大固体浓度可达到65.52 wt%。
分别引入焦化废水和煤泥制备兰炭浆,进一步探究焦化废水及混掺煤泥对兰炭浆成浆性的影响。研究发现:焦化废水代替去离子水制浆对兰炭浆的成浆性起到促进作用,有利于制备出高浓度、低粘度的兰炭浆;焦化废水可以降低兰炭浆的着火温度,改善浆体的燃烧性能;焦化废水中酚类物质可以降低兰炭浆的粘度,氨氮类物质可以提升兰炭浆的稳定性,从而改善浆体性能。适量煤泥的加入一方面可以提高浆体内颗粒的堆积效率,另一方面通过增加体系内含氧结构和粘土矿物含量,促进三维空间结构的形成从而提高兰炭浆的稳定性;当煤泥添加量为15 wt%时,浆体具有较好的成浆性,静置7天后析水率仅为3.09 wt%且无明显沉淀产生;煤泥的加入对分散剂SLS具有更好的吸附性能,改善了SLS的分散效果,使用SLS分散剂有利于制备含煤泥的高性能兰炭浆;分散剂在不同体系中的吸附都符合准二级动力学模型。
基于兰炭样品的固体核磁、红外、X射线光电子能谱和高分辨透射电镜分析,获得了兰炭的芳香结构特征参数:芳碳率为0.89、芳香桥碳与周碳之比为0.46、芳香缩合环数以3×3以下为主。结合元素分析结果,通过对比预测的核磁谱图与实验谱图调整结构,构建了与实际特征相匹配的神府兰炭大分子结构模型(分子式为C185H74N2O22,分子量为2674),为从分子层面上研究兰炭浆内分散剂与兰炭相互作用机制奠定了基础。
采用量子化学密度泛函方法(DFT),考察了兰炭的表面结构特性、分散剂与水的相互作用以及分散剂在兰炭/煤泥模型结构表面的反应活性。结果表明:兰炭结构中的氧原子可以通过静电作用吸附水分子,但与低阶煤相比,含氧量低的兰炭对水分子的吸附能力较弱;阴离子分散剂头基上的O是分散剂发生反应的活性位点;在H2O与分散剂发生吸附的过程中,水分子易于向阴离子分散剂上的氧原子靠近,兰炭分子也与分散剂上的氧原子具有较高的反应活性;四种分散剂中,分散剂SH对水和兰炭富氧结构单元都具有较强的吸附活性。对于煤泥兰炭浆体系,构建了五种含氧官能团和高岭石(001)面作为模型化合物以模拟煤泥结构,分散剂在高岭石表面主要是通过分散剂的O 2p轨道与高岭石表面的H 1s轨道之间的键合作用形成稳定的吸附构型;SLS与高岭石之间的吸附能绝对值明显高于SH和H2O,说明SLS与煤泥中高岭石有较强的吸附作用。
采用分子动力学方法(MD)研究兰炭浆体系的流动性和稳定性的微观机理发现:分散剂的加入可以增加兰炭表面的极性基团,增强兰炭的润湿性,并通过降低体系中水分子的扩散系数产生水化膜而提高兰炭浆稳定性;四种分散剂存在时,兰炭浆体系的界面层厚度大小依次为SDS > SH > SLS > NNO,界面层厚度与兰炭浆的稳定性呈正相关;苯酚会占据兰炭表面的活性位点,与分散剂SH存在竞争吸附,阻碍分散剂对兰炭表面的润湿性调控,而NH4Cl可以有效减弱兰炭与水相之间的界面斥力,提高兰炭表面的亲水性;分散剂SH对煤泥中无机组分(高岭石)表面的调控能力较弱,而吸附SLS可以明显降低了H2O在体系中的扩散系数,有利于形成水化膜;与兰炭体系相比,水分子更容易在煤泥有机组分(煤大分子)周围聚集,验证了煤泥表面具有更强的润湿性;水/分散剂/低阶煤界面模型的空间平衡构型中,分散剂SH和SLS都吸附在水/煤界面,而SLS在煤泥的有机组分(煤大分子)的表面形成了更多的氢键,吸附构型更加稳定,与实验所得分散剂的吸附特性结论一致。
﹀
|
论文外文摘要: |
︿
The output of semi-coke in Northern Shaanxi ranks the first in China and increases year by year. A large amount of semi-coke powder, produced in the production and transportation of semi-coke, is mostly disposed as waste or sold directly as cheap fuel because of the unreachable in size requirement, causing the serious environmental pollution and resource waste. How to realize the reasonable utilization of semi-coke powder has become an urgent concern of enterprises and society. Because the emission of pollutants during combustion is much lower than that of raw coal, semi-coke is considered as a potential clean energy. The preparation of the semi-coke water slurry can not only obtain a new type of high efficiency slurry fuel to alleviate the shortage of oil supply, but also expand the downstream industry chain of semi-coke, which can greatly improve the utilization rate of semi-coke resources. However, due to the lack of volatiles, developed pores and poor surface wettability, the preparation of high concentration semi-coke water slurry is greatly limited. In view of the above problems, in this paper, low-cost semi-coke powder was used as raw material instead of raw coal to prepare fuel slurry. On the basis of optimizing the preparation process of semi-coke water slurry, coking wastewater and coal slime were introduced as the second phase to prepare high-performance semi-coke water slurry and realize the resource utilization of waste. Based on the experimental results, the reaction activity of dispersants and the micro mechanism of the substances in semi-coke water slurry system were further explored by means of molecular simulation. The aim of this study is to reveal the slurry characteristics and stability mechanism of the semi-coke water slurry at the molecular level, so as to provide theoretical basis and technical support for the concentration and viscosity reduction technology of semi-coke water and other slurry fuels.
Taking Shenfu semi-coke powder in Northern Shaanxi Province as the research object, the effects of different particle size distribution, dispersant type and dosage on the slurry ability of semi-coke water slurry were studied by single factor analysis method, and the most suitable preparation process of Shenfu semi-coke water slurry was obtained. The results show that the particle size distribution range of semi-coke particles under Texaco grading condition is wider than Alfred grading standard, the stability index (TSI) of the slurry is lower and the water-liberating rate is less than Alfred. The effect of dispersants is mainly to improve the surface wettability of semi-coke and increase the electrostatic repulsion between particles; The semi-coke slurry under the Texaco grading condition, adding 0.8 wt% SH has the best comprehensive slurry performance, and the maximum solid concentration (SCmax) reaches 65.52 wt%.
Coking wastewater and coal slime were added to prepare semi-coke water slurry, and the effects of coking wastewater and coal slime on the slurry ability were further explored. The results show that coking wastewater can promote the pulpability of semi-coke water slurry, which is conducive to the preparation of semi-coke slurry with high concentration and low viscosity. At the same time, coking wastewater can reduce the ignition temperature (Ti) of the slurry and improve the combustion performance of semi-coke water slurry. Phenol in coking wastewater can reduce the viscosity of the semi-coke water slurry, and ammonia nitrogen can improve the slurry stability, thus improving the performance of the slurry. The role of coal slime in improving the ability of semi-coke water slurry is to optimize the particle size distribution as a small size material; additionally, it can improve the hydrophilicity of particulates through oxygen-containing groups and minerals, which increased the performance of semi-coke water lsurry. The slurry contenting 15 wt% coal slime has good slurry ability, the water-liberating rate is only 3.09 wt% and there is no obvious precipitation after standing for 7 days; The addition of coal slime has better adsorption performance for SLS, which improves the its dispersion effect, the use of SLS is conducive to the preparation of high-performance semi-coke slurry which containing coal slime.
Based on the analysis of 13C NMR, FTIR, XPS and HRTEM, the characteristic parameters of semi-coke aromatic structure were obtained. The ratio of aromatic carbon (fa) is 0.89 and the ratio of aromatic bridge carbon to aromatic peripheral carbon is 0.46, the number of aromatic condensation ring is mainly less than 3×3. Combined with the results of ultimate analysis, the macromolecular structure of Shenfu semi-coke was constructed (chemical formula is C185H74N2O22 and molecular weight is 2674), which laid a foundation for the study of the interaction mechanism between dispersants and semi-coke from the molecular level.
The surface structure characteristics of semi-coke, the interaction between dispersants and H2O, and the reactivity of dispersant on semi-coke/coal slime surface were investigated by DFT. The results show that the oxygen atoms in the structure of semi-coke can adsorb H2O through electrostatic interaction, but compared with low rank coal, the adsorption capacity of semi-coke which with low oxygen content to H2O is obviously weaker. The oxygen atoms on the head group of the anionic dispersant are the active site for the reaction. In the adsorption process with the dispersant, the water molecule is easy to approach the O atoms of dispersant, and the semi-coke also has high reaction activity with the O of the dispersant; Among the four dispersants, SH has strong adsorption activity for both the oxygen-containing model structure of semi-coke and H2O. Five oxygen-containing functional groups and kaolinite (001) surface were constructed as model compounds to simulate the structure of coal slime, the stable adsorption configuration of dispersant on kaolinite surface is mainly formed by the bonding between O 2p orbital of dispersant and H 1s orbital of kaolinite surface. The absolute value of Eads between SLS and kaolinite is obviously higher than that of SH and H2O, which indicates that SLS has strong adsorption with the kaolinite of coal slime.
MD method was used to study the micro mechanism of slurry ability. The results show that the addition of dispersants can increase the polar groups on the surface of semi-coke, enhance the wettability of semi-coke and form hydration film by reducing the diffusion coefficient (D) of H2O in the system to improve the stability of semi-coke water slurry. The interfacial thickness in semi-coke water slurry added different dispersant is SDS > SH > SLS > NNO, and the thickness of the interfacial layer was positively correlated with the stability of the slurry. Phenol will occupy the active sites on the semi-coke surface and compete with SH for adsorption, which hinders the control of wettability of semi-coke surface by dispersant; NH4Cl can effectively reduce the interfacial repulsion between semi-coke and H2O and improved the hydrophilicity of semi-coke surface. SH has a weak ability to control the kaolinite (001) surface, while the adsorption of SLS can significantly reduce the diffusion coefficient of H2O in the system, which is conducive to the formation of hydration film. Compared with the semi-coke system, H2O are easier to gather around the organic components (coal macromolecules) of coal slime, which verifies that the surface of coal slime has stronger wettability. In the spatial equilibrium configuration of water / dispersant / low rank coal interface model, both dispersant SH and SLS are adsorbed on the water / coal interface, while SLS forms more hydrogen bonds on the surface of organic components of coal slime, and the adsorption configuration is more stable, which is consistent with the experimental adsorption characteristics of dispersant.
﹀
|
参考文献: |
︿
[1]谢和平, 吴立新, 郑德志. 2025 年中国能源消费及煤炭需求预测[J]. 煤炭学报, 2019, 44(7): 1949-1960. [2] Vershinina K Y, Lapin D A, Lyrschikov S Y, et al. Ignition of coal-water fuels made of coal processing wastes and different oils[J]. Applied Thermal Engineering, 2018, 128: 235-243. [3] Yang Z Y, Wang D C, Meng Z Y, et al. Adsorption separation of CH4/N2 on modified coal-based carbon molecular sieve[J]. Separation and Purification Technology, 2019, 218: 130-137. [4] Li S, Xu T M, Sun P, et al. NOx and SOx emissions of a high sulfur self-retention coal during air-staged combustion[J]. Fuel, 2008, 87(6): 723-731. [5] Lee B H, Sh L, Bae J S, et al. Combustion behavior of low-rank coal impregnated with glycerol[J]. Biomass and Bioenergy, 2016, 87: 122-130. [6] 陈浩, 熊君霞, 何国锋. 我国水煤浆技术现状及发展趋势[J]. 煤炭经济研究, 2019, 39(6): 85-88. [7] Liu S Q, Zhang Y J, Tuo K Y, et al. Structure, electrical conductivity, and dielectric properties of semi-coke derived from microwave-pyrolyzed low-rank coal[J]. Fuel Processing Technology, 2018, 178: 139-147. [8] 李奎, 祝伟, 彭坚, 等. 神府地区兰炭企业现状与改进建议[J]. 中外能源, 2016, 21(03): 21-30. [9] 贾建军. 神木兰炭产业发展简析[J]. 煤炭加工与综合利用, 2018, 4: 7-8. [10] Yang Z Y, Meng Z Y, Li Z H, et al. Synthesis and Application of Itaconic Acid Water-coke Slurry Dispersant[C], Materials Science Forum, 2017, 896: 167-174. [11] 杨纯, 徐莹璐, 陈慧, 等. 兰炭用于水煤浆气化原料可行性研究[J]. 洁净煤技术, 2019, 25(S2): 24-28. [12] 解松源, 黄金锋, 何凡, 等. 兰炭用于水煤浆气化原料可行性研究[J]. 化工管理, 2020, 26: 38-39. [13] Tavangar S, Hashemabadi S H, Saberimoghadam A. CFD simulation for secondary breakup of coal–water slurry drops using OpenFOAM[J]. Fuel Processing Technology, 2015, 132: 153-163. [14] Dmitrienko M A, Nyashina G S, Strizhak P A. Environmental indicators of the combustion of prospective coal water slurry containing petrochemicals[J]. Journal of hazardous materials, 2017, 338: 148-159. [15] Tu Y, Feng P, Ren Y G, et al. Adsorption of ammonia nitrogen on lignite and its influence on coal water slurry preparation[J]. Fuel, 2019, 238: 34-43. [16] Zhang J, Zhao H, Wang C Y, et al. The influence of pre-absorbing water in coal on the viscosity of coal water slurry[J]. Fuel, 2016, 177: 19-27. [17] 孟奎. 一类两亲梳型共聚物分散剂 SMASS 的合成及其对水煤浆流变性能的影响[D]. 上海: 华东理工大学, 2016. [18] 刘瑞. 水煤浆制备技术的发展现状及其新进展的研究[J]. 化学工程与装备, 2016. 9: 252-254. [19] 李艳昌, 杨雨濛, 刘建忠. 煤种成浆性的人工神经网络预测模型研究[J]. 洁净煤技术, 2016, 22(1): 5-9. [20] 叶申柱. 剪切技术在水煤浆超细分散中的应用研究[D]. 无锡: 江南大学, 2008. [21] Zhu J F, Liu J Z, Yang Y M, et al. Fractal characteristics of pore structures in 13 coal specimens: Relationship among fractal dimension, pore structure parameter, and slurry ability of coal[J]. Fuel Processing Technology, 2016, 149: 256-267. [22] 张成联, 涂亚楠. 影响煤成浆性的机理因素分析与研究[J]. 煤炭工程, 2015, 47(7): 124-126. [23] 柳金秋, 吕向阳, 张胜局, 等. 褐煤改性对其表面特性及成浆性的影响[J]. 洁净煤技术, 2019, 25(5): 53-58. [24] Bae J S, Lee D W, Lee Y J, et al. Improvement in coal content of coal–water slurry using hybrid coal impregnated with molasses[J]. Powder technology, 2014, 254: 72-77. [25] Yu Y, Liu J Z, Cen K F. Properties of coal water slurry prepared with the solid and liquid products of hydrothermal dewatering of brown coal[J]. Industrial & Engineering Chemistry Research, 2014, 53(11): 4511-4517. [26] Zhou Z J, Li X, Liang J M, et al. Surface coating improves coal–water slurry formation of shangwan coal[J]. Energy & Fuels, 2011, 25(8): 3590-3597. [27] Ren Y G, Zheng J P, Yang X, et al. Improvement on slurry ability of lignite under microwave irradiation[J]. Fuel, 2017, 191: 230-238. [28] Park J H, Lee Y J, Jin M H, et al. Enhancement of slurryability and heating value of coal water slurry (CWS) by torrefaction treatment of low rank coal (LRC)[J]. Fuel, 2017, 203: 607-617. [29] 邓业新. 粒度级配改善神华煤成浆性的研究[D]. 淮南: 安徽理工大学, 2018. [30] 张孝雨, 何国锋, 李磊, 等.水煤浆性能的影响因素及技术进展[J]. 洁净煤技术, 2019, 25(6): 96-104. [31] Tu Y, Xu Z Q, Wang W D. Method for evaluating packing condition of particles in coal water slurry[J]. Powder Technology, 2015, 281: 121-128. [32] Yang X, Tu Y, Ren Y G, et al. Optimization of packing state in brown coal water slurry based on the two-grade fractal model[J]. Fuel, 2016, 168: 54-60. [33] Singh M K, Ratha D, Kumar S, et al. Influence of particle-size distribution and temperature on rheological behavior of coal slurry[J]. International Journal of Coal Preparation and Utilization, 2016, 36(1): 44-54. [34] Routray A, Senapati P K, Padhy M, et al. Effect of mixture of natural and synthetic surfactant and particle size distribution for stabilized high-concentrated coal water slurry[J]. International Journal of Coal Preparation and Utilization, 2019, 6: 1-16. [35] Hu S X, Jiang F H, Zhao B L, et al. The Enhancement on Rheology, Flowability, and Stability of Coal Water Slurry Prepared by Multipeak Gradation Technology[J]. Energy & Fuels, 2021, 35(3): 2006-2015. [36] 段清兵, 吕向阳, 徐明磊, 等. 三峰分形级配水煤浆提浓技术研究[J]. 洁净煤技术, 2018, 24(6): 37-42. [37] 周永涛. 三峰分形级配水煤浆提浓技术研究[J]. 洁净煤技术, 2018, 24(1): 63-68. [38] 蒋高华, 蔡冰, 杨舜伊. 水煤浆分散剂的研究新进展[J]. 科技视界, 2013(2): 11-11. [39] 刘明强, 刘建忠, 王传成, 等. 水煤浆添加剂研究及发展动向[J]. 现代化工, 2011, 31(7): 8-11. [40] 江红艳. 竹浆木质素系高效分散剂在水煤浆中的应用研究[D]. 广州: 华南理工大学, 2012. [41] 宋金梅. 水煤浆用木质素添加剂改性研究[D]. 北京: 中国矿业大学, 2007. [42] 孟献梁, 褚睿智, 吴国光, 等. 复配分散剂与不同煤化程度煤成浆性能的研究[J]. 洁净煤技术, 2010, 16(1): 90-93. [43] Li P W, Yang D J, Lou H M, et al. Study on the stability of coal water slurry using dispersion-stability analyzer[J]. Journal of Fuel Chemistry and Technology, 2008, 36(5): 524-529. [44] Zhu J F, Wang P, Li Y B, et al. Dispersion performance and mechanism of polycarboxylates bearing side chains of moderate length in coal-water slurries[J]. Fuel, 2017, 190: 221-228. [45] Zhu J F, Zhang G, Liu G J, et al. Investigation on the rheological and stability characteristics of coal–water slurry with long side-chain polycarboxylate dispersant[J]. Fuel Processing Technology, 2014, 118: 187-191. [46] Zhang K, Zhang X H, Jin L E, et al. Synthesis and evaluation of a novel dispersant with jellyfish-like 3D structure for preparing coal–water slury[J]. Fuel, 2017, 200: 458-466. [47] 范丽娟. 水煤浆添加剂的研究进展[J]. 日用化学工业, 2002, 1: 46-48. [48] 王彩琴, 曹振恒, 付小康. 环保型水煤浆添加剂研究现状[J]. 化工科技, 2014, 22(3): 61-64. [49] 周志军, 李响, 周俊虎, 等. 生物质水煤浆及添加剂的研究[J]. 煤炭学报, 2012, 37(1): 147-153. [50] 臧卓异, 吴国光, 孟献梁, 等. 麦秸秆制备水煤浆的成浆特性研究[J]. 煤炭科学技术, 2016, 44(10): 195-202. [51] 吴乐, 张强, 李伟东, 等. 水葫芦与神府煤共成浆性的研究[J]. 燃料化学学报, 2010, 38(5): 534-538. [52] 翟会会, 徐梦涵, 赵辉, 等. 球磨预处理对水葫芦煤浆成浆性和流变性的影响[J]. 煤炭转化, 2014, 37(003): 50-54. [53] Li W D, Li W F, Liu H F. The resource utilization of algae-Preparing coal slurry with algae[J]. Fuel, 2010, 89(5): 965-970. [54] 孙平, 张云, 李学坤, 等. 生猪养殖废弃物制备生物质水煤浆的研究[J]. 应用化工, 2016, 45(3): 574-576. [55] 马少莲, 吴国光, 周蕊. NaOH改性污泥制备污泥水煤浆的成浆机理研究[J]. 科学技术与工程, 2016, 16(32): 274-277. [56] 马少莲, 吴国光, 孟献梁, 等. 污泥对分散剂的吸附及其对污泥水煤浆成浆特性的影响[J]. 煤炭学报, 2017, 42(6): 1565-1571. [57] 张大松, 高洪阁, 战玉柱, 等. 利用含油污泥生产油煤水浆的实验研究[J]. 油气田环境保护, 2010, 20(2): 18-20. [58] He Q H, Xie D, Xu R F, et al. The utilization of sewage sludge by blending with coal water slurry[J]. Fuel, 2015, 159: 40-44. [59] Feng P, Zhang Y X, Xu Z Q. The effect of sludge from coal to oil process on the stability of coal/sludge water slurries[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2018, 40(13): 1621-1628. [60] Wang R K, Liu J Z, Hu Y X, et al. Ultrasonic sludge disintegration for improving the co-slurrying properties of municipal waste sludge and coal[J]. Fuel Processing Technology, 2014, 125: 94-105. [61] Wang R K, Liu J Z, Lv Y K, et al. Sewage sludge disruption through sonication to improve the co-preparation of coal–sludge slurry fuel: The effects of sonic frequency[J]. Applied Thermal Engineering, 2016, 99: 645-651. [62] Wang R K, Zhao Z H, Yin Q Q, et al. Additive adsorption behavior of sludge and its influence on the slurrying ability of coal–sludge–slurry and petroleum coke–sludge–slurry[J]. Applied Thermal Engineering, 2018, 128: 1555-1564. [63] Zhang Y X, Xu Z Q, Tu Y N, et al. Study on properties of coal-sludge-slurry prepared by sludge from coal chemical industry[J]. Powder Technology, 2020, 366: 552-559. [64] 苏适, 蔡崧, 任世铮. 有机废水煤浆的初步实验研究[J]. 东南大学学报, 1992, 5: 50-57. [65] 周德悟, 杨勇, 万大春. 工业废料直接作水煤浆添加剂的研究[J]. 华东理工大学学报, 1993, 1: 12-17. [66] 闵凡飞, 张明旭, 王传金. 工业废水水煤浆流变性的研究[J]. 选煤技术, 2001, 5: 20-22. [67] 郑福尔, 刘以凡, 刘明华. 利用高浓度印染废水制备水煤浆的研究[J]. 煤炭工程, 2012. 2: 85-87. [68] 苏占军, 万勇, 陈前林, 等. 利用竹浆黑液制备无烟煤水煤浆的研究[J]. 煤炭技术, 2015, 34(2): 287-290. [69] 汪逸, 刘建忠, 李宁, 等. 煤气化废水成浆特性及添加剂的适配性[J]. 化工进展, 2018, 37(8): 338-345. [70] Zhou M S, Kong Q, Pan B, et al. Evaluation of treated black liquor used as dispersant of concentrated coal–water slurry[J]. Fuel, 2010, 89(3): 716-723 [71] Wang J Q, Liu J Z, Wang S N, et al. Slurrying property and mechanism of coal-coal gasification wastewater-slurry[J]. Energy & Fuels, 2018, 32(4): 4833-4840. [72] Liu J Z, Wang S N, Li N, et al. Effects of metal ions in organic wastewater on coal water slurry and dispersant properties[J]. Energy & Fuels, 2019, 33(8): 7110-7117. [73] Vershinina K Y, Shlegel N E, Strizhak P A. Impact of environmentally attractive additives on the ignition delay times of slurry fuels: Experimental study[J]. Fuel, 2019, 238: 275-288. [74] 向轶, 刘彦, 刘建忠, 等. 废弃物对水煤浆气化特性影响的研究进展[J]. 煤炭技术, 2015, 34(7): 312-315. [75] Zhao X L, Zhu W, Huang J Y, et al. Emission characteristics of PCDD/Fs, PAHs and PCBs during the combustion of sludge-coal water slurry[J]. Journal of the Energy Institute, 2015, 88(2): 105-111. [76] Li D D, Liu J Z, Wang S N, et al. Study on coal water slurries prepared from coal chemical wastewater and their industrial application[J]. Applied Energy, 2020, 268: 114976. [77] 邹建辉, 杨波丽, 龚凯峰, 等. 石油焦成浆性能的研究[J]. 化学工程, 2008, 36(003): 22-25. [78] 胡维斌, 韩敏芳, 何国锋, 等. 水焦浆流变特性的影响因素研究[J]. 洁净煤技术, 2008. 06: 31-33. [79] 孙美洁, 郑剑平, 楚天成, 等. 分散剂对水焦浆性质的影响[J]. 石油学报, 2016, 32(5): 935-942. [80] Marchand D J, Abrams A, Heiser B R, et al. Rheological modifiers for petroleum coke–water slurry[J]. Fuel Processing Technology, 2016, 144: 290-298. [81] Gao F Y, Hu E J. Effects of pH on rheological characteristics and stability of petroleum coke water slurry[J]. Petroleum Science, 2016, 13(4): 782-787. [82] 孙海勇. 石油焦制浆及其成浆性,反应活性的实验研究[J]. 煤化工, 2020, 4: 1-5. [83] Xu M H, Zhang J, Liu H F, et al. The resource utilization of oily sludge by co-gasification with coal[J]. Fuel, 2014, 126: 55-61. [84] Zhan X L, Zhou Z J, Kang W Z, et al. Promoted slurryability of petroleum coke–water slurry by using black liquor as an additive[J]. Fuel processing technology, 2010, 91(10): 1256-1260. [85] 高夫燕, 刘建忠, 王传成, 等. 石油焦的成浆性及水焦浆的流变性和稳定性[J]. 化工学报, 2010. 11: 2912-2918. [86] Wang R K, Ye X M, Zhao Z H, et al. Simultaneous disposal and utilization of coal chemical wastewater in coal and petroleum coke slurry preparation: Slurrying performance and mechanism[J]. Fuel, 2018, 215: 312-319. [87] 宋永辉, 时明亮, 苏婷, 等. 兰炭末制备水炭浆的影响因素及工艺研究[J]. 煤炭转化, 2015, 38(3): 55-59. [88] Xia Y C, Zhang R, Cao Y J, et al. Role of molecular simulation in understanding the mechanism of low-rank coal flotation: A review[J]. Fuel, 2020, 262: 116535. [89] 郑培军. 密度泛函理论研究两类加成反应的机理: [碱基对+OH·]反应及[醛+酮+吲唑]三组分反应[D]. 兰州: 兰州大学, 2016. [90] Wang Y N, Jin Z H. Effect of pore size distribution on hydrocarbon mixtures adsorption in shale nanoporous media from engineering density functional theory[J]. Fuel, 2019, 254: 115650. [91] Rath SS, Sahoo H, Das B, et al. Density functional calculations of amines on the (101) face of quartz[J]. Minerals Engineering, 2014, 69: 57-64. [92] Chen J H, Long X H, Zhao C H, et al. DFT calculation on relaxation and electronic structure of sulfide minerals surfaces in presence of H2O molecule[J]. Journal of Central South University, 2014, 21(10): 3945-3954. [93] 闵凡飞, 任豹, 陈军, 等. 基于水化膜弱化促进煤泥脱水机理及试验研究[J]. 煤炭学报, 2020, 304(1): 374-382. [94] 韩永华. 高岭石、蒙脱石表面性质及其分散机理的量子化学研究[D]. 北京: 中国矿业大学, 2017. [95] 彭陈亮. 煤泥水中微细蒙脱石颗粒表面水化作用机理研究[D]. 淮南: 安徽理工大学, 2013. [96] Chen J, Min F F, Liu L, et al. Experimental investigation and DFT calculation of different amine/ammonium salts adsorption on kaolinite[J]. Applied Surface Science, 2017, 419(15): 241-251. [97] Li B, Liu S Y, Guo J Y, et al. Interaction between low rank coal and kaolinite particles: A DFT simulation[J]. Applied Surface Science, 2018, 456: 215-220. [98] 卢廷亮. 烃类捕收剂性能的量子化学计算与试验研究[D]. 太原: 太原理工大学, 2015. [99] Liu J, Wang Y, Luo D Q, et al. DFT study of SDD and BX adsorption on sphalerite (110) surface in the absence and presence of water molecules[J]. Applied Surface Science, 2018, 450: 502-508. [100]邓小良, 李博, 汤观晴, 等. 分子动力学方法在金属材料动态响应研究中的应用[J]. 高压物理学报, 2019, 33(3): 36-51. [101]陈攀, 孙伟, 岳彤. 季盐在高岭石(001)面上的吸附动力学模拟[J]. 中国矿业大学学报, 2014, 43(2): 294-299. [102]刘安. 非极性油辅助十二胺混溶捕收剂提效机理研究[D]. 太原: 太原理工大学, 2015. [103]Liu A, Fan J C, Fan M Q. Quantum chemical calculations and molecular dynamics simulations of amine collector adsorption on quartz (001) surface in the aqueous solution[J]. International Journal of Mineral Processing, 2015, 134: 1-10. [104]刘跃龙, 王林林, 刘够生. 十二胺捕收剂在三种不同矿物表面吸附的分子动力学模拟[J]. 有色金属工程, 2020, 10(7): 82-87. [105]Cao Z, Jiang H, Zeng J H, et al. Nanoscale liquid hydrocarbon adsorption on clay minerals: A molecular dynamics simulation of shale oils[J]. Chemical Engineering Journal, 2020: 127578. [106]Zhang R, Xing Y W, Xia Y C, et al. New insight into surface wetting of coal with varying coalification degree: An experimental and molecular dynamics simulation study[J]. Applied Surface Science, 2020, 511: 145610. [107]Lyu X J, You X F, He M, et al. Adsorption and molecular dynamics simulations of nonionic surfactant on the low rank coal surface[J]. Fuel, 2018, 211: 529-534. [108]郝海青, 李丽匣, 张晨, 等. 经典分子动力学模拟在矿物浮选研究中的应用[J]. 矿产保护与利用, 2018. 3: 9-16. [109]Zwietering P, Krevelen D V. Chemical structure and properties of coal IV-Pore structure[J]. Fuel, 1954, 33(3): 331-337. [110]Given PH, Lupton V, Peover ME. Ease of Reduction of a Series of Coals and its Relation to their Structure[J]. Nature, 1958, 181(4615): 1059-1060. [111]Marzec A. Towards an understanding of the coal structure: a review[J]. Fuel Processing Technology, 2002, 77: 25-32. [112]Shinn J H. From coal to single-stage and two-stage products: A reactive model of coal structure[J]. Fuel, 1984, 63(9): 1187-1196. [113]Hatcher P G. Chemical structural models for coalified wood (vitrinite) in low rank coal[J]. Organic Geochemistry, 1990, 16(6): 959-968. [114]Li L, Ma C D, Hu S P, et al. Effect of the benzene ring of the dispersant on the rheological characteristics of coal-water slurry: Experiments and theoretical calculations[J]. International Journal of Mining Science and Technology, 2021. DOI: 10.1016/j.ijmst.2021.02.001. [115]You X F, He M, Zhang W, et al. Molecular dynamics simulations and contact angle of surfactant at the coal–water interface[J]. Molecular Simulation, 2018, 44(9): 722-727. [116]Murata S, Nomura M, Nakamura K, et al. CAMD study of coal model molecules. 2. Density simulation for four Japanese coals[J]. Energy & fuels, 1993, 7(4): 469-472. [117]Nakamura K, Murata S, Nomura M. CAMD study of coal model molecules. 1. Estimation of physical density of coal model molecules[J]. Energy & fuels, 1993, 7(3): 347-350. [118]Takanohashi T, Kawashima H, Fuels. Construction of a model structure for upper Freeport coal using 13C NMR chemical shift calculations[J]. Energy & fuels, 2002, 16(2): 379-387. [119]相建华, 曾凡桂, 梁虎珍, 等. 兖州煤大分子结构模型构建及其分子模拟[J]. 燃料化学学报, 2011, 39(7): 481-488. [120]贾建波, 曾凡桂, 孙蓓蕾. 神东2-2煤镜质组大分子结构模型13C-NMR谱的构建与修正[J]. 燃料化学学报, 2011, 39(9): 652-657. [121]司加康. 马兰8号煤大分子结构模型构建及分子模拟[D]. 太原: 太原理工大学, 2014. [122]冯炜, 高红凤, 王贵,等. 枣泉煤分子模型构建及热解的分子模拟[J]. 化工学报, 2019, 70(4): 287-296. [123]周星宇, 曾凡桂, 相建华, 等. 马脊梁镜煤有机质大分子模型构建及分子模拟[J]. 化工学报, 2020, 71(4): 400-409. [124]Castro M F, Kamat A M, Russo M F, et al. Combustion of an Illinois No. 6 coal char simulated using an atomistic char representation and the ReaxFF reactive force field[J]. Combustion and Flame, 2012, 159(3): 1272-1285. [125]Zhong Q F, Mao Q Y, Xiao J, et al. Sulfur removal from petroleum coke during high-temperature pyrolysis. Analysis from TG-MS data and ReaxFF simulations[J]. Journal of Analytical and Applied Pyrolysis, 2018, 132: 134-142. [126]Hong D K, Si T, Li X X, et al. Reactive molecular dynamic simulations of the CO2 gasification effect on the oxy-fuel combustion of Zhundong coal char[J]. Fuel Processing Technology, 2020, 199: 106305. [127]Jia L, Yu Y, Guo J R, et al. Study of the Molecular Structure and Elemental Mercury Adsorption Mechanism of Biomass Char[J]. Energy & Fuels, 2020, 34(10): 12743-12756. [128]江静. 基于分子模拟技术的煤焦反应性研究[D]. 马鞍山: 安徽工业大学, 2016. [129]赵彤. C-O单键官能团在半焦-NO反应中的作用[D]. 北京: 中国科学院大学(中国科学院过程工程研究所), 2018. [130]宋成建. 神府东胜煤成浆性及煤焦浆制备研究[D]. 西安: 西安科技大学, 2017. [131]王思同. 新型分散剂的合成及水焦浆的制浆工艺研究[D]. 西安: 西安科技大学, 2016. [132]Ren Y G, Zheng J X, Xu Z Q, et al. Application of Turbiscan LAB to study the influence of lignite on the static stability of PCLWS[J]. Fuel, 2018, 214: 446-456. [133]Chai Z F, Zeng M, Ren Y G, et al. Prediction Method on the Static Stability of a Coal Water Mixture[J]. Energy & Fuels, 2019, 33(5): 3998-4008. [134]孙美洁,徐志强,涂亚楠, 等. 基于多重光散射原理的水煤浆稳定性分析研究[J]. 煤炭学报,2015,3: 177-182. [135]Zhang R, Xia Y C, Guo F Y, et al. Effect of microemulsion on low-rank coal flotation by mixing DTAB and diesel oil[J]. Fuel, 2020, 260(15): 1-6. [136]Chang H H, Jia Z G, Zhang P, et al. Interaction between quaternary ammonium surfactants with coal pitch and analysis surfactants effects on preparing coal pitch water slurry[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 471: 101-107. [137]Liu P F, Zhu M M, Zhang Z Z, et al. Rheological behaviour and stability characteristics of biochar-water slurry fuels: Effect of biochar particle size and size distribution[J]. Fuel Processing Technology, 2017, 156: 27-32. [138]Zhu M M, Zhang Z Z, Zhang Y, et al. An experimental study of the ignition and combustion characteristics of single droplets of biochar-glycerol-water slurry fuels[J]. Proceedings of the Combustion Institute, 2017, 36(2): 2475-2482. [139]Boylu F, Dincer H, Atesok G. Effect of coal particle size distribution, volume fraction and rank on the rheology of coal–water slurries[J]. Fuel Processing Technology, 2004, 85(4): 241-250. [140]邹立壮. 不同水煤浆分散剂与煤之间的相互作用规律研究[D]. 北京: 中国矿业大学(北京校区), 2002. [141]Das D, Dash U, Meher J, et al. Improving stability of concentrated coal–water slurry using mixture of a natural and synthetic surfactants[J]. Fuel processing technology, 2013, 113: 41-51. [142]李和平, 张晓光, 吴佳芮, 等. 水煤浆添加剂的特性参数测定与筛选[J]. 煤炭转化, 2017, 40(4): 48-56. [143]Wang C Y, Zhao H, Dai Z H, et al. Influence of alkaline additive on viscosity of coal water slurry[J]. Fuel, 2019, 235: 639-646. [144]孙环. 兰炭与生物质掺混燃烧特性研究[D]. 秦皇岛: 燕山大学, 2019. [145]Zhu, J F, Wang P, Zhang W B, et al. Polycarboxylate adsorption on coal surfaces and its effect on viscosity of coal-water slurries[J]. Powder Technology, 2017, 315: 98-105. [146]Gu W X, Low Z X, Feng Y, et al. Investigating forward osmosis process for simultaneous preparation of brown coal slurry and wastewater reclamation[J]. Fuel Processing Technology, 2015, 131: 414-420. [147]Yu H L, Wang Y Y, Liu E H, et al. Experimental Study of the Influences of Temperature on the Properties of Particles in a Gasifier during Coal–Water Slurry Gasification[J]. ACS omega, 2020, 5(11): 5698-5703. [148]向轶. 油田废水制备浆体燃料的成浆、燃烧与气化特性研究[D]. 杭州: 浙江大学, 2017. [149]Wang R K, Ma Q Q, Ye X M, et al. Preparing coal slurry from coking wastewater to achieve resource utilization: Slurrying mechanism of coking wastewater–coal slurry[J]. Science of the Total Environment, 2019, 650: 1678-1687. [150]Taty-Costodes V C, Fauduet H, Porte C, et al. Removal of Cd (II) and Pb (II) ions, from aqueous solutions, by adsorption onto sawdust of Pinus sylvestris[J]. Journal of hazardous materials, 2003, 105(3): 121-142. [151]Vadivelan V, Kumar K. Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk[J]. Journal of Colloid and Interface Science, 2005, 286(1): 90-100. [152]陈莉荣, 张思思, 王哲. 高炉渣对Cr6+吸附性能的研究[J]. 应用化工, 2016, 45(7): 1267-1271. [153]胡侠. 基于神华煤的多原料制浆成浆性研究[D]. 淮南: 安徽理工大学, 2019. [154]王国房. 污泥改性制备污泥水煤浆的中试试验研究[J]. 洁净煤技术, 2016, 22(03):14-18. [155]郝华东, 李寒旭, 段锦, 等. 掺配煤泥对水煤浆性能影响因素的研究[J]. 煤炭技术, 2017, 36(2): 320-322. [156]Chen X, Wang C Y, Wang Z Y, et al. Preparation of high concentration coal water slurry of lignite based on surface modification using the second fluid and the second particle[J]. Fuel, 2019, 242(15): 788-793. [157]Tu Y N, Feng P, Ren Y G, et al. Adsorption of ammonia nitrogen on lignite and its influence on coal water slurry preparation[J]. Fuel, 2019, 238: 34-43. [158]Wei Y F, Wang J. Hydrothermal treatment of the blend of lignite and rapid hydrogasification char for preparing slurry fuels[J]. Fuel Processing Technology, 2017, 161: 311-320. [159]Cai Y C, Du M L, Wang S L, et al. Flotation characteristics of oxidized coal slimes within low-rank metamorphic[J]. Powder Technology, 2018, 340: 34-38. [160]He J F, Liu C G, Yao Y K. Flotation intensification of the coal slime using a new compound collector and the interaction mechanism between the reagent and coal surface[J]. Powder Technology, 2018, 325: 333-339. [161]Konduri M, Fatehi P. Adsorption and dispersion performance of oxidized sulfomethylated kraft lignin in coal water slurry[J]. Fuel Processing Technology, 2018, 176: 267-275. [162]Qin Y, Yang D, Guo W, et al. Investigation of grafted sulfonated alkali lignin polymer as dispersant in coal-water slurry[J]. Journal of Industrial and Engineering Chemistry, 2015, 27: 192-200. [163]Feng W, Li Z M, Gao H F, et al. Understanding the molecular structure of HSW coal at atomic level: A comprehensive characterization from combined experimental and computational study[J]. Green Energy & Environment, 2020. DOI: 10.1016/j.gee.2020.03.013. [164]李壮楣, 王艳美, 李平, 等. 宁东红石湾煤大分子模型构建及量子化学计算[J]. 化工学报, 2018, 69(005): 2208-2216. [165]Yan J C, Lei Z P, Li Z K, et al. Molecular structure characterization of low-medium rank coals via XRD, solid state 13C NMR and FTIR spectroscopy[J]. Fuel, 2020, 268: 117038. [166]秦红璐. 韩城矿区煤岩显微组分的大分子结构研究[D]. 太原: 太原理工大学, 2019. [167]李耀高. 东曲2号煤大分子结构模型及其热反应性研究[D]. 太原: 太原理工大学, 2019. [168]张帅, 马汝嘉, 刘路, 等. 扎鲁特地区无烟煤分子结构特征和模型构建[J]. 煤田地质与勘探, 2020, 48(1): 62-69. [169]You X F, He M, Zhu X C, et al. Influence of surfactant for improving dewatering of brown coal: A comparative experimental and MD simulation study[J]. Separation and Purification Technology, 2019, 210: 473-478. [170]Chen B, Diao Z J, Lu H Y. Using the ReaxFF reactive force field for molecular dynamics simulations of the spontaneous combustion of lignite with the Hatcher lignite model[J]. Fuel, 2014, 116: 7-13. [171]Young R A, Hewat A W. Verification of the triclinic crystal structure of kaolinite[J]. Clays and Clay Minerals, 1988, 36(3): 225-232. [172]Zhang L, Sun X L, Li B, et al. Experimental and molecular dynamics simulation study on the enhancement of low rank coal flotation by mixed collector[J]. Fuel, 2020, 266: 117046. [173]Clark S J, Segall M D, Pickard C J, et al. First principles methods using CASTEP[J]. Zeitschrift für Kristallographie-Crystalline Materials, 2005, 220(5-6): 567-570. [174]Xu Y Y, Zhong Z P, Lu S J, et al. Monte Carlo Simulations of Adsorption of Thiophene/Benzene in NaX and NaY Zeolites from Model Fuel[J]. Industrial & Engineering Chemistry Research, 2020, 59(35): 15742-15751. [175]Zhang J, Clennell M B, Dewhurst D N, et al. Combined Monte Carlo and molecular dynamics simulation of methane adsorption on dry and moist coal[J]. Fuel, 2014, 122: 186-197. [176]Shen L, Wang C Z, Min F F, et al. Effect of pores on the flotation of low-rank coal: An experiment and simulation study[J]. Fuel, 2020, 271: 117557. [177]陈军. 高泥化煤泥水中微细颗粒疏水聚团特性及机理研究[D]. 淮南: 安徽理工大学, 2017. [178]Li L, Li Z H, Ma C D, et al. Molecular dynamics simulations of nonionic surfactant adsorbed on subbituminous coal model surface based on XPS analysis[J]. Molecular Simulation, 2019, 45(9): 736-742. [179]Zhang Z Q, Wang C L, Yan K F. Adsorption of collectors on model surface of Wiser bituminous coal: A molecular dynamics simulation study[J]. Minerals Engineering, 2015, 79: 31-39. [180]Lu H Y, Li X F, Zhang C Q, et al. Experiments and molecular dynamics simulations on the adsorption of naphthalenesulfonic formaldehyde condensates at the coal-water interface[J]. Fuel, 2020, 264: 116838. [181]Jang S S, Lin S T, Maiti P K, et al. Molecular dynamics study of a surfactant-mediated decane-water interface: Effect of molecular architecture of alkyl benzene sulfonate[J]. The Journal of Physical Chemistry B, 2004, 108(32): 12130-12140.
﹀
|
中图分类号: |
TQ536
|
开放日期: |
2023-06-18
|