- 无标题文档
查看论文信息

论文中文题名:

 黄陵矿区延安组煤油气地球化学特征及其成因研究    

姓名:

 王文愽    

学号:

 19209071010    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0818    

学科名称:

 工学 - 地质资源与地质工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 地质与环境学院    

专业:

 地质资源与地质工程    

研究方向:

 煤田地质与矿井地质    

第一导师姓名:

 鲍园    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-17    

论文答辩日期:

 2022-05-26    

论文外文题名:

 Geochemical characteristics and genesis of coal, oil, and gas in Yan’an Formation of Huangling mining area    

论文中文关键词:

 黄陵矿区 ; 延安组 ; 2号煤 ; 矿井瓦斯 ; 油源对比    

论文外文关键词:

 Huangling mining area ; Yan’an Formation ; No.2 coal seam ; Mine gas ; Oil source correlation    

论文中文摘要:

鄂尔多斯盆地是中国陆内典型的煤油气共生型沉积盆地之一,拥有丰富的煤、油、气等矿产资源。黄陵矿区位于鄂尔多斯盆地南部,是典型的煤油气共生型矿区。本文以鄂尔多斯盆地南部黄陵矿区中生代煤系(侏罗系延安组、三叠系延长组)作为研究对象,利用工业分析、元素分析及显微煤岩组分分析及镜质组反射率测定等手段,对黄陵矿区延安组2号煤的地球化学特征(煤岩、煤质及煤中元素组成)开展系统分析;借助索氏萃取、气质联用分析、气相色谱及稳定同位素比值质谱等测试手段,对黄陵矿区中生代煤系有机质(延安组2号煤、煤系赋存原油、延长组7段原油和延长组8段原油)的化学组成、2号煤层赋存原油的来源及其围岩(煤层及其顶、底板)中赋存矿井瓦斯的气体成因类型进行综合判识研究,研究成果为黄陵矿区煤油气综合利用和矿井安全生产提供理论依据,取得的主要成果和认识如下:

(1)黄陵矿区延安组2号煤属低灰、中高挥发分、高发热量煤,镜质组最大反射率介于0.68%-0.78%之间,平均为0.74%。显微煤岩组分以惰质组为主,镜质组次之,壳质组含量最少,其平均含量分别为50.7%、43.1%和1.7%。煤中微量元素以钒和镓为主,硫、氯等有害元素整体含量偏低,其中硫元素赋存形态以无机硫形式为主。延安组2号煤H/C介于0.7-0.72之间,O/C比介于0.07-0.08之间,属于Ⅱ-2型干酪根。延安组2号煤经氯仿溶剂萃取处理后得到的物质组成以脂肪烃为主,包括:正构烷烃、萜烷及甾烷等。根据生物标志化合物参数判断,黄陵矿区延安组煤沉积环境以湖泊相和咸水湖相的还原环境为主,母质来源以浮游植物为主。

(2)黄陵矿区延安组2号煤层赋存原油的生物标志化合物中甾烷C27、C28、C29的相对丰度分别为43.8%、33%、23.3%;Pr/Ph等于0.83;C2920S/(20S+20R)与C29ββ/(ββ+αα)分别为0.85和0.81,表明煤层中赋存原油的物质来源以浮游生物为主,在淡水湖泊相的还原环境中沉积,已进入原油成熟阶段。油源判识结果显示,该原油是在早白垩世晚期,由延长组7段烃源岩(泥/页岩)进入生烃门限后,生成的原油沿裂隙向上运移并赋存于侏罗系延安组煤层中;此外,原油及其族组分的碳同位素差异特征也体现了原油在运移中发生了分馏作用。

(3)黄陵矿区矿井瓦斯存在三种成因类型和四种赋存形式的气体,具干气特征。气体组成以甲烷为主,氮气次之,二氧化碳较少,其平均含量分别为79.81%、16.31%和1.34%,不存在或含极少的重烃成分。矿井瓦斯气体稳定碳同位素分布范围在-61.18‰~-51.45‰,稳定氢同位素分布区间为-240.41‰~-220.49‰。同位素数据显示研究区矿井瓦斯的三种气体成因类型主要为生物成因气、混合成因气和油型气。其中延安组2号煤层赋存瓦斯主要成因类型为生物气和油型气的混合成因气;2号煤层顶板气主要成因类型为生物气和油型气的混合成因气;2号煤层底板气成因类型主要为油型气。四种赋存形式总结为油中气、煤中气、上气下油及煤油气独立富集的模式。

论文外文摘要:

Ordos Basin is one of the typical coal-oil-gas coexisting sedimentary basins with abundant mineral resources, such as coal, oil and gas, and so on. Huangling mining area, located in the south of Ordos Basin, is one of the typical coal-oil-gas coexisting mining areas. Based on the Huangling mining area in the south Ordos Basin Mesozoic coal measures (Jurassic Yan’an and Triassic Yanchang Formation) as the research object, the geochemistry characteristics of the No.2 coal seam of Yan’an Formation in Huangling mining area were systematically studied using the methods of industrial analysis, element analysis, microscopic coal rock composition analysis and vitrinite reflectance, measurement. The chemical composition of Mesozoic coal organic matter (No.2 coal of Yan’an Formation and crude oil of member-7 Yanchang Formation), the source of the No.2 coal seam occurring oil, and gas genetic types of mine gas in surrounding rock (coal seam and its roof and floor) were investigated based on soxhlet extraction, GC-MS analysis, GC testing, and stable isotope ratio mass spectrometry. The results provide a theoretical basis for the coal-oil-gas comprehensive utilization and mine safety production in the Huangling coal mining area. The main achievements and understandings are as follows.

(1)The No. 2 coal of Yan’an Formation in Huangling mining area belongs to low ash, medium and high volatile and high calorific value coal. The maximum reflectance of vitrinite ranges from 0.68%-0.78%, with an average of 0.74%. Inertinite is the main component, vitrinite is the second, and chitinite is the least, with an average content of 50.7%, 43.1% and 1.7%, respectively. The trace elements in coal are mainly vanadium and gallium, while the overall content of harmful elements such as sulfur and chlorine is low, and the occurrence form of sulfur element is mainly inorganic sulfur. The coal H/C and O/C ratio of Yan’an Formation in Huangling mining area are between 0.7-0.72 and 0.07-0.08, which belong to type Ⅱ-2 kerogen. The material composition of No. 2 coal of Yan'an Formation after chloroform solvent extraction is mainly aliphatic hydrocarbons, including n-alkanes, terpanes and steranes. According to biomarker compound parameters, the sedimentary environment of Yan’ an Formation coal in Huangling mine area is reduction environment with mainly lacustrine and saltwater lacustrine facies. The parent material is mainly sourced from phytoplankton.

(2) The relative abundance of steranes C27, C28 and C29 in the biomarkers of crude oil in Yan’an Formation is 43.8%, 33% and 23.3%, respectively. Pr/Ph = 0.83; The values of C2920S/(20S+20R) and C29ββ/(ββ+αα) are 0.85 and 0.81, respectively, indicating that the source of organic matter of crude oil in coal bed is mainly plankton, which is deposited in freshwater lacustrine facies under reducting environment, and the crude oil has entered the maturity stage. The oil source identification results show that the crude oil migrated upward along with the fractures and occurred in the Jurassic Yan'an Formation coal seam after the source rock (mud/shale) of the Yanchang Formation entered the hydrocarbon generation threshold in the late Early Cretaceous. In addition, the carbon isotope difference between crude oil and its family components also reflects the fractionation of crude oil during migration.

(3)There are three genetic types and four occurrence forms of mine gas in Huangling mining area, with dry gas characteristics. The gas composition is mainly methane, followed by nitrogen and carbon dioxide, with an average content of 79.81%, 16.31% and 1.34%, respectively. There is no or very little heavy hydrocarbon composition. The stable carbon isotope of mine gas ranges from -61.18‰ to -51.45‰, and the stable hydrogen isotope ranges from -240.41‰ to -220.49‰. Isotopic data show that the three gas genetic types of mine gas in the study area are mainly biogenic gas, mixed gas and oil gas. The main genetic type of gas in No. 2 coal seam of Yan’an Formation is the mixed genetic gas of bio-gas and oil-gas. The main genetic type of roof gas in No.2 coal seam is a mixture of biological gas and oil gas. 2 coal seam floor gas genetic type is mainly oil type gas. The four types of occurrences are gas in oil, gas in coal, upper gas and lower oil and independent enrichment of coal oil and gas.

参考文献:

[1] Li H, Zhou H, Liu K, et al. Retrofit application of traditional petroleum chemical technologies to coal chemical industry for sustainable energy-efficiency production[J]. Energy. 2020, 119493.

[2] Liu G, Yang C, Hao T. The construction of Chinese oil and gas science and technology innovation system[R]. Springer Berlin Heidelberg. 2010.

[3] 宋洪柱. 中国煤炭资源分布特征与勘查开发前景研究[D]. 北京: 中国地质大学(北京), 2013.

[4] 曲思建, 王琳, 张飏, 等. 我国低阶煤转化主要技术进展及工程实践[C]//.中国煤炭学会成立五十周年高层学术论坛论文集. 2012: 152-161.

[5] 刘建伟. 云南褐煤在Fe基催化剂下解聚机理研究[D]. 太原: 太原理工大学, 2020.

[6] 王志磊. 中低阶煤及生物质氧化解聚制备苯羧酸[D]. 太原: 太原理工大学, 2021.

[7] 赵波. 磁性离子液体萃取脱除煤直接液化残渣中灰分的研究[D]. 上海: 华东理工大学, 2015.

[8] 天工. 《中国天然气发展报告》[R]. 北京: 天然气工业, 2021.

[9] 白向飞. 中国煤中微量元素分布赋存特征及其迁移规律试验研究[D]. 北京: 煤炭科学研究总院, 2003.

[10] Diessel C. On the correlation between coal facies and depositional environments[C]// 20 the Symp Adv in the Study of the Sydney Basin. 1987.

[11] Calder J H, Gibling M R, Mukhopadhyay P K. Peat formation in a Westphalian B piedmont setting, Cumberland Basin, Nova Scotia: implications for the maceral-based interpretation of rheology and raised paleomires[J]. Bulletin Societe Geologique France, 1991, 162(2): 283-298.

[12] Papanicolalou C, Kotis T, FoscolosA, et al. Coal of Greece:Areview of properties,uses andfuture perspectives [J]. International Journal of Coal Geology, 2004, 58(3): 147-169.

[13] Pires M, Qudrols X. Characterization of Candiota (South Brazil) coal and combustion by-product [J]. International Journal of Coal Geology, 2004, 60(1): 57-72.

[14] Wagner N J, Hlatshwayo B. The occurrence of potentially hazardous trace elements in five Highveld Coals, South Africa [J]. International Journal of Coal Geology, 2005, 63(3-4): 228-246.

[15] 王运泉, 任德贻, 谢洪波. 燃煤过程中微量元素的分布及逸散规律[J]. 煤矿环境与保护, 1995(6):25-28.

[16] 周义平. 云南某些煤中砷的分布及控制因素[J]. 煤田地质与勘探, 1983, 11(3): 2-8.

[17] 唐跃刚, 张会勇, 代世峰, 等. 煤中铅的地球化学特征[J]. 煤田地质与勘探, 2001, 29(2): 7-10.

[18] 代世峰, 任德贻, 唐跃刚. 煤中常量元素的赋存特征与研究意义[J]. 煤田地质与勘探, 2005, 33(2): 1-5.

[19] Sun Y Z, Zhao C L, Zhang J Y, et al.Concentrations of valuable el-ements of the coals fromthe Pingshuo mining district, Ningwucoalfield, Northern China[J]. Energy Exploration & Exploitation, 2013, 31: 727-744.

[20] Birk D, White J C. Rare earth elements in bituminous coals and underclays of the Sydney Basin, Nova Scotia: Element sites, distribution, mineralogy[J]. International Journal of Coal Geology, 1991, 19(s 1–4): 219–251.

[21] Dai S, Bechtel A, Eble C F, et al. Recognition of peat depositional environments in coal: A review[J]. International Journal of Coal Geology, 2020, 219: 103383.

[22] Jones A B, D A C M B. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111 (1–4): 111-129.

[23] Lerman A, Imbo De N D M, Gat J R, et al. Physics and chemistry of lakes[J]. Limnology & Oceanography, 1998, 43(6): 167-184.

[24] 刘勇, 曹丽丽, 李志. 元素地球化学[M]. 北京: 科学技术出版社, 1984.

[25] 邓华, 钱凯. 沉积地球化学与环境分析[M]. 甘肃: 科学技术出版社, 1993.

[26] Mathews R P, Pillai S, Manoj M C, et al. Palaeoenvironmental reconstruction and evidence of marine influence in Permian coal-bearing sequence from Lalmatia Coal mine (Rajmahal Basin), Jharkhand, India: A multi-proxy approach - ScienceDirect[J]. International Journal of Coal Geology, 224: 358-362.

[27] Rimmer S M. Geochemical paleoredox indicators in Devonian–Mississippian black shales, Central Appalachian Basin (USA)[J]. Chemical Geology, 2004, 206(3-4): 373-391.

[28] Dypvik H. Geochemical compositions and depositional conditions of Upper Jurassic and Lower Cretaceous Yorkshire clays, England[J]. Geological Magazine, 1984, 121(05): 489-504.

[29] Xiong X H, Xiao J F. Geochemical Indicators of Sedimentary Environments—A Summary[J]. Earth and Environment, 2011, 133: 105256.

[30] Chen J, Wang Y, Chen Y, et al. Rb and Sr Geochemical Characterization of the Chinese Loess Stratigraphy and Its Implications for Palaeomonsoon Climate[J]. 地质学报: 英文版, 2000, (2): 279-288.

[31] 顾全荣, 胡宏纹, 王祖讷. 金属离子在煤界面吸附对煤成浆性的影响[J]. 燃料化学学报, 1995, (04): 435-440.

[32] Fei Y, Giroux L, Marshall M, et al. A comparison of primary lignite structure as determined by pyrolysis techniques with chemical characteristics determined by other methods[J]. Fuel, 2006, 85(7-8): 998-1003.

[33] Liu X, Song D, He X. Insight into the macromolecular structural differences between hard coal and deformed soft coal[J]. Fuel, 2019, 245: 188-197.

[34] Liu J, Jiang Y, Jiang X, et al. Solvent Extraction of Superfine Pulverized Coal. Part 1. Composition of the Extract[J]. Energy & Fuels, 2020, 49(10): 1389-1401.

[35] Hu R, Wang Z, Li L, et al. Effect of solvent extraction pretreatments on the variation of macromolecular structure of low rank coals[J]. Journal of Fuel Chemistry and Technology, 2018, 46(7): 778786.

[36] Yang Z, Li Y, Xue W, et al. Small molecules from multistep extraction of coal and their effects on coal adsorption of CH4[J]. Catalysis Today, 2020, 374(15): 192-199.

[37] Li X, Bai Z, Bai J, et al. Influences of exchangeable metallic species on solvent extraction of Xiaolongtan lignite and characterization of the separated portions[J]. Fuel Processing Technology, 2015, 138: 42-47.

[38] Önal Y, Akol S. Influence of pretreatment on solvent-swelling and extraction of some Turkish lignites [J]. Fuel, 2003, 82(11):1297-1304.

[39] Ma Y Y, Ma F Y, Mo W L, et al. Five-stage sequential extraction of Hefeng coal and direct liquefaction performance of the extraction residue[J]. Fuel, 2020, 266:117039.

[40] Ağbulut Ü, Sarıdemir S. A general view to converting fossil fuels to cleaner energy source by adding nanoparticles[J]. International Journal of Ambient Energy, 2018, 1–6.

[41] Liu G. Oil and Gas Resources in China: A Roadmap to 2050 Science Press Beijing and Springer-Verlag Berlin Heidelberg[R]. 2010.

[42] 中华人民共和国国家统计局. 国家能源统计局年鉴[M]. 北京: 中国统计出版社, 2021.

[43] Liu G, Yang C, Hao T. The construction of Chinese oil and gas science and technology innovation system[R]. Springer Berlin Heidelberg, 2010.

[44] 戴金星. 煤成气及鉴别理论研究进展[J]. 科学通报, 2018, 63(14): 1291-1305+1290.

[45] 戴金星, 宋岩. 煤成油的若干有机地球化学特征[J]. 石油勘探与开发, 1987, (05): 41-48.

[46] 郭黔杰, 段保鑫. 焦坪侏罗纪煤系及其油气展布[J]. 煤田地质与勘探, 1992, (05): 33-38.

[47] 包建平, 朱翠山, 陈希文, 等. 珠江口盆地珠一坳陷原油和烃源岩中C24四环萜烷及其成因[J]. 地球化学, 2018, 47(2): 122-133.

[48] 张文俊, 张敏. 典型海相油和煤成油饱和烃生物标志化合物特征研究[J]. 石油天然气学报, 2012, 34(6): 25-28+165.

[49] 傅家谟, 刘德汉, 盛国英. 煤成烃地球化学[M]. 北京: 科学出版社, 1990.

[50] 吴士清, 张恕芳, 乐淑贞. 浙北煤山龙潭煤系煤成油剖析[J]. 石油与天然气地质, 1988(02): 155-162.

[51] 马孝祥, 唐协华. 乐探1井原油树皮煤成油的地球化学特征[C]// 华东六省一市地学科技论坛. 中国地质学会, 杭州石油地质研究所, 浙江杭州, 2005.

[52] 邓冬云, 胡中奎. 吐哈盆地煤成油气生烃排烃以及组分特征探讨[J]. 中国石油和化工标准与质量, 2013(8): 177-180.

[53] Cesar J, Grice K. Molecular fingerprint from plant biomarkers in Triassic-Jurassic petroleum source rocks from the Dampier sub-Basin, Northwest Shelf of Australia[J]. Marine and Petroleum Geology, 2019, 110: 189–197.

[54] Cheng B, Chen Z H, Chen T, et al. Biomarker signatures of the Ediacaran–Early Cambrian origin petroleum from the central Sichuan Basin, South China: Implications for source rock characteristics[J]. Marine and Petroleum Geology, 2018, 96: 577–590.

[55] Kormöš, Sachsenhofer R F, Bechtel A, et al. Source rock potential, crude oil characteristics and oil-to-source rock correlation in a Central Paratethys sub-basin, the Hungarian Palaeogene Basin (Pannonian Basin) [J]. Marine and Petroleum Geology, 2021, 127: 104955.

[56] He B, Peng L, Yun J, et al. Effective source rock selection and oil–source correlation in the Western Slope of the northern Songliao Basin, China[J]. 石油科学: 英文版, 2021, 18: 398–415.

[57] 陈义才, 沈忠民, 罗小平. 石油与天然气有机地球化学[M]. 北京: 科学出版社, 2007.

[58] 张枝焕, 吴聿元, 俞凯, 等. 松辽盆地南部长岭地区青山口组原油的地球化学特征及油源分析[J]. 现代地质, 2002(04): 389-397.

[59] Tao K Y, Cao J, Chen X, et al. Deep hydrocarbons in the northwestern Junggar Basin (NW China): Geochemistry, origin, and implications for the oil vs. gas generation potential of post-mature saline lacustrine source rocks [J]. Marine and Petroleum Geology, 2019, 109: 623-640.

[60] 朱翠山, 郭稚弧, 包建平, 等.三塘湖盆地煤成油地球化学特征[J]. 江汉石油学院学报, 2001, (01): 9-13+6-5.

[61] Fu J, Zhang Z T, Chen C, et al. Geochemistry and origins of petroleum in the Neogene reservoirs of the Baiyun Sag, Pearl River Mouth Basin[J]. Marine and Petroleum Geology, 2019, 107: 127-141.

[62] 赵靖舟, 孟选刚, 韩载华. 近源成藏—来自鄂尔多斯盆地延长组湖盆东部“边缘”延长组6段原油的地球化学证据[J]. 石油学报, 2020, 41(12): 1513-1526.

[63] Wang Q, Hao F, Xu C G, et al. Paleolimnological environments and the formation of high quality source rocks in the Bohai Bay Basin: An integrated geochemical study of biomarkers, stable carbon and oxygen isotopes, and trace elements[J]. Journal of Petroleum Science and Engineering, 2020, 195: 107753.

[64] Xiao H, Wang T G, Li M, et al. Occurrence and distribution of unusual tricyclic and tetracyclic terpanes and their geochemical significance in some Paleogene oils from China[J]. Energy Fuels, 2018, 32(7): 7393–7403.

[65] Ji L, He C, Zhang M, et al. Bicyclic alkanes in source rocks of the Triassic Yan长 Formation in the Ordos Basin and their inconsistency in oil-source correlation[J]. Marine and Petroleum Geology, 2016, 359–373.

[66] Abdullah E S, Ebiad M A, Rashad A M, et al. Thermal maturity assessment of some Egyptian crude oils as implication from naphthalene, phenanthrene and alkyl substituents[J]. Egyptian Journal of Petroleum, 2021, 30: 17–24.

[67] Whiticar M J, Faber E, Schoell M. Biogenic methane formation in marine and freshwater environments: carbon dioxide reduction vs. acetate fermentation-Isotopic evidence[J]. Geochim Cosmochim Acta, 1986, 50, 693-709.

[68] Whiticar M J. Stable isotope geochemistry of coals, humic kerogens and related natural gases[J]. International Journal of Coal Geology, 1996, 32: 191-215.

[69] Bao Y, Wei C, Wang C. Geochemical characteristics and identification of thermogenic CBM generated during the low and middle coalification stages[J]. Geochemical Journal, 2013, 47(4): 451-458.

[70] Kotarba, Maciej. Origin of natural gases in the Paleozoic-Mesozoic basement of the Polish Carpathian Foredeep[J]. Geologica Carpathica, 2012, 63(4): 307-318.

[71] Whiticar M J. Correlation of natural gases with their sources[J]. American Association of Petroleum Geologists Memoir, 1994, 60: 261-283.

[72] Strąpoć D, Mastalerz M, Dawson K, et al. Biogeochemistry of Microbial Coal-Bed Methane[J]. Annual Review of Earth & Planetary Sciences, 2011, 39(1):617-656.

[73] Kotarba Maciej. Origin of natural gases in the Paleozoic-Mesozoic basement of the Polish Carpathian Foredeep[J]. Geologica Carpathica, 2012, 63(4): 307-318.

[74] Conrad R. Quantification of methanogenic pathways using stable carbon isotopic signatures: a review and a proposal[J]. Organic Geochemistry, 2005, 36(5): 739-752.

[75] Whiticar M J. Carbon and hydrogen isotope systematic of bacterial formation and oxidation of methane[J]. Chemical Geology, 1999, 161(1-3): 291-314.

[76] Scott A R, Kaiser W R. Thermogenic and Secondary Biogenic Gases, San Juan Basin, Colorado and New Mexico-Implications for Coalbed Gas Producibility[J]. American Association of Petroleum Geologists Bulletin, 1994, 78(8): 1186-1209.

[77] Ayers W B. Coalbed gas systems, resources, and production and a review of contrasting cases from the San Juan and Powder River basins[J]. American Association of Petroleum Geologists Bulletin, 2002, 86(11): 1853-1890.

[78] Tao M X, Wang W C, Xie G X, et al. Secondary biogenic coalbed methane discovered in some Coal fields in China[J]. Science Bulletin, 2005, (S1): 14-18.

[79] Kędzior S, Kotarba M J, Pękała Z. Geology, spatial distribution of methane content and origin of coalbed gases in Upper Carboniferous (Upper Mississippian and Pennsylvanian) strata in the south-eastern part of the Upper Silesian Coal Basin, Poland[J]. International Journal of Coal Geology, 2013, 105: 24-35.

[80] Sechman H, Kotarba M J, Kędzior S, et al. Fluctuations in methane and carbon dioxide concentrations in the near-surface zone and their genetic characterization in abandoned and active coal mines in the SW part of the Upper Silesian Coal Basin, Poland[J]. International Journal of Coal Geology, 2020, 227: 103529.

[81] Tao M X, Shi B G, Li J Y, et al. Secondary biological coalbed gas in the Xinji area, Anhui province, China: Evidence from the geochemical features and secondary changes[J]. International Journal of Coal Geology, 2007, 71(2-3): 358-370.

[82] 琚宜文, 李清光, 颜志丰, 等. 煤层气成因类型及其地球化学研究进展[J]. 煤炭学报, 2014, 39(5): 806-815.

[83] 张云峰. 鄂尔多斯盆地多种能源矿产共同富集的地质条件与成藏(矿)系统研究[D]. 北京: 中国地质大学, 2013.

[84] Huang F, He L J, Wu Q J. Lithospheric thermal structure of the Ordos Basin and its implications to destruction of the North China Craton[J]. Chinese Journal of Geophysics, 2015, 58: 3671–3686.

[85] 何登发, 包洪平, 开百泽, 等. 鄂尔多斯盆地及其邻区关键构造变革期次及其特征[J]. 石油学报, 2021, 42(10): 1255-1269.

[86] Li S L, Ma Y Z, Yu X H, et al. Reservoir potential of deep-water lacustrine delta-front sandstones in the upper Triassic Yan长 formation, Western Ordos Basin, China[J]. Journal of Petroleum Geology, 2017, 40: 105–118.

[87] Liu X, Wang F, Liu B J, et al. Factors controlling hydrocarbon accumulation in Jurassic reservoirs in the southwest Ordos Basin, NW China[J]. Acta Geologica Sinica(English Edition), 2020, 94: 467–484.

[88] 邓军,王庆飞,高帮飞,等. 鄂尔多斯盆地多种能源矿产分布及其构造背景[J]. 地球科学, 2006, (03): 330-336.

[89] 崔晓南. 鄂尔多斯盆地南缘煤地球化学特征研究[D]. 北京: 中国地质大学, 2018.

[90] 韩德馨. 中国煤岩学[M]. 中国矿业大学出版社, 1996.

[91] 孙顺才. 沉积磷酸盐方法对古盐度的测定及其意义[J]. 石油实验地质, 1980, (04): 58-62.

[92] 叶道敏, 肖文钊, 罗俊文, 等. 等变质煤镜质体性质的差异与煤层甲烷的关系[J]. 煤田地质与勘探, 1997, 25(3): 29-32.

[93] 赵师庆, 王飞宇. 论"沉煤环境—成煤类型—煤质特征"概略成因模型:Ⅰ.环境与煤相[J]. 沉积学报, 1994, 12(1): 32-39.

[94] Dai S, Wang X, Zhou Y, et al. Chemical and mineralogical compositions of silicic, mafic, and alkali tonsteins in the late Permian coals from the Songzao Coalfield, Chongqing, Southwest China[J]. Chemical Geology, 2011, 282(1-2): 29-44.

[95] 周义平. 中国西南龙潭早期碱性火山灰蚀变的TONSTEINS[J]. 煤田地质与勘探, 1999, 27(4): 6-10.

[96] 任光明, 朱同兴, 庞维华, 等. 黔西北及邻区安尼阶底界锆石U-Pb定年及对生物复苏的启示[J]. 地质学报, 2019, 93(11): 2770-2784.

[97] 周义平. 云南某些煤中砷的分布及控制因素[J]. 煤田地质与勘探, 1983(03): 4-10.

[98] 张功成, 李增学, 何玉平, 等. 琼东南盆地煤地球化学特征[J]. 天然气地球科学, 2010(5): 693-699.

[99] 王春江. 关于煤成油形成演化阶段及有关问题的讨论[J]. 地质论评, 1999, 45(4): 394-401.

[100] 赵长毅. 煤成油生成、运移与油气藏形成[J]. 中国矿业大学学报, 1999(01): 72-75.

[101] 唐佳阳. 黄陵矿区煤分子结构定量表征及其模型构建[D]. 西安: 西安科技大学, 2021.

[102] 田德瑞, 吴奎, 张如才, 等. 渤海湾盆地辽西凸起北段锦州20田原油地球化学特征及油源对比[J]. 石油实验地质, 2018, 40(03): 410-417.

[103] Ourisson G, Albrecht P, Rohmer M. Predictive microbial biochemistry — from molecular fossils to procaryotic membranes[J]. Trends in Biochemical Sciences, 1982, 7(7): 236-239.

[104] Simoneit B. Organic matter in hydrothermal systems-maturation, migration and biogeochemistry[J]. Applied Geochemistry, 1990, 5(1-2): 177-191.

[105] 朱扬明, 傅家谟. 塔里木原油饱和烃生物标志物分布特征[J]. 江汉石油学院学报, 1997, (3): 26-32.

[106] 董震雨. 黄陵矿区采煤工作面地面塌陷特征及覆岩破坏规律研究[D]. 西安: 西安科技大学, 2010.

[107] 陈冬冬. 煤油气共生矿井围岩气多因素耦合区域预测技术——以鄂尔多斯盆地黄陵矿区为例[J]. 煤田地质与勘探, 2018, 46(02): 49-53.

[108] Volkman J K, Farrington J W, Gagosian R B, et al. Lipid composition of castal marine sediments from the Peru Upwelling Region[J]. Advances in Organic Geochemistry, 1981, 228–240.

[109] 赵阳,姚泾利,段毅,等.鄂尔多斯盆地陇东地区长9油层组油源分析[J]. 沉积学报, 2015, 33(05): 1023-1032.

[110] Brooks J D, Smith J W. The diagenesis of plant lipids during the formation of coal, petroleum and natural gas—II. Coalification and the formation of oil and gas in the Gippsland Basin[J]. Geochimica Et Cosmochimica Acta, 1969, 33(10): 1183–1194.

[111] Peters K E, Moldowan J M. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments[M]. New Jersey: Prentice Hall, 1993, 483–664.

[112] Li Y, Liu Z, Chen Z H, et al. Thermal maturity, source characteristics, and migration directions for the Ordovician oil in the Central Tabei Uplift, Tarim Basin: Insight from biomarker geochemistry[J]. Journal of Petroleum Science and Engineering, 2020, 189: 106975.

[113] 杨亚南, 周世新, 李靖,等. 鄂尔多斯盆地南缘延长组烃源岩地球化学特征及油源对比[J]. 天然气地球科学, 2017, 28(4): 550-565.

[114] Xiao H, Wang T G, Li M, et al. Occurrence and distribution of unusual tricyclic and tetracyclic terpanes and their geochemical significance in some Paleogene oils from China[J]. Energy & Fuels, 2018, 32(7): 7393–7403.

[115] Xu M, Hou D J, Lin X Y, et al. Organic geochemical signatures of source rocks and oil-source correlation in the Papuan Basin, Papua New Guinea[J]. Journal of Petroleum Science and Engineering, 2022, 210: 109972.

[116] Zhao X T, Shen B, Yang J J, et al. Evolution characteristics of maturity-related sterane and terpane biomarker parameters during hydrothermal experiments in a semi-open system under geological constraint[J]. Journal of Petroleum Science and Engineering, 2021, 201: 108412.

[117] 任战利, 祁凯, 李进步, 等. 鄂尔多斯盆地热动力演化史及其对油气成藏与富集的控制作用[J]. 石油与天然气地质, 2021, 42(5): 1030-1042.

[118] Price L C. Thermal stability of hydrocarbon in nature: limits evidence characteristics and possible controls[J]. Geochim Cosmochim Act, 1993, 57: 3261–3280.

[119] Saxby J D, Stephenson L C. Effect of an igneous intrusion on oil shale at Rundle (Australia) [J]. Chemical Geology, 1987, 63: 1–16.

[120] 彭金宁,刘光祥,罗开平,等. 凯里地区油源对比及油气成藏史分析[J]. 西南石油大学学报(自然科学版), 2011, 33(03): 61-66+193.

[121] 张成君, 张菀漪, 张丽,等. 甘青藏地区现代土壤中有机质类异戊二烯烃来源及地质意义[J]. 地质论评, 2017, 63(1): 235-245.

[122] Anderson H M, Barlow P W, Clarkson D T, et al. Molecular responses of roots related to fungal colonisation in arbuscular mycorrhiza[J]. Springer Netherlands, 1997, 7(Chapter 13): 131-135.

[123] 卢双舫, 纪贤伟, 王跃文,等. 松辽盆地滨北区油气运移与油源对比[J]. 大庆石油地质与开发, 2008, 27(2): 1-3.

[124] Shanmugam G. Significance of coniferous rain forests and related organic matter in generating commercial quantities of oil, Gippsland Basin, Australia[J]. American Association of Petroleum Geologists Bulletin, 1985, 69: 1241–1254.

[125] 黄彦杰, 耿继坤, 白玉彬, 等. 鄂尔多斯盆地富县地区延长组长6、长7段原油地球化学特征及油源对比[J]. 石油实验地质, 2020, 42(02): 281-288.

[126] Majid S F, Mohammad, R.K., Hossain, R.B., Thomas, G., Liu, B., Mehdi, O., 2021. Organic geochemistry, oil-source rock, and oil-oil correlation study in a major oilfield in the Middle East[J]. Journal of Petroleum Science and Engineering, 207, 109074.

[127] 段毅, 王智平, 张晓宝,等. 柴达木盆地西部原油极性化合物特征及其地球化学意义[J]. 地质学报, 2003, 77(3): 414-422.

[128] Bao J, Wang T, Chen F. The relationship between methyl phenanthrene ratios and the evolution of organic matter[J]. Journal of Petroleum Science and Engineering, 1992, 14: 8–19.

[129] Peters K E, Walters C C, Moldowan J M. The biomarker guide: biomarkers and isotopes in petroleum systems and earth history[M]. UK: Cambridge University Press, 2005.

[130] Huang W Y, Meinschein W G. Sterols in sediments from Baffin Bay, Texas[J]. Geochimica Et Cosmochimica Acta, 1978, 42(9): 1391-1396.

[131] Li S M, Amrani A, Pang X Q, et al. Origin and quantitative source assessment of deep oils in the Tazhong Uplift, Tarim Basin[J]. Organic Geochemistry, 2015, 78(2): 1-22.

[132] 宋到福,王铁冠,李美俊, 等. 和田河气田凝析油油源及油气成因关系判识[J]. 中国科学: 地球科学, 2015, 45(07): 941-952.

[133] 侯林慧, 彭平安, 于赤灵, 等. 鄂尔多斯盆地姬塬-西峰地区原油地球化学特征及油源分析[J]. 地球化学, 2007: 36(5): 497-506.

[134] Stahl W J. Source rock-crude oil correlation by isotopic type-curves[J]. Geochimica Et Cosmochimica Acta, 1978, 42: 1573–1577.

[135] Guriale J A, Bromley B W. Migration induced compositional 长es in oils and condensates of a single field[J]. Organic Geochemistry, 1996, 24: 1097–1113.

[136] Fuex, A N. The use of stable carbon isotopes in hydrocarbon exploration[J]. Journal of Geochemical Exploration, 19777, (77): 155–188.

[137] 李贵红. 鄂尔多斯盆地黄陵地区侏罗系煤层气来源判识[J]. 煤炭学报, 2018, 43(4): 1052-1057.

[138] 唐恩贤.黄陵矿区煤层底板异常涌出气体成因类型[J]. 煤田地质与勘探, 2015, 43(6): 8-11.

[139] 赵继展, 张群, 郑凯歌,等. 黄陵矿区煤矿井下围岩喷涌气体致灾机理及防治措施[J]. 天然气工业,2022, 38(11): 114-121.

[140] 戴金星. 各类烷烃气的鉴别[J]. 中国科学(B辑化学生命科学地学), 1992(02): 185-193.

[141] 刘超, 冯国瑞, 曾凡桂. 沁水盆地南部潘庄区块废弃矿井煤层气地球化学特征及成因[J]. 煤田地质与勘探, 2019, 47(06): 67-72+77.

[142] 刚文哲, 高岗, 郝石生, 等. 论乙烷碳同位素在天然气成因类型研究中的应用[J]. 石油实验地质, 1997, (02): 164-167.

[143] 胡安文, 王德英, 于海波,等. 渤海湾盆地渤中19-6凝析气田天然气成因及油气成因关系判识[J]. 石油与天然气地质, 2020, 41(5): 903-912+984.

中图分类号:

 P168.13    

开放日期:

 2022-06-20    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式