- 无标题文档
查看论文信息

论文中文题名:

 采动应力下垮落带空间演化及注浆扩散机制研究    

姓名:

 欧阳一博    

学号:

 20103077006    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081901    

学科名称:

 工学 - 矿业工程 - 采矿工程    

学生类型:

 博士    

学位级别:

 工学博士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 能源学院    

专业:

 矿业工程    

研究方向:

 矿山压力与岩层控制    

第一导师姓名:

 柴敬    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-27    

论文答辩日期:

 2023-06-07    

论文外文题名:

 Spatial evolution of caving zone under mining stress and grouting diffusion mechanism    

论文中文关键词:

 垮落带邻位矸石注浆充填技术 ; 采动应力 ; 垮落带空间 ; 注浆扩散 ; 浆体易充填空间 ; 光纤传感器技术    

论文外文关键词:

 Adjacent grouting filling technology in cavingd zone ; Mining stress ; Caving zone space ; Grouting diffusion ; Easy to fill space with slurry ; Fiber optic sensing technology    

论文中文摘要:

矿山固废存量大、增量多、利用率低,制约着煤炭开发与环境保护协调发展。垮落带邻位矸石注浆充填技术是将矸石破碎成一定粒径后加水制成料浆,利用工作面侧回采巷道向邻面采空区垮落带钻孔注浆的技术,是实现矸石井下处置的技术途径之一。由于采动应力动态变化、垮落带空间结构演化及矸石浆体扩散规律复杂,导致注浆钻孔布局与注浆效果难确定,制约着该技术的发展。因此,本文采用理论分析、室内试验、数值模拟及现场实测等研究方法,对采动应力演化特征、采动应力下垮落带空间演化规律和注浆扩散机制进行系统研究,引入光纤传感技术,实现采动应力大小和方向-覆岩结构变形-垮落带空间空隙分布-注浆扩散过程的实时监测,并提出注浆钻孔布置参数优化方法。主要工作及研究成果如下:

(1)基于岩石力学及弹性力学理论,构建了考虑基本顶破断角和开采时间影响的垮落带空间空隙体积动态计算 模型,推导出垮落带空隙体积、空隙率和渗透率计算公式。得出垮落带空间结构分布特征及其受主控因素影响的演化规律,量化了垮落带空间分区特征。阐明了采动应力对基本顶变形破断的驱动效应,揭示了采动应力下垮落带空间演化机制。当基本顶起裂判据CIC>1后,岩体裂隙萌生发育,主应力偏转驱动岩体裂隙扩展,劣化岩体强度,最终导致基本顶非均匀破断,基本顶破断块体减小,垮落带空间和空隙体积减小。

(2)基于渗流力学理论,考虑浆体性质、垮落带空隙结构及渗滤效应影响,构建垮落带邻位注浆渗流模型,推导出浆体扩散范围、堆积高度和注浆量计算公式。得出注浆渗流呈现低压扩散-纵向贯通-横向扩展的演化规律,其形态由椭圆体、圆柱体向截锥体变化,揭示了邻位注浆扩散机制。垮落带注浆扩散启停受屈服应力控制,当浆体屈服应力小于剪切应力时,浆体开始扩散。垮落带空隙率减小,渗流路径迂曲度增高,导致渗流阻力增大,浆体扩散距离减小。

(3)采用数值模拟、室内试验及现场实测方法对采动应力下垮落带空间分区演化特征进行研究,刻画出采动应力偏转轨迹演化特征,呈椭圆形分布,并随工作面推进而增大。研制出矿用长距离钻孔多分量光纤传感器,实现底板煤岩体大空间范围内主应力偏转轨迹的实时监测,沿工作面走向,最大主应力方向由近似垂直逐渐向采空区偏转。得出垮落带自然堆积区随工作面的推进向前移动,载荷影响区长度随基本顶变形破断而变化。根据光纤应变特征值反演出自然堆积区和载荷影响区的长度分别为54 m和70 m,对应浆体易充填区长度为124 m,约为0.195倍埋深。

(4)开展垮落带空间空隙动态演变三维相似物理模型试验,结合垮落带空间结构特征和光纤-岩体界面力学理论,提出垮落带空间结构演化的光纤监测方法,对光纤数据进行时空频多维度分析,得出基本顶层位判定参量阈值和基本顶破断位置处布里渊增益谱BGS特征,由此识别基本顶层位和破断位置,监测出垮落带空间结构参数,得出垮落带空间结构及空隙演化规律。基本顶破断块体长度增大,浆体易充填空间体积和极限注采比增大,验证了垮落带空间空隙体积动态计算模型的正确性。

(5)提出基于主动加热光纤的注浆热质传输多参量监测方法,并进行垮落带注浆三维物理模型试验,监测出垮落带空隙率、渗透率,实现注浆动态扩散可视化,得出浆体浓度演化规律,其浓度变化与扩散距离呈负指数变化关系。并开展大型垮落带邻位注浆充填试验,结合垮落带邻位注浆三维数值模拟分析,揭示垮落带邻位注浆扩散规律,低压扩散呈椭圆体,纵向贯通呈圆柱体,横向扩展呈截锥体,且渗流坡度持续减小,最终趋于稳定。

(6)根据理论研究成果分析某矿301工作面垮落带空隙结构参数及分布特征,确定了注浆钻孔布设位置,预测出注浆扩散范围及单孔充填量。利用工作面回风巷向邻位垮落带施工钻孔进行注浆充填,采用流量监测及钻孔窥视等方法对注浆效果进行检验,现场累计注浆量为934 m3,储存矸石1354 t,较预测值高出5.2 %,充填效果良好。

论文外文摘要:

The large stock, large increment, and low utilization rate of solid waste in mines constrain the coordinated development of coal development and environmental protection. Adjacent grouting filling technology in the caving zone is to break the gangue into a certain particle size and then add water to make a slurry. The technology uses the side mining roadway of the working face to drill. It injects grouting into the adjacent goaf caving zone, which is one of the technical ways to dispose of gangue underground. Due to the dynamic changes in mining stress, the spatial structure evolution of caving zones, and the complex diffusion laws of gangue slurry, it is difficult to determine the layout and effectiveness of grouting boreholes, which restricts the development of this technology. Therefore, this article adopts research methods such as theoretical analysis, indoor experiments, numerical simulation, and on-site measurement to systematically study the evolution characteristics of mining stress, the spatial evolution law of caving zone under mining stress, and the grouting diffusion mechanism. Fiber optic sensing technology is introduced to achieve real-time monitoring of the size and direction of mining stress - deformation of overlying rock structure-spatial gap distribution of caving zone-grouting diffusion process, And propose an optimization method for grouting drilling layout parameters. The main work and research results are as follows:

(1) Based on the theory of rock mechanics and elastic mechanics, a dynamic calculation model of the void space volume of the caving zone was established considering the influence of the basic roof breaking angle and the mining time, and the calculation formulas of the void volume, void ratio and permeability of the caving zone were derived. Obtained the spatial structure distribution characteristics of the caving zone and its evolution law influenced by the main control factors and quantified the spatial zoning characteristics of the caving zone. The driving effect of mining stress on basic roof deformation and fracture was elucidated, and the spatial evolution mechanism of the caving zone under mining stress was revealed. When the basic top fracture criterion CIC is greater than 1, the rock mass fractures initiate and develop. The principal stress deflection drives the expansion of the rock mass fractures, deteriorating the strength of the rock mass, ultimately leading to non-uniform fracture of the basic top, reducing the size of the basic top fracture block, and reducing the space and void volume of the caving zone.

(2) Based on the theory of seepage mechanics, considering the properties of the slurry, the pore structure of the caving zone, and the influence of the seepage effect, a seepage model for adjacent grouting in the caving zone is constructed. Formulas for calculating the diffusion range, stacking height, and grouting amount of the slurry are derived. The evolution law of grouting seepage shows a low-pressure diffusion, longitudinal penetration, and lateral expansion. Its shape changes from an elliptical or cylindrical body to a truncated cone, revealing the diffusion mechanism of adjacent grouting. The yield stress controls the start and stop of grouting diffusion in the caving zone. When the yield stress of the slurry is less than the shear stress, the slurry begins to diffuse. The porosity of the caving zone decreases, and the tortuosity of the seepage path increases, leading to an increase in seepage resistance and a decrease in slurry diffusion distance.

(3) Using numerical simulation, indoor experiments, and on-site measurement methods, the spatial zoning evolution characteristics of caving zones under mining stress were studied, and the evolution characteristics of mining stress deflection trajectory were characterized, which showed an elliptical distribution and increased with the advancement of the working face. Developed a long-distance drilling multi-component fiber optic sensor for mining, which enables real-time monitoring of the principal stress deflection trajectory within a large spatial range of the coal and rock mass on the floor. Along the direction of the working face, the maximum principal stress gradually deviates from approximately vertical to the goaf. The natural accumulation area of the caving zone moves forward with the advancement of the working face, and the length of the load influence area changes with the basic deformation and fracture of the roof. Based on the strain characteristic values of the optical fiber, the lengths of the natural accumulation zone and the load influence zone are calculated to be 54 m and 70 m, respectively, corresponding to a length of 124 m in the easily filled zone of the slurry, which is approximately 0.195 times the burial depth.

(4) Conducting three-dimensional similarity physical model experiments on the dynamic evolution of spatial gaps in caving zones, combining the spatial structural characteristics of caving zones with the theory of fiber-rock interface mechanics, a fiber optic monitoring method for the evolution of spatial structures in caving zones is proposed. The fiber optic data is subjected to spatiotemporal frequency multi-dimensional analysis. The threshold parameters for determining the basic top layer position and the BGS characteristics at the basic top fracture position are obtained, thereby identifying the basic top layer position and fracture position, Monitor the spatial structure parameters of the caving zone, and obtaining the spatial structure and void evolution law of the caving zone. The increase in the length of the basic top-breaking fault block increases the volume of easily filled space and the ultimate injection production ratio, which verifies the correctness of the dynamic calculation model for the volume of voids in the caving zone space.

(5) Propose a multi-parameter monitoring method for grouting heat and mass transfer based on active heating optical fiber. Conduct a three-dimensional physical model test for grouting in the cavingd zone. Monitor the porosity and permeability of the cavingd zone, achieve dynamic diffusion visualization of grouting, and obtain the evolution law of slurry concentration. The concentration change and diffusion distance show a negative exponential relationship. And carry out large-scale grouting and filling experiments in the adjacent caving zone, combined with three-dimensional numerical simulation analysis of adjacent grouting in the caving zone, revealing the diffusion law of adjacent grouting in the caving zone. The low-pressure diffusion is elliptical, the longitudinal penetration is cylindrical, and the lateral expansion is a truncated cone. The seepage slope continues to decrease and ultimately tends to stabilize.

(6) Based on theoretical research results, the structural parameters and distribution characteristics of the gap in the caving zone of the 301 working faces of a certain mine were analyzed, and the location of grouting drilling holes was determined. The grouting diffusion range and single hole filling amount were predicted. Using the return air tunnel of the working face to drill holes for grouting filling in the adjacent cavingd zone, flow monitoring and drilling observation methods were used to test the grouting effect. The accumulated grouting amount on site was 934 m3, and 1354 t of gangue were stored, 5.2 % higher than the predicted value. The filling effect was good.

参考文献:

[1]谢和平, 任世华, 谢亚辰, 等. 碳中和目标下煤炭行业发展机遇[J]. 煤炭学报, 2021, 46(07): 2197-2211.

[2]武强, 刘宏磊, 赵海卿, 等. 解决矿山环境问题的“九节鞭”[J]. 煤炭学报, 2019, 44(01): 10-22.

[3]张吉雄, 巨峰, 李猛, 等. 煤矿矸石井下分选协同原位充填开采方法[J]. 煤炭学报, 2020, 45(01): 131-140.

[4]周楠, 姚依南, 宋卫剑, 等. 煤矿矸石处理技术现状与展望[J]. 采矿与安全工程学报, 2020, 37(01): 136-146.

[5]王玉涛. 煤矸石固废无害化处置与资源化综合利用现状与展望[J]. 煤田地质与勘探, 2022, 50(10): 54-66.

[6]朱磊, 古文哲, 宋天奇, 等. 采空区煤矸石浆体充填技术研究进展与展望[J]. 煤炭科学技术, 2023,51(02): 143-154.

[7]张吉雄, 周楠, 高峰, 等. 煤矿开采嗣后空间矸石注浆充填方法[J]. 煤炭学报, 2023, 48(01): 150-162.

[8]杨科, 赵新元, 何祥, 等. 多源煤基固废绿色充填基础理论与技术体系[J]. 煤炭学报, 2022, 47(12): 4201-4216.

[9]古文哲, 朱磊, 刘治成, 等. 煤矿固体废弃物流态化浆体充填技术[J]. 煤炭科学技术, 2021, 49(03): 83-91.

[10]何满潮, 谢和平, 彭苏萍, 等. 深部开采岩体力学研究[J]. 岩石力学与工程学报, 2005(16): 2803-2813.

[11]翟晓荣, 吴基文, 胡儒, 等. 分岔煤层下分层再生顶板地面预注浆加固区域研究[J]. 煤炭科学技术, 2022, 50(11): 30-39.

[12]杨伟强, 郭文兵, 赵高博, 等. 基于岩层挠曲变形的“竖三带”理论判别方法及工程应用[J]. 煤炭科学技术, 2022, 50(10): 42-50.

[13]王兆会, 唐岳松, 李辉, 等. 千米深井超长工作面支架阻力分布特征及影响因素研究[J]. 采矿与安全工程学报, 2023, 40(01): 1-10.

[14]康红普, 姜鹏飞, 黄炳香, 等. 煤矿千米深井巷道围岩支护-改性-卸压协同控制技术[J]. 煤炭学报, 2020, 45(03): 845-864.

[15]侯朝炯, 王襄禹, 柏建彪, 等. 深部巷道围岩稳定性控制的基本理论与技术研究[J]. 中国矿业大学学报, 2021, 50(01): 1-12.

[16]伍永平, 解盘石, 贠东风, 等. 大倾角层状采动煤岩体重力-倾角效应与岩层控制[J]. 煤炭学报, 2023, 48(01): 100-113.

[17]许家林, 轩大洋, 朱卫兵, 等. 部分充填采煤技术的研究与实践[J]. 煤炭学报, 2015,40(06): 1303-1312.

[18]李亮, 黄庆享, 惠博, 等. 矸石流态化充填冒落区四级分区模型研究[J]. 采矿与安全工程学报, 2023, 40(01): 11-16.

[19]刘建军, 汪尧, 宋睿. 基于透明岩土材料的可视化渗流实验及其应用前景[J]. 地球科学, 2017, 42(08): 1287-1295.

[20]余永强, 张纪云, 范利丹, 等. 高温富水环境下裂隙岩体注浆试验装置研制及浆液扩散规律[J]. 煤炭学报, 2022, 47(07): 2582-2592.

[21]董书宁, 柳昭星, 王皓, 等. 导水断层破碎带注浆浆液扩散机制试验研究[J]. 采矿与安全工程学报, 2022, 39(01): 174-183.

[22]宋振骐, 蒋金泉. 煤矿岩层控制的研究重点与方向[J]. 岩石力学与工程学报, 1996, 15(02): 33-39.

[23]钱鸣高, 缪协兴, 何富连. 采场“砌体梁”结构的关键块分析[J]. 煤炭学报, 1994, 19(06): 557-563.

[24]姜福兴. 采场覆岩空间结构观点及其应用研究[J]. 采矿与安全工程学报, 2006, 23(01): 30-33.

[25]张村, 贾胜, 吴山西, 等. 基于矿井地下水库的煤矿采空区地下空间利用模式与关键技术[J]. 科技导报, 2021, 39(13): 36-46.

[26]汪北方. 浅埋采空区垮落岩体储水结构特性及储水量预测研究[D]. 阜新: 辽宁工程技术大学, 2016.

[27]孟召平, 师修昌, 刘珊珊, 等. 废弃煤矿采空区煤层气资源评价模型及应用[J]. 煤炭学报, 2016, 41(03): 537-544.

[28]鞠金峰, 许家林, 朱卫兵. 西部缺水矿区地下水库保水的库容研究[J]. 煤炭学报, 2017, 42(02): 381-387.

[29]庞义辉, 李全生, 曹光明, 等. 煤矿地下水库储水空间构成分析及计算方法[J]. 煤炭学报, 2019, 44(02): 557-566.

[30]ZHU L, GU W, PAN H, et al. Calculation model of overburden rock failure volume in mined-out area based on brillouin optical time-domain analysis technology[J]. Optical Fiber Technology, 2021, 66: 102640.

[31]顾大钊. 煤矿地下水库理论框架和技术体系[J]. 煤炭学报, 2015, 40(02): 239-246.

[32]张宏贞, 邓喀中, 顾伟. 老采空区残留空洞空隙分布规律研究[J]. 采矿与安全工程学报, 2016,33(05): 893-897.

[33]李兴尚. 建筑物下条带开采冒落区注浆充填减沉技术的理论研究[D]. 徐州: 中国矿业大学, 2008.

[34]姜琳婧, 方杰, 杨宗, 等. 基于GIS与CAD的煤矿地下水库库容计算平台开发研究[J]. 煤炭科学技术, 2020, 48(11): 166-171.

[35]LI L, HUANG Q, ZUO X, et al. Study on the slurry diffusion law of fluidized filling gangue in the caving goaf of thick coal seam fully mechanized caving mining[J]. Energies, 2022, 15(21): 8164.

[36]李全生, 张村. 基于采动空间守恒的西部矿区高强度开采损伤传导模型及应用[J]. 采矿与安全工程学报, 2021, 38(01): 1-8.

[37]许家林, 秦伟, 轩大洋, 等. 采动覆岩卸荷膨胀累积效应[J]. 煤炭学报, 2020, 45(01): 35-43.

[38]崔希民, 高宇, 李培现, 等. 采动覆岩与地表下沉关系模型及离层量估算方法[J]. 煤炭学报, 2023, 48(01): 74-82.

[39]刘畅, 刘正和, 张俊文, 等. 工作面长度对覆岩空间结构演化及大采高采场矿压规律的影响[J]. 岩土力学, 2018, 39(02): 691-698.

[40]王朋飞, 赵景礼, 王志强, 等. 非充分采动采空区与煤岩柱(体)耦合作用机制及应用[J]. 岩石力学与工程学报, 2017,36(05): 1185-1200.

[41]朱泽奇, 盛谦, 周永强, 等. 隧洞围岩应力开挖扰动特征与规律研究[J]. 应用基础与工程科学学报, 2015, 23(02): 349-358.

[42]周辉, 黄磊, 姜玥, 等. 岩石空心圆柱扭剪仪研制的重点问题及研究进展[J]. 岩土力学, 2018, 39(12): 4295-4304.

[43]WANG Y, FU H, CAI Y, et al. Seismic subsidence of soft subgrade with considering principal stress rotation[J]. International Journal of Civil Engineering, 2022, 20(07): 827-837.

[44]陈若曦, 朱斌, 陈云敏, 等. 基于主应力轴旋转理论的修正Terzaghi松动土压力[J]. 岩土力学, 2010, 31(05): 1402-1406.

[45]汪大海, 贺少辉, 刘夏冰, 等. 基于主应力旋转特征的浅埋隧道上覆土压力计算及不完全拱效应分析[J]. 岩石力学与工程学报, 2019, 38(06): 1284-1296.

[46]应宏伟, 李晶, 谢新宇, 等. 考虑主应力轴旋转的基坑开挖应力路径研究[J]. 岩土力学, 2012, 33(04): 1013-1017.

[47]熊良宵, 杨林德. 深埋隧洞开挖造成的应力变化过程[J]. 中南大学学报(自然科学版), 2009, 40(01): 236-242.

[48]李建贺, 盛谦, 朱泽奇, 等. 地下洞室分期开挖应力扰动特征与规律研究[J]. 岩土力学, 2017, 38(02): 549-556.

[49]崔溦, 王宁. 开挖过程中隧洞围岩应力主轴旋转及其对围岩破坏模式的影响[J]. 中南大学学报(自然科学版), 2014, 45(06): 2062-2070.

[50]RUAN H, WANG Y, WAN Y, et al. Three-dimensional numerical modeling of ground deformation during shield tunneling considering principal stress rotation[J]. International Journal of Geomechanics, 2021, 21(07): 04021095.

[51]LIANG Y, RAN Q, ZOU Q, et al. Experimental study of mechanical behaviors and failure characteristics of coal under true triaxial cyclic loading and unloading and stress rotation[J]. Natural Resources Research, 2022, 31(02): 971-991.

[52]张社荣, 梁礼绘. 考虑三维应力旋转的隧洞衬砌支护时机研究[J]. 水利学报, 2007, 38(06): 704-709.

[53]HAO X, ZHANG Q, SUN Z, et al. Effects of the major principal stress direction respect to the long axis of a tunnel on the tunnel stability: Physical model tests and numerical simulation[J]. Tunnelling and Underground Space Technology, 2021, 114: 103993.

[54]LI X, ZHU Z, WANG M, et al. Numerical study on the behavior of blasting in deep rock masses[J]. Tunnelling and Underground Space Technology, 2021, 113: 103968.

[55]YANG L, YANG A, CHEN S, et al. Model experimental study on the effects of in situ stresses on pre-splitting blasting damage and strain development[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 138(04): 104587.

[56]张文忠. 地堑状断层组影响下采动主应力偏转规律研究[J]. 安徽理工大学学报(自然科学版), 2019, 39(06): 44-49.

[57]赵毅鑫, 卢志国, 朱广沛, 等. 考虑主应力偏转的采动诱发断层活化机理研究[J]. 中国矿业大学学报, 2018, 47(01): 73-80.

[58]卢志国, 鞠文君, 赵毅鑫, 等. 采动诱发应力主轴偏转对断层稳定性影响分析[J]. 岩土力学, 2019, 40(11): 4459-4466.

[59]WANG J C, ZHAOHUI W, YANG S L. Stress analysis of longwall top-coal caving face adjacent to the gob[J]. International journal of mining, reclamation and environment, 2022, 34(07): 476-497.

[60]韩宇峰, 王兆会, 唐岳松. 综放工作面临空开采顶煤主应力旋转特征[J]. 煤炭学报, 2020, 45(S1): 12-22.

[61]王家臣, 王兆会, 杨杰, 等. 千米深井超长工作面采动应力旋转特征及应用[J]. 煤炭学报, 2020, 45(03): 876-888.

[62]王兆会, 孙文超, 水艳婷, 等. 千米深井超长工作面采动应力旋转轨迹及其推进方向效应[J]. 煤炭学报, 2022, 47(02): 634-650.

[63]庞义辉, 王国法, 李冰冰. 深部采场覆岩应力路径效应与失稳过程分析[J]. 岩石力学与工程学报, 2020, 39(04): 682-694.

[64]赵雁海, 俞缙, 周晨华, 等. 考虑主应力轴偏转影响的远场拱壳围岩压力拱效应表征[J]. 岩土工程学报, 2021, 43(10): 1842-1850.

[65]TANG Y, SUN W, ZHANG X, et al. Effect of advancing direction of working face on mining stress distribution in deep coal mine[J]. Advances in Civil Engineering, 2021, 2021: 7402164.

[66]GUO P, LI J, HAO X, et al. Influence of mine earthquake disturbance on the principal stress of the main roadway near the goaf and its prevention and control measures[J]. Geofluids, 2021, 2021: 1968846.

[67]王猛, 牛誉贺, 于永江, 等. 主应力演化影响下的深部巷道围岩变形破坏特征试验研究[J]. 岩土工程学报, 2016, 38(02): 237-244.

[68]赵志强, 马念杰, 郭晓菲, 等. 大变形回采巷道蝶叶型冒顶机理与控制[J]. 煤炭学报, 2016, 41(12): 2932-2939.

[69]刘洪涛, 吴祥业, 镐振, 等. 双巷布置工作面留巷塑性区演化规律及稳定控制[J]. 采矿与安全工程学报, 2017, 34(04): 689-697.

[70]李季, 强旭博, 马念杰, 等. 巷道围岩蝶形塑性区蝶叶方向性形成机制及工程应用[J]. 煤炭学报, 2021, 46(09): 2838-2852.

[71]贾后省, 李国盛, 王路瑶, 等. 采动巷道应力场环境特征与冒顶机理研究[J]. 采矿与安全工程学报, 2017, 34(04): 707-714.

[72]赵洪宝, 程辉, 李金雨, 等. 孤岛煤柱影响下巷道围岩非对称性变形机制研究[J]. 岩石力学与工程学报, 2020, 39(S1): 2771-2784.

[73]吴祥业, 刘洪涛, 李建伟, 等. 重复采动巷道塑性区时空演化规律及稳定控制[J]. 煤炭学报, 2020, 45(10): 3389-3400.

[74]赵维生, 韩立军, 张益东, 等. 主应力对深部软岩巷道围岩稳定性影响规律研究[J]. 采矿与安全工程学报, 2015, 32(03): 504-510.

[75]BASARIR H, FERID OGE I, AYDIN O. Prediction of the stresses around main and tail gates during top coal caving by 3D numerical analysis[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 76: 88-97.

[76]DONG L, CHEN Y, SUN D, et al. Implications for rock instability precursors and principal stress direction from rock acoustic experiments[J]. International Journal of Mining Science and Technology, 2021, 31(05): 789-798.

[77]HUO Y, SONG X, SUN Z, et al. Evolution of mining‐induced stress in fully mechanized top‐coal caving under high horizontal stress[J]. Energy science & engineering, 2020, 8(06): 2203-2215.

[78]王家臣, 王兆会. 综放开采顶煤裂隙扩展的应力驱动机制[J]. 煤炭学报, 2018, 43(09): 2376-2388.

[79]CHEN C N, CHANG W C. Optimal rock bolt installation design based on 3D rock stress distribution and stereography coupled analysis[J]. Journal of Mechanics, 2018, 34(06): 749-758.

[80]YANG L, DING C. Fracture mechanism due to blast-imposed loading under high static stress conditions[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 107: 150-158.

[81]朱磊, 宋天奇, 古文哲, 等. 矸石浆体输送阻力特性及采空区流动规律试验研究[J]. 煤炭学报, 2022, 47(S1): 39-48.

[82]DU X, FANG H, WANG S, et al. Experimental and practical investigation of the sealing efficiency of cement grouting in tortuous fractures with flowing water[J]. Tunnelling and Underground Space Technology, 2021, 108: 103693.

[83]GUO F, XIE Z, ZHANG N, et al. Study on the pore-throat structure characterization and nano grouting law of the low-permeability mudstone based on NMR-RSM methods[J]. Construction and Building Materials, 2022, 342: 127913.

[84]WANG L, ZHENG G. Numerical evaluation of the upheave and soil arching associated with compaction grouting in shield tunneling and loading process[J]. Tunnelling and Underground Space Technology, 2022, 128: 104664.

[85]ZHANG G, ZHANG J, PEI X, et al. Study on numerical simulation method of viscosity time-varying slurry diffusion law[J]. Frontiers in Earth Science, 2023,10: 1038792.

[86]ZHANG L, YU R, ZHANG Q, et al. Permeation grouting diffusion mechanism of quick setting grout[J]. Tunnelling and Underground Space Technology, 2022, 124: 104449.

[87]ZHOU Z, DU X, CHEN Z, et al. Grouting diffusion of chemical fluid flow in soil with fractal characteristics[J]. Journal of Central South University, 2017, 24(05): 1190-1196.

[88]胡少银, 刘泉声, 李世辉, 等. 裂隙岩体注浆理论研究进展及展望[J]. 煤炭科学技术, 2022, 50(01): 112-126.

[89]杨米加, 陈明雄, 贺永年. 注浆理论的研究现状及发展方向[J]. 岩石力学与工程学报, 2001(06): 839-841.

[90]尹升华, 刘家明, 邵亚建, 等. 全尾砂-粗骨料膏体早期抗压强度影响规律及固化机理[J]. 中南大学学报(自然科学版), 2020,51(02): 478-488.

[91]邱华富, 刘浪, 孙伟博, 等. 采空区充填体强度分布规律试验研究[J]. 中南大学学报(自然科学版), 2018, 49(10): 2584-2592.

[92]吴爱祥, 李红, 程海勇, 等. 全尾砂膏体流变学研究现状与展望(下): 流变测量与展望[J]. 工程科学学报, 2021, 43(04): 451-459.

[93]朱卫兵, 许家林, 赖文奇, 等. 覆岩离层分区隔离注浆充填减沉技术的理论研究[J]. 煤炭学报, 2007, 152(05): 458-462.

[94]轩大洋, 许家林, 王秉龙. 覆岩隔离注浆充填绿色开采技术[J]. 煤炭学报, 2022, 47(12): 4265-4277.

[95]朱磊, 潘浩, 古文哲, 等. 垮落带矸石浆体充填模拟试验研究[J]. 煤炭学报, 2021, 46(S2): 629-638.

[96]朱光轩, 张庆松, 冯啸, 等. 基于颗粒吸附概率模型的渗透注浆滤过机制研究[J]. 工程科学与技术, 2020, 52(05): 125-135.

[97]李术才, 郑卓, 刘人太, 等. 基于渗滤效应的多孔介质渗透注浆扩散规律分析[J]. 岩石力学与工程学报, 2015, 34(12): 2401-2409.

[98]王晓晨, 刘人太, 张春雨, 等. 裂隙注浆浆液浓度分布试验研究与机制探讨[J]. 煤炭学报, 2020, 45(08): 2872-2879.

[99]CHAI J, OUYANG Y, ZHANG D, et al. Actively heated fiber optics method to monitor grout diffusion range in goaf[J]. Optical Fiber Technology, 2022, 71: 102952.

[100]胡儒. 分岔煤层下分层再生顶板结构特征及其地面注浆改造参数研究[D]. 淮南: 安徽理工大学,2022.

[101]CHAI J, OUYANG Y, LIU J, et al. Experimental evaluation of precise monitoring of multi-scale deformation failure of rock mass based on distributed optical fiber[J]. Measurement, 2022, 199: 111381.

[102]张诚成, 施斌, 刘苏平, 等. 钻孔回填料与直埋式应变传感光缆耦合性研究[J]. 岩土工程学报, 2018, 40(11): 1959-1967.

[103]MEKHTIEV A D, SARSIKEEV E Z, NESHINA E G, et al. A quasi-distributed fiber-optical monitoring system for movement of roof strata in mines[J]. Journal of Mining Science, 2022, 58(02): 338-346.

[104]向伏林, 杨天亮, 顾凯, 等. 钻孔全断面分布式光纤监测中光缆-土体变形协调性的离散元数值模拟[J]. 岩土力学, 2021, 42(06): 1743-1754.

[105]ZHANG C, ZHU H, LIU S, et al. A kinematic method for calculating shear displacements of landslides using distributed fiber optic strain measurements[J]. Engineering Geology, 2018,234: 83-96.

[106]韦超, 朱鸿鹄, 高宇新, 等. 地面塌陷分布式光纤感测模型试验研究[J]. 岩土力学, 2022, 43(09): 2443-2456.

[107]程刚, 施斌, 朱鸿鹄, 等. 光纤和砂土界面耦合性能的分布式感测试验研究[J]. 高校地质学报, 2019, 25(04): 487-494.

[108]刘荣梅, 赵振, 白树伟. 埋入式光纤智能复合材料简化界面的应变传递分析[J]. 材料导报, 2021, 35(20): 20161-20165.

[109]权志桥, 方新秋, 薛广哲, 等. 表面粘贴布拉格光纤光栅传感器的应变传递耦合机理研究[J]. 中国激光, 2020, 47(01): 163-172.

[110]侯公羽, 李子祥, 胡涛, 等. 植入式光纤传感器在隧道结构中的边界效应研究[J]. 岩土力学, 2020, 41(08): 2839-2850.

[111]张诚成, 施斌, 朱鸿鹄, 等. 地面沉降分布式光纤监测土–缆耦合性分析[J]. 岩土工程学报, 2019, 41(09): 1670-1678.

[112]李博, 张丹, 陈晓雪, 等. 分布式传感光纤与土体变形耦合性能测试方法研究[J]. 高校地质学报, 2017, 23(04): 633-639.

[113]张诚成, 朱鸿鹄, 唐朝生, 等. 纤维加筋土界面渐进性破坏模型[J]. 浙江大学学报(工学版), 2015, 49(10): 1952-1959.

[114]史淞戈, 施斌, 刘苏平, 等. 钻孔回填料粒径对传感光缆应变耦合性影响研究[J]. 岩土工程学报, 2023, 45(01): 162-170.

[115]DU W, CHAI J, ZHANG D, et al. Study on quantitative characterization of coupling effect between mining-induced coal-rock mass and optical fiber sensing[J]. Sensors, 2022, 22(13): 5009.

[116]杜文刚, 柴敬, 张丁丁, 等. 采动覆岩导水裂隙发育光纤感测与表征模型试验研究[J]. 煤炭学报, 2021, 46(05): 1565-1575.

[117]YUAN Q, CHAI J, ZHANG D, et al. Monitoring and characterization of mining-induced overburden deformation in physical modeling with distributed optical fiber sensing technology[J]. Journal of Lightwave Technology, 2020, 38(04): 881-888.

[118]CHAI J, OUYANG Y, LIU J, et al. Experimental study on a new method to forecasting goaf pressure based key strata deformation detected using optic fiber sensors[J]. Optical Fiber Technology, 2021, 67: 102706.

[119]柴敬, 欧阳一博, 张丁丁, 等. 采场覆岩变形分布式光纤监测岩体-光纤耦合性分析[J]. 采矿与岩层控制工程学报, 2020, 2(03): 73-82.

[120]CHAI J, TIAN Z, OUYANG Y, et al. Experimental study on overlying strata movement characteristics and distributed optical fiber characterization of stope[J]. Journal of Sensors, 2022, 2022: 4016357.

[121]张平松, 刘盛东, 舒玉峰. 煤层开采覆岩破坏发育规律动态测试分析[J]. 煤炭学报, 2011, 36(02): 217-222.

[122]柴敬, 韩志成, 乔钰, 等. 分层开采采空区下大跨度开切眼顶煤稳定性研究[J]. 采矿与安全工程学报, 2022, 39(02): 282-291.

[123]SUN B Y, ZHANG P S, WU R X, et al. Dynamic detection and analysis of overburden deformation and failure in a mining face using distributed optical fiber sensing[J]. Journal of Geophysics and Engineering, 2018, 15(06): 2545-2555.

[124]王国法, 赵国瑞, 任怀伟. 智慧煤矿与智能化开采关键核心技术分析[J]. 煤炭学报, 2019, 44(01): 34-41.

[125]袁亮, 张平松. 煤炭精准开采透明地质条件的重构与思考[J]. 煤炭学报, 2020, 45(07): 2346-2356.

[126]高士岗, 高登彦, 欧阳一博, 等. 中薄煤层智能开采技术及其装备[J]. 煤炭学报, 2020, 45(06): 1997-2007.

[127]袁亮, 张平松. 煤炭精准开采地质保障技术的发展现状及展望[J]. 煤炭学报, 2019, 44(08): 2277-2284.

[128]葛世荣. 智能化采煤装备的关键技术[J]. 煤炭科学技术, 2014, 42(09): 7-11.

[129]方新秋, 梁敏富, 李爽, 等. 智能工作面多参量精准感知与安全决策关键技术[J]. 煤炭学报, 2020, 45(01): 493-508.

[130]施斌. 论大地感知系统与大地感知工程[J]. 工程地质学报, 2017, 25(03): 582-591.

[131]WANG J, JIANG L, SUN Z, et al. Research on the surface subsidence monitoring technology based on fiber Bragg grating sensing[J]. Photonic Sensors, 2017, 7(01): 20-26.

[132]ZHANG D, WANG J, ZHANG P, et al. Internal strain monitoring for coal mining similarity model based on distributed fiber optical sensing[J]. Measurement, 2017, 97: 234-241.

[133]ZHAO Q, ZHANG Y H, GAO Y K, et al. Mechanism research and application on distributed optical fibre temperature measurement in coalmine goaf area based on the sensor network[J]. International Journal of Sensor Networks, 2016, 20(02): 104.

[134]曹鼎峰, 施斌, 严珺凡, 等. BOFDA技术综述及用于岩土工程监测的可行性研究[J]. 防灾减灾工程学报, 2013, 33(S1): 132-137.

[135]柴敬, 邱标, 刘金瑄, 等. 基于光纤光栅监测的松散地层深部注水试验[J]. 煤炭学报, 2012, 37(02): 200-205.

[136]侯公羽, 胡涛, 李子祥, 等. 基于BOFDA的覆岩采动“两带”变形表征研究[J]. 采矿与安全工程学报, 2020,37(02): 224-237.

[137]YU L, WENPING L, JIANGHUI H, et al. Application of brillouin optical time domain reflectometry to dynamic monitoring of overburden deformation and failure caused by underground mining[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 106: 133-143.

[138]王静, 李术才, 隋青美, 等. 基于相似材料的光纤应变传感器在分区破裂模型试验中的研究[J]. 煤炭学报, 2012, 37(09): 1570-1575.

[139]魏世明, 马智勇, 李宝富, 等. 围岩三维应力光栅监测方法及相似模拟实验研究[J]. 采矿与安全工程学报, 2015, 32(01): 138-143.

[140]宁殿艳. 煤层底板突水监测预警光纤应变传感器的研制[J]. 应用光学, 2013, 34(04): 718-722.

[141]HU T, HOU G, LI Z. The field monitoring experiment of the roof strata movement in coal mining based on DFOS[J]. Sensors, 2020, 20(05): 1318.

[142]MOFFAT R, SOTOMAYOR J, BELTRÁN J F. Estimating tunnel wall displacements using a simple sensor based on a brillouin optical time domain reflectometer apparatus[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 75: 233-243.

[143]刘增辉, 高谦, 许凤光, 等. 基于光纤技术的井筒围岩稳定实时监测系统[J]. 沈阳工业大学学报, 2013, 35(02): 230-235.

[144]柴敬, 朱磊, 张丁丁, 等. 多孔低压注水过程松散层沉降研究[J]. 煤炭学报, 2013, 38(10): 1720-1727.

[145]张丁丁, 柴敬, 李毅, 等. 松散层沉降光纤光栅监测的应变传递及其工程应用[J]. 岩石力学与工程学报, 2015, 34(S1): 3289-3297.

[146]程刚, 王振雪, 施斌, 等. DFOS在矿山工程安全开采监测中的研究进展[J]. 煤炭学报, 2022,47(08): 2923-2949.

[147]LIU W, PIAO C, ZHOU Y, et al. Predictive model of overburden deformation: based on machine learning and distributed optical fiber sensing technology[J]. Engineering Computations, 2020, 38(05): 2207-2227.

[148]ZHAO W, ZHONG K, CHEN W. A fiber bragg grating borehole deformation sensor for stress measurement in coal mine rock[J]. Sensors, 2020, 20(11): 3267.

[149]朴春德, 施斌, 魏广庆, 等. 采动覆岩变形BOTDA分布式测量及离层分析[J]. 采矿与安全工程学报, 2015, 32(03): 376-381.

[150]LIU C, ZHANG P, YAO D, et al. Dynamic monitoring and research on the evolution of the damage of weakly consolidated coal floor under dynamic pressure using distributed optical fiber[J]. Geofluids, 2022, 2022: 9552210.

[151]YUGAY V, MEKHTIYEV A, MADI P, et al. Fiber-optic system for monitoring pressure changes on mine support elements[J]. Sensors, 2022, 22(05): 1735.

[152]JURASZEK J, GWÓŹDŹ-LASOŃ M, LOGOŃ D. FBG strain monitoring of a road structure reinforced with a geosynthetic mattress in cases of subsoil deformation in mining activity areas[J]. Materials, 2021, 14(07): 1709.

[153]陈晓晶. 基于“云-边-端”协同的煤矿火灾智能化防控体系建设[J]. 煤炭科学技术, 2022, 50(12): 136-143.

[154]LIU J, SHI B, SUN M, et al. In-situ soil dry density estimation using actively heated fiber-optic FBG method[J]. Measurement, 2021, 185: 110037.

[155]WANG M, LI X, CHEN L, et al. A modified soil water content measurement technique using actively heated fiber optic sensor[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2020, 12(03): 608-619.

[156]CAO D, SHI B, ZHU H, et al. Characterization of soil moisture distribution and movement under the influence of watering-dewatering using AHFO and BOTDA technologies[J]. Environmental and Engineering Geoscience, 2019, 25(03): 189-202.

[157]LI P, JUNCHENG X, YONG L. A self-control and visual grouting model test system and measurement method[J]. Measurement, 2020, 154: 107481.

[158]王凯, 王连国, 陆银龙, 等. 微裂隙中水泥浆液渗滤效应的可视化试验研究[J]. 煤炭学报, 2020, 45(03): 990-997.

[159]吴志军, 张锶浪, 翁磊, 等. 温度和围压影响下裂隙砂岩渗透注浆过程的实时核磁共振试验研究[J]. 岩石力学与工程学报, 2022, 41(04): 660-675.

[160]ZHU L, GU W, QIU F, et al. Grouting slurry diffusion range based on active heating fiber optics monitoring[J]. Scientific Reports, 2022, 12(01): 19162.

[161]ZHU L, GU W, OUYANG Y, et al. Grouting mechanism and experimental study of goaf considering filtration effect[J]. Plos One, 2023, 18(02): 282190.

[162]柴敬, 周余, 欧阳一博, 等. 基于光纤监测的注浆浆液扩散范围试验研究[J]. 中国矿业大学学报, 2022, 51(06): 1045-1055.

[163]许家林, 钱鸣高. 关键层运动对覆岩及地表移动影响的研究[J]. 煤炭学报, 2000, 5(02): 122-126.

[164]王少锋, 王德明, 曹凯, 等. 采空区及上覆岩层空隙率三维分布规律[J]. 中南大学学报(自然科学版), 2014, 45(03): 833-839.

[165]张礼, 齐庆新, 张勇, 等. 采动覆岩裂隙场三维形态特征及其渗透特性研究[J]. 采矿与安全工程学报, 2021, 38(04): 695-705.

[166]PERRAS M. Understanding and predicting excavation damage in sedimentary rocks: a continuum based approach [D]. Canada: Queen's University, 2014.

[167]EBERHARDT E. Numerical modelling of three-dimension stress rotation ahead of an advancing tunnel face[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(04): 499-518.

[168]左建平, 孙运江, 钱鸣高. 厚松散层覆岩移动机理及“类双曲线”模型[J]. 煤炭学报, 2017, 42(06): 1372-1379.

[169]娄金福. 采场覆岩破断与应力演化的梁拱二元结构及岩层特性影响机制[J]. 采矿与安全工程学报, 2021, 38(04): 678-686.

[170]李洪涛, 左建平, 李辉. Hoek-Brown强度准则的断裂力学理论研究[J]. 岩土工程学报, 2004, (02): 212-215.

[171]黄庆享, 祈万涛, 杨春林. 采场老顶初次破断机理与破断形态分析[J]. 西安矿业学院学报, 1999, 19(03): 193-197.

[172]王家臣, 杨胜利, 杨宝贵, 等. 深井超长工作面基本顶分区破断模型与支架阻力分布特征[J]. 煤炭学报, 2019, 44(01): 54-63.

[173]左建平, 孙运江, 文金浩, 等. 岩层移动理论与力学模型及其展望[J]. 煤炭科学技术, 2018, 46(01): 1-11.

[174]FENG G, WANG P. Stress environment of entry driven along gob-side through numerical simulation incorporating the angle of break[J]. International Journal of Mining Science and Technology, 2020, 30(02): 189-196.

[175]YAVUZ H. An estimation method for cover pressure re-establishment distance and pressure distribution in the goaf of longwall coal mines[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(02): 193-205.

[176]杨逾. 垮落带注充控制覆岩移动机理研究[D]. 阜新: 辽宁工程技术大学, 2007.

[177]叶飞, 陈治, 孙昌海, 等. 考虑浆液自重的盾构隧道管片注浆浆液渗透扩散模型[J]. 岩土工程学报, 2016, 38(12): 2175-2183.

[178]YOON J, EL MOHTAR C S. A filtration model for evaluating maximum penetration distance of bentonite grout through granular soils[J]. Computers and Geotechnics, 2015, 65: 291-301.

[179]SHEN L, CHEN Z. Critical review of the impact of tortuosity on diffusion[J]. Chemical Engineering Science, 2007,62(14): 3748-3755.

[180]吴凡, 杨发光, 肖柏林, 等. 基于扩展度表征高浓度混合骨料充填料浆流变特性及应用[J]. 中南大学学报(自然科学版), 2022, 53(08): 3104-3112.

[181]伍勇华, 李莹, 党梓轩, 等. 利用坍落扩展试验表征水泥基材料流变参数研究进展[J]. 材料导报, 2022, 36(16): 155-162.

[182]朱磊, 宋天奇, 古文哲. 煤基固废浆体管道充填技术研究与应用[J]. 煤炭技术, 2021, 40(10): 47-51.

[183]顾路, 王学滨, 杜亚志, 等. 单轴压缩湿砂土试样主应变轴偏转规律试验研究[J]. 岩土力学, 2016, 37(04): 1013-1022.

[184]孙琪真, 范存政, 李豪, 等. 光纤分布式声波传感技术在石油行业的研究进展[J]. 石油物探, 2022, 61(01): 50-59.

[185]KHAN F, DENASI A, BARRERA D, et al. Multi-core optical fibers with Bragg gratings as shape sensor for flexible medical instruments[J]. IEEE Sensors Journal, 2019, 19(14): 5878-5884.

[186]蒋立辉, 盖井艳, 王维波, 等. 基于总体平均经验模态分解的光纤周界预警系统模式识别方法[J]. 光学学报, 2015, 35(10): 60-66.

[187]FORBES B, VLACHOPOULOS N, HYETT A J, et al. A new optical sensing technique for monitoring shear of rock bolts[J]. Tunnelling and Underground Space Technology, 2017, 66: 34-46.

[188]刘耀彬, 李仁东, 宋学锋. 中国城市化与生态环境耦合度分析[J]. 自然资源学报, 2005, 20(01): 105-112.

[189]ZHANG C, SHI B, ZHANG S, et al. Microanchored borehole fiber optics allows strain profiling of the shallow subsurface[J]. Scientific Reports, 2021, 11(01): 9173.

[190]柴敬, 刘永亮, 王梓旭, 等. 保护层开采下伏煤岩卸压效应及其光纤监测[J]. 煤炭学报, 2022, 47(08): 2896-2906.

[191]李春元, 张勇, 左建平, 等. 深部开采砌体梁失稳扰动底板破坏力学行为及分区特征[J]. 煤炭学报, 2019,44(05): 1508-1520.

[192]SAADA Z, CANOU J, DORMIEUX L, et al. Modelling of cement suspension flow in granular porous media[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2005, 29(07): 691-711.

[193]郁伯铭. 分形介质的传热与传质分析(综述)[J]. 工程热物理学报, 2003, 24(03): 481-483.

[194]鲍玲玲, 靳鹏飞, 王雪, 等. 非饱和多孔介质有效导热系数模型[J]. 科学技术与工程, 2022, 22(19): 8327-8332.

[195]梁运涛, 胡沛裕, 王树刚, 等. 煤矿火区发展蔓延尺度上联方法研究:从单煤颗粒尺度到采空区尺度[J]. 煤炭学报, 2021, 46(S2): 777-784.

[196]杨鑫, 徐曾和, 杨天鸿, 等. 西部典型矿区风积沙含水层突水溃沙的起动条件与运移特征[J]. 岩土力学, 2018,39(01): 21-28.

[197]刘洁, 孙梦雅, 施斌, 等. 基于主动加热型FBG的土体干密度原位测量方法研究[J]. 岩土工程学报, 2021, 43(02): 390-396.

[198]柴敬, 刘奇, 张丁丁, 等. 基于光纤系统的物理相似模型温度分布与演化特征[J]. 煤炭学报, 2017, 42(05): 1146-1155.

[199]奚志林, 王德明, 时国庆. 三相泡沫在采空区中渗流特性的数值模拟[J]. 中国矿业大学学报, 2009,38(03): 341-345.

[200]刘健, 刘人太, 张霄, 等. 水泥浆液裂隙注浆扩散规律模型试验与数值模拟[J]. 岩石力学与工程学报, 2012, 31(12): 2445-2452.

中图分类号:

 TD325    

开放日期:

 2023-06-27    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式