- 无标题文档
查看论文信息

论文中文题名:

 黄河三角洲地下水变化引起的地面沉降规律研究    

姓名:

 程亚钰    

学号:

 21210226062    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 测绘科学与技术学院    

专业:

 测绘工程    

研究方向:

 变形监测与分析    

第一导师姓名:

 汤伏全    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-16    

论文答辩日期:

 2024-06-02    

论文外文题名:

 Research on the Ground Settlement Law Caused by Groundwater Changes in the Yellow River Delta    

论文中文关键词:

 地下水变化 ; 地面沉降 ; 时序InSAR ; 数值模拟 ; 黄河三角洲    

论文外文关键词:

 Groundwater changes ; Land subsidence ; Time series InSAR monitoring ; Numerical simulation ; Yellow River Delta    

论文中文摘要:

黄河三角洲位于中国东部沿海重要的经济发展地区,具有独特的形成背景和沉积环境。长期以来,区域地下水过度开采引起地下水位下降,导致土体失水压缩引发广泛而复杂的地面沉降和次生灾害,对当地经济、环境以及社会发展造成严重影响。然而,目前针对该区域地下水变化导致的沉降灾害问题,仍缺乏深入系统的研究。为此,本文以黄河三角洲地区为研究区域,运用时序InSAR(Inerferometric Synthetic Aperture Radar)技术获取地面形变的时空分布特征,基于实测资料利用GMS(Groundwater Modeling System)-SUB模块构建地下水流场与地面沉降的耦合模型,分析和揭示地下水变化引起的地面沉降动态演化规律。论文研究的主要内容及结果如下:

利用时序InSAR技术对黄河三角洲地表形变进行2018-2022年长时间序列的监测,获取了该地区地面沉降总体变化特征、典型区域形变时空分布与演化特征。结果得到:该地区地面沉降灾害普遍存在,在空间上分布不均匀、在沉降量级上差异较大;河口区和垦利区的东北部的胜利油田开采区附近、孤北水库西南、东北侧的相干点沉降速率较大,其中沉降速率最大的相干点位于胜利油田开采区西侧2km、仙河镇东侧9km处,沉降速率为389.8mm/y,地面沉降主要归因于油田过度开采油气储层压力释放后储层内部压力的减小以及地下岩层压实;东营区东部地区、广饶县东北部地区、寿光市北部地区、寒亭区北部地区及昌邑市北部地区内的地面沉降则归因于地下水开采引起的含水层和上覆岩层压缩。

基于研究区典型钻孔取样试验数据和地下水位监测数据,结合有限差分法,利用GMS软件构建了水文地质概念模型,包括5个分层及10个分区,重点模拟2个承压含水层;其次,基于水文地质概念模型构建数学模型并进行求解;最后,基于数学模型建立数值模型,即将数学模型离散化。考虑粘土夹层排水和压缩的时间滞后,根据实测数据调整模型参数,构建了适合研究区的耦合沉降模型,模型模拟结果与监测数据拟合良好。

利用构建的水土耦合数值模型,分析了研究区地下水位变化引起的地面沉降动态特征及不同地下水开采条件下地面沉降的演化趋势。模拟结果表明,2018-2022年在整体水位下降速率平均为1.05m/y,地面沉降变化具有明显区域性,形成了以辛安水库附近(永安镇)、广南水库附近(丁庄镇)、龙池镇和下营镇为沉降中心的沉降漏斗,各沉降区相互关联扩展,导致沉降量和面积逐渐扩大。在保持现状采水强度下,预计到2024年部分地区的最大沉降量将超过600mm,到2026年将达到679mm。通过分析各分区地面沉降对地下水减采量的响应情况,发现将地下水开采减量20%后,可有效减小地面沉降影响。

研究结果初步揭示了黄河三角州典型形变区域的地面沉陷动态变化特征与演变趋势,可为该区域地面沉降的防控治理及地下水合理开发提供参考。

论文外文摘要:

The Yellow River Delta is located in an important economic development area along the eastern coast of China, with a unique formation background and sedimentary environment. For a long time, excessive exploitation of regional groundwater has caused a decrease in groundwater level, resulting in soil loss of water and compression, leading to widespread and complex ground subsidence and secondary disasters, which have had a serious impact on the local economy, environment, and social development. However, there is still a lack of in-depth and systematic research on the settlement disasters caused by groundwater changes in the region. Therefore, this article takes the Yellow River Delta region as the research area, uses time-series InSAR (Inferential Synthetic Aperture Radar) technology to obtain the spatiotemporal distribution characteristics of ground deformation, and constructs a coupling model between groundwater flow field and ground settlement based on measured data using the GMS (Groundwater Modeling System) - SUB module, analyzing and revealing the dynamic evolution law of ground settlement caused by groundwater changes. The main contents and results of the thesis are as follows:

(1) The time-series InSAR technology was used to monitor the surface deformation of the Yellow River Delta over a long period of time from 2018 to 2022, and the overall changes in land subsidence in the region, as well as the spatiotemporal distribution and evolution characteristics of typical regional deformation, were obtained. The results show that ground subsidence is widespread in the region, with uneven spatial distribution and significant differences in subsidence magnitude; The coherent points near the exploitation area of Shengli Oilfield in the northeast of Hekou District and Kenli District, as well as the southwest and northeast sides of Gubei Reservoir, have a relatively high subsidence rate. Among them, the coherent points with the highest subsidence rate are located 2km west of the exploitation area of Shengli Oilfield and 9km east of Xianhe Town, with a subsidence rate of 389.8mm/y. Ground subsidence is mainly attributed to the reduction of internal pressure of the reservoir and the compaction of underground rock layers after the excessive exploitation of oil and gas reservoirs in the oilfield; The ground subsidence in the eastern part of Dongying District, the northeastern part of Guangrao County, the northern part of Shouguang City, the northern part of Hanting District, and the northern part of Changyi City is attributed to the compression of aquifers and overlying strata caused by groundwater exploitation.

(2) Based on typical borehole sampling test data and groundwater level monitoring data in the research area, combined with finite difference method, a hydrogeological conceptual model was constructed using GMS software, including 5 layers and 10 zones, with a focus on simulating 2 confined aquifers; Secondly, based on the hydrogeological conceptual model, a mathematical model is constructed and solved; Finally, establish a numerical model based on the mathematical model, that is, discretize the mathematical model. Considering the time lag of clay interlayer drainage and compression, the model parameters were adjusted based on measured data to construct a coupled settlement model suitable for the study area. The simulation results of the model fit well with the monitoring data.

(3) Using the constructed soil water coupling numerical model, the dynamic characteristics of ground subsidence caused by changes in groundwater level in the study area and the evolution trend of ground subsidence under different groundwater extraction conditions were analyzed. The simulation results show that from 2018 to 2022, the average rate of overall water level decline is 1.05m/y, and the changes in ground subsidence have obvious regional characteristics, forming a subsidence funnel centered around Xin'an Reservoir (Yong'an Town), Guangnan Reservoir (Dingzhuang Town), Longchi Town, and Xiaying Town. The various subsidence areas are interconnected and expand, leading to a gradual increase in subsidence volume and area. While maintaining the current water extraction intensity, it is expected that the maximum settlement in some areas will exceed 600mm by 2024 and reach 679mm by 2026. By analyzing the response of ground subsidence to groundwater reduction in each zone, it was found that reducing groundwater extraction by 20% can effectively reduce the impact of ground subsidence.

The research results have preliminarily revealed the dynamic changes and evolution trends of ground subsidence in the Yellow River Delta region, which can provide reference for the prevention and control of ground subsidence and the rational development of groundwater in the region.

参考文献:

[1]王磊, 梁秀娟, 李宏伟, 等. 基于用水安全的地下水资源可持续利用研究——以延边州为例[J]. 人民长江, 2019, 50(05): 94-98.

[2]杨建青, 章树安, 陈喜, 等. 国内外地下水监测技术与管理比较研究[J]. 水文, 2013, 33(03): 18-24.

[3]徐丽丽, 束龙仓, 李伟, 等. 2000—2020年中国地下水开采时空演变特征[J]. 水资源保护, 2023, 39(04): 79-85+93.

[4]贾超, 姚越, 杨霄, 等. 线性工程地下水开采诱发地面沉降风险研究[J]. 人民长江, 2022, 53(12): 104-110+156.

[5]王爱萍. 山东省黄河流域生态保护和高质量发展的水生态制约与对策研究[J]. 山东师范大学学报(社会科学版), 2022, 67(05): 123-132.

[6]于丽丽, 羊艳, 唐世南, 等. 我国地下水超采形势分析与治理对策[J]. 中国水利, 2021, (22): 34-36.

[7]常茂祥, 史经昊, 叶思源, 等. 黄河三角洲浅层地下水位年内变化特征及影响因素[J]. 海洋科学, 2021, 45(10): 20-31.

[8]Su G, Wu Y, Zhan W, et al. Spatiotemporal evolution characteristics of land subsidence caused by groundwater depletion in the North China plain during the past six decades[J]. Journal of Hydrology, 2021, 600: 126678.

[9]Jia C, Di S, Sun X, et al. Spatiotemporal evolution characteristics and transfer law of land subsidence in sand-clay interbed caused by exploiting the groundwater[J]. Arabian Journal for Science and Engineering, 2021, 46: 5733-5753.

[10]Yu Q, Yan X, Wang Q, et al. A spatial-scale evaluation of soil consolidation concerning land subsidence and integrated mechanism analysis at Macro-, and Micro-Scale: A case study in Chongming East Shoal Reclamation Area, Shanghai, China[J]. Remote Sensing, 2021, 13(12): 2418-2418.

[11]Han Y, Zhao Y, Zhang Y, et al. Monitoring and analysis of land subsidence in modern Yellow River Delta using SBAS-InSAR technology[C]//IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2021, 643(01): 012166.

[12]Arabameri A, Pal S C, Rezaie F, et al. Comparison of multi-criteria and artificial intelligence models for land-subsidence susceptibility zonation[J]. Journal of Environmental Management, 2021, 284: 112067.

[13]刘苏哲, 田晨, 朱智勇, 等. 黄河三角洲典型地段地面沉降机理研究及预测预警[J]. 地质学报, 2019, 93(S1): 251-260.

[14]刘勇, 黄海军, 李培英, 等. 黄河三角洲深层地下水漏斗引发的地面沉降特征[J]. 应用基础与工程科学学报, 2014, 22(05): 896-908.

[15]刘钊, 李敏, 韩征, 等. 基于WebGIS的地面沉降监测预警信息系统构建的研究[J]. 城市地质, 2018, 13(02): 98-103.

[16]刘杰, 孙龙, 杨春生, 等. 国家地下水监测综合成果分析应用系统建设成果[J]. 水利信息化, 2020, (04): 9-11.

[17]Farina P, Colombo D, Fumagalli A, et al. Permanent Scatterers for landslide investigations: outcomes from the ESA-SLAM project[J]. Engineering Geology, 2006, 88(3-4): 200-217.

[18]何敏, 何秀凤. 合成孔径雷达干涉测量技术及其在形变灾害监测中的应用[J]. 水电自动化与大坝监测, 2005, (02): 45-48.

[19]金双根, 朱文耀. InSAR测量技术相对于GPS技术的21世纪应用前景[J]. 全球定位系统, 2002, (01): 42-44.

[20]Massonnet D, Rossi M, Carmona C, et al. The displacement field of the Landers earthquake mapped by radar interferometry[J]. Nature, 1993, 364(6433): 138-142.

[21]Ferretti A, Prati C, Rocca F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(05): 2202-2212.

[22]Berardino P, Fornaro G, Lanari R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2375-2383.

[23]Bitelli G, Farina P, Monti-Guarnieri M, Leva R, and Zanutta F. Subsidence monitoring in the Adriatic northern low-lying coastal zone using multi-sensor SAR image data, PSI monitoring and geological data (1992-2000)[J]. Remote Sensing of Environment, 2004, 92(03): 293-303.

[24]陈强, 刘国祥, 李永树, 等. 干涉雷达永久散射体自动探测——算法与实验结果[J]. 测绘学报, 2006, (02): 112-117.

[25]葛大庆, 王艳, 郭小方, 等. 基于相干点目标的多基线D-InSAR技术与地表形变监测[J]. 遥感学报, 2007, (04): 574-580.

[26]Bissoli R, Bitelli G, Bonsignore F, et al. Land subsidence in Emilia-Romagna Region, northern Italy: recent results[M]. Land subsidence, associated hazards and the role of natural resources development. IAHS Press, 2010: 307-311.

[27]Ávila-Olivera J A, Farina P, Garduño-Monroy V H. Land subsidence monitored by satellite interferometry in Mexican cities[J]. Land subsidence, associated hazards and the role of natural resources development. Hydrological Sciences Journal, Red Book Series, 2010: 316-318.

[28]Cigna F ,Osmanoğlu B ,Cabral-Cano E , et al. Monitoring land subsidence and its induced geological hazard with Synthetic Aperture Radar Interferometry: A case study in Morelia, Mexico[J]. Remote Sensing of Environment, 2011, 117: 146-161.

[29]张学东, 葛大庆, 吴立新, 张玲, 王艳, 郭小方, 李曼, 余小红. 基于相干目标短基线InSAR的矿业城市地面沉降监测研究[J]. 煤炭学报, 2012, 37(10): 1606-1611.

[30]Chaussard E, Wdowinski S, Cabral-Cano E, et al. Land subsidence in central Mexico detected by ALOS InSAR time-series[J]. Remote Sensing of Environment, 2014, 140: 94-106.

[31]葛大庆, 殷跃平, 王艳, 等. 地面沉降-回弹及地下水位波动的InSAR长时序监测——以德州市为例[J]. 国土资源遥感, 2014, 26(01): 103-109.

[32]Nikos S, Ioannis P, Constantinos L, et al. Land subsidence rebound detected via multi-temporal InSAR and ground truth data in Kalochori and Sindos regions, Northern Greece[J]. Engineering Geology, 2016, 209: 175-186.

[33]吴宏安, 张永红, 康永辉, 郭明. 一种面向时间序列InSAR的不连通子网快速连接方法[J]. 测绘学报, 2016, 45(10): 1192-1199.

[34]Rateb A, Hermas E. The 2018 long rainy season in Kenya: Hydrological changes and correlated land subsidence[J]. Remote Sensing, 2020, 12(09): 1390.

[35]Chaussard E, Wdowinski S, Cabral-Cano E, et al. Land subsidence in central Mexico detected by ALOS InSAR time-series[J]. Remote Sensing of Environment, 2014, 140: 94-106.

[36]Sneed M, Brandt J T. Land subsidence in the San Joaquin valley, California, USA, 2007–2014[J]. Proceedings of the International Association of Hydrological Sciences, 2015, 372(372): 23-27.

[37]Pavelko M T, Hoffmann J, Damar N A. Interferograms showing land subsidence and uplift in Las Vegas Valley, Nevada, 1992-99[R]. 2006.

[38]Tosi L, Lio C D, Teatini P, et al. Land subsidence in coastal environments: Knowledge advance in the Venice coastland by TerraSAR-X PSI[J]. Remote Sensing, 2018, 10(08): 1191.

[39]Da Lio C, Teatini P, Strozzi T, et al. Understanding land subsidence in salt marshes of the Venice Lagoon from SAR Interferometry and ground-based investigations[J]. Remote Sensing of Environment, 2018, 205: 56-70.

[40]Subedi B, Kitaoka T, Kiyono J. 3D stratigraphic modelling of the Bangkok basin using Kriging on borehole data[C]//IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2021, 851(01): 012014.

[41]Abidin H Z, Andreas H, Gumilar I, et al. Land subsidence of Jakarta (Indonesia) and its relation with urban development[J]. Natural Hazards, 2011, 59: 1753-1771.

[42]Chatterjee R S, Singha S, Aggarwal A, et al. Reconnaissance to characterisation of land subsidence due to groundwater overdraft and oil extraction in and around Mehsana city, Gujarat, India by long-term hybrid differential interferometric SAR technique[J]. Journal of Hydrology, 2023, 627: 130441.

[43]潘云, 潘建刚, 宫辉力, 等. 天津市区地下水开采与地面沉降关系研究[J]. 地球与环境, 2004, 32(02): 36-39.

[44]赵建康, 吴孟杰, 刘思秀, 等. 浙江省滨海平原地下水开采与地面沉降[J]. 高校地质学报, 2006, 12(02): 185-194.

[45]杨丽芝, 刘春华, 刘中业. 德州深层地下水开采引发地面沉降变化阈值识别[J]. 水资源与水工程学报, 2010, 21(05): 55-60.

[46]雷坤超, 陈蓓蓓, 贾三满, 王树芳, 罗勇. 基于PS-InSAR技术的北京地面沉降特征及成因初探[J]. 光谱学与光谱分析, 2014, 34(08): 2185-2189.

[47]孙晓涵, 彭建兵, 崔向美, 等. 山西太原盆地地裂缝与地下水开采、地面沉降关系分析[J]. 中国地质灾害与防治学报, 2016, 27(02): 91-98.

[48]李海君, 张耀文, 谷洪彪, 迟宝明, 宋洋. 基于PS-InSAR技术的廊坊北部地区地面沉降监测研究[J]. 大地测量与地球动力学, 2018, 38(11): 1122-1127.

[49]曹群, 陈蓓蓓, 宫辉力, 等. 基于SBAS和IPTA技术的京津冀地区地面沉降监测[J]. 南京大学学报(自然科学), 2019, 55(03): 381-391.

[50]罗跃, 严学新, 杨天亮, 等.上海陆域地区地下水采灌与地面沉降的时空特征[J]. 南京大学学报(自然科学), 2019, 55(03): 449-457.

[51]问延煦, 施建勇. Terzaghi一维固结理论研究综述[J]. 西部探矿工程, 2003, (02): 1-4.

[52]孔祥如, 罗勇, 赵龙, 等. 基于Biot固结理论的地面沉降研究综述[J]. 上海国土资源, 2017, 38(03): 74-77.

[53]Gambolati G. Estimate of subsidence in Venice using a One-dimensional model of the subsoil[J]. Ibm Journal of Research & Development, 1972, 16(02): 130-137.

[54]Gambolati G, Freeze R A. Mathematical simulation of the subsidence of Venice: 1. Theory[J]. Water Resources Research, 1973, 9(03): 721-733.

[55]许烨霜, 沈水龙, 唐翠萍, 等. 基于地下水渗流方程的三维地面沉降模型[J]. 岩土力学, 2005, 26(S1): 109-112..

[56]Wu J, Shi X, Ye S, et al. Numerical simulation of viscoelastoplastic land subsidence due to groundwater overdrafting in Shanghai, China[J]. Journal of Hydrologic Engineering, 2010, 15(03): 223-236.

[57]Teatini P, Castelletto N, Ferronato M, et al. A new hydrogeologic model to predict anthropogenic uplift of Venice[J]. Water Resources Research, 2011, 47(12).

[58]詹学启, 张占荣. 郑徐高速铁路郑州段区域地面沉降预测分析[J]. 铁道标准设计, 2014, (S1): 56-60.

[59]皇甫红旺, 尚银生, 李建军, 等. “两步走”方法在计算围海造陆区地面沉降中的适宜性——兼与《多尺度有限单元法在围海造陆区工后地下水流模拟中的应用》一文商榷[J]. 工程勘察, 2015, (03): 96-98.

[60]魏加华, 崔亚莉, 邵景力, 等. 济宁市地下水与地面沉降三维有限元模拟[J]. 吉林大学学报(地), 2000, 30(04): 376-380.

[61]李云安, 冯晓腊, 黄振伟. 开采地下水地面沉降三维数值模拟分析[J]. 水文地质工程地质, 2003, (S1): 96-101.

[62]于军, 吴吉春, 叶淑君, 等. 苏锡常地区非线性地面沉降耦合模型研究[J]. 水文地质工程地质, 2006, 34(05): 11-16.

[63]薛禹群, 吴吉春, 张云, 等. 长江三角洲(南部)区域地面沉降模拟研究[J]. 中国科学: D辑, 2008, 38(04): 16.

[64]Shen S L, Xu Y S. Numerical evaluation of land subsidence induced by groundwater pumping in Shanghai[J]. Canadian Geotechnical Journal, 2011, 48(09): 1378-1392.

[65]骆勇, 祝晓彬, 郭飞, 等. 不同方法求解疏排水引起的地面沉降对比研究[J]. 水文地质工程地质, 2018, 45(05): 150-157.

[66]Hoffmann J, Leake S A, Galloway D L, et al. MODFLOW-2000 Ground-Water Model: User Guide to the Subsidence and Aquifer-System Compaction(SUB) Package[J]. Open-file Report. U. S. Geological Survey, 2003, (233): 56.

[67]Leake S A, Galloway D L, 焦珣. MODFLOW的SUB-WT模块在模拟美国加州Antelpope峡谷含水层系统压缩中的应用[C]//联合国教科文组织, 墨西哥国立自治大学, 国际水文科学协会, 墨西哥国家科学技术委员会, 美国地质调查局. “第八届国际地面沉降学术研讨会”译文选编. 2010: 7.

[68]Ghouili N, Horriche F J, Zammouri M, et al. Coupling WetSpass and MODFLOW for groundwater recharge assessment: case study of the Takelsa multilayer aquifer, northeastern Tunisia[J]. Geosciences Journal, 2017, 21: 791-805.

[69]Abd-Elaty I, Fathy I, Kuriqi A, et al. Impact of modern irrigation methods on groundwater storage and land subsidence in high-water stress regions[J]. Water Resources Management, 2023, 37(04): 1827-1840.

[70]Cleveland T G, Bravo R, Rogers J R. Storage Coefficients and Vertical Hydraulic Conductivities in Aquitards Using Extensometer and Hydrograph Data[J]. Groundwater, 2010, 30(05): 701-708.

[71]骆祖江, 刘金宝, 李朗. 第四纪松散沉积层地下水疏降与地面沉降三维全耦合数值模拟[J]. 岩土工程学报, 2008(02): 193-198.

[72]李培超. 地面沉降变形非线性完全耦合数学模型[J]. 河海大学学报(自然科学版), 2011, 39(06): 665-670.

[73]陈卓, 骆祖江. 比奥固结全耦合模型参数灵敏度分析[J]. 南昌大学学报(工科版), 2017, 39(04): 354-360+379.

[74]罗跃, 叶淑君, 吴吉春. 三维区域地面沉降数值模拟[J]. 岩土力学, 2018, 39(03): 1063-1070.

[75]狄胜同, 贾超, 张少鹏, 等. 华北平原鲁北地区地下水超采导致地面沉降区域特征及演化趋势预测[J]. 地质学报, 2020, 94(05): 1638-1654.

[76]李子义, 骆祖江, 杨璐, 等. 南通市建筑荷载和地下水开采引发地面沉降模拟预测[J]. 工程勘察, 2023, 51(02): 38-45.

[77]Chu Z X, Sun X G, Zhai S K, et al. Changing pattern of accretion/erosion of the modern Yellow River (Huanghe) subaerial delta, China: Based on remote sensing images[J]. Marine Geology, 2006, 227(1-2): 13-30.

[78]樊彦国, 王杰, 樊博文, 等. 基于多源遥感的黄河三角洲湿地动态监测[J]. 测绘通报, 2023, (06): 27-35.

[79]宋晓帅, 王松涛, 吴振, 等. 莱州湾海岸带工程地质分区及其特征[J]. 海洋地质前沿, 2017, 33(01): 43-52.

[80]刘勇, 李培英, 丰爱平, 等. 黄河三角洲地下水动态变化及其与地面沉降的关系[J]. 地球科学(中国地质大学学报), 2014, 39(11): 1655-1665.

[81]付继强, 王周龙, 马金卫, 等. 基于不同DEM数据源的胶东半岛流域特征提取对比与分析[J]. 山东国土资源, 2013, 29(04): 32-36.

[82]Yu C, Penna N T, Li Z. Generation of real-time mode high-resolution water vapor fields from GPS observations[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(03): 2008-2025.

[83]Yu C, Li Z, Penna N T, et al. Generic atmospheric correction model for interferometric synthetic aperture radar observations[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(10): 9202-9222.

[84]Yu C, Li Z, Penna N T. Interferometric synthetic aperture radar atmospheric correction using a GPS-based iterative tropospheric decomposition model[J]. Remote Sensing of Environment, 2018, 204: 109-121.

[85]王超, 张红, 刘智. 星载合成孔径雷达干涉测量[M]. 科学出版社, 2002: 20-24.

[86]郭华东, 等. 雷达对地观测理论与应用[M]. 中国科学院遥感应用研究所, 科学出版社, 2000: 22-28.

[87]孔令淑, 陈梦, 吴昊. 基于PS-InSAR技术的地表沉降分析[J]. 测绘与空间地理信息, 2019, 42(04): 172-174.

[88]侯建国, 祁晓明, 杨成生, 等. 基于PS-InSAR技术探测地表形变的实验研究[J]. 自然灾害学报, 2010, 19(01): 33-38.

[89]敖萌, 张勤, 赵超英, 等. 改进的CR-InSAR技术用于四川甲居滑坡形变监测[J]. 武汉大学学报(信息科学版), 2017, 42(03): 377-383.

[90]Zhao C, Zhang Q, Ding X, et al. An iterative goldstein SAR interferogram filter[J]. International Journal of Remote Sensing, 2012, 33(11): 3443-3455.

[91]张金芝, 黄海军, 毕海波, 等. SBAS时序分析技术监测现代黄河三角洲地面沉降[J]. 武汉大学学报(信息科学版), 2016, 41(02): 242-248.

[92]樊彦国, 王杰, 樊博文, 等. 基于多源遥感的黄河三角洲湿地动态监测[J]. 测绘通报, 2023, (06): 27-35.

[93]杨阳, 李飒, 何福耀, 等. 半变异函数及取样间距对克里金法在海洋地层分析中的影响研究[J]. 工程地质学报, 2019, 27(04): 794-802.

[94]李建华, 刘序, 缑武龙, 等. 基于WSNs和地统计学的土壤水分空间变异研究[J]. 广东农业科学, 2014, 41(14): 47-50+56.

[95]吴学文, 晏路明. 普通Kriging法的参数设置及变异函数模型选择方法——以福建省一月均温空间内插为例[J]. 地球信息科学, 2007(03): 104-108.

[96]岳建平, 方露. 城市地面沉降监控理论与技术[M]. 科学出版社, 2012.

[97]安乐生, 赵全升, 许颖. 黄河三角洲浅层地下水位动态特征及其成因[J]. 环境科学与技术, 2013, 36(09): 51-56.

[98]杜斌. 基于GMS的山西辛安泉域地下含水层结构模型研究[J]. 中国煤炭地质, 2023, 35(05): 61-65+70.

中图分类号:

 P642.26    

开放日期:

 2024-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式