论文中文题名: | 基于内聚力模型的核电结构材料氢致开裂断裂参量研究 |
姓名: | |
学号: | 19105016005 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 080203 |
学科名称: | 工学 - 机械工程 - 机械设计及理论 |
学生类型: | 博士 |
学位级别: | 工学博士 |
学位年度: | 2025 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 结构完整性分析 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2025-06-25 |
论文答辩日期: | 2025-06-04 |
论文外文题名: | Fracture Parameter Analysis of Hydrogen-Induced Cracking in Nuclear Power Structural Materials Based on Cohesive Zone Model |
论文中文关键词: | |
论文外文关键词: | Austenitic stainless steel ; Hydrogen-induced cracking ; Cohesive zone model ; Cohesive parameters ; Crack-tip mechanical field |
论文中文摘要: |
在核电反应堆压力容器及管道系统中,奥氏体不锈钢因其优异的高温力学性能和耐腐蚀性被广泛采用。然而,这些结构材料长期在力学载荷与含氢环境的协同作用下,可能发生氢致开裂(HIC)现象,进而引发灾难性后果,是影响核电设备长期安全运行的关键工程问题之一。因此,研究氢致开裂的裂纹扩展对保障核电设备安全运行具有重要的工程意义。在分析氢致开裂时,准确表征断裂参量是预测其裂纹扩展行为的关键依据。传统断裂力学参量在描述氢致开裂时难以量化氢对断裂过程区的渐进式损伤。相比之下,内聚力模型(CZM)通过引入牵引-分离法则,可将氢对材料的损伤定量反映到内聚参数中,被广泛应用于氢致开裂研究。基于此,本文以核反应堆压力容器及管道中大量使用的304奥氏体不锈钢为研究对象,基于内聚力模型重点研究了氢致开裂的关键断裂参量(包括内聚强度和内聚能)及其演化规律。通过建立氢致开裂断裂参量的定量表征方法,揭示了裂尖力学场的动态演化特性,为准确预测裂纹扩展行为以评估核电结构安全提供理论依据。主要研究内容包括: (1)通过将氢致开裂与内聚力模型相结合,阐明了氢对材料变形(应力-应变本构)和断裂(牵引-分离法则)的差异化影响机制。氢通过弱化原子键合力降低内聚强度,这一效应直接反映在牵引-分离法则中。基于能量平衡理论、J积分理论和内聚力模型的对比分析,厘清了内聚能的物理意义,证明了内聚能与J积分的弹性分量Je等效,从而建立了确定氢致开裂内聚能的理论依据。 (2)根据内聚能与J积分之间的关系,通过紧凑拉伸(CT)试样断裂试验和有限元反演法确定了304奥氏体不锈钢氢致开裂的初始内聚参数。对另一种断裂试样即三点弯曲试样进行断裂试验,根据载荷-位移曲线和裂纹前缘形状等试验数据验证所确定的内聚参数,证明了当前内聚参数比传统内聚参数更准确地预测了试验结果。从影响氢扩散的裂尖静水应力场和等效塑性应变场方面对内聚参数的适用性也进行了分析验证。 (3)对304奥氏体不锈钢进行预充氢拉伸试验,分析了氢对304奥氏体不锈钢屈服强度、抗拉强度、延伸率和氢脆敏感性的影响。使用扫描电镜对拉伸试样断口的微观形貌进行观察,从微观层面探讨了氢致开裂的作用机制。重点分析了氢对控制材料变形的应力-应变本构关系的影响。 (4)对304奥氏体不锈钢CT试样进行预充氢断裂试验,比较了充氢与未充氢试样的载荷-位移曲线及裂纹扩展形貌,结果表明氢的引入导致试样的整体承载能力下降,使其裂纹在相同的位移载荷下扩展得更长。确定了充氢与未充氢304奥氏体不锈钢的内聚能和内聚强度,结合已有研究量化了氢对控制材料断裂的牵引-分离法则的影响。 (5)采用数值模拟方法分析了不同氢覆盖率下304奥氏体不锈钢CT试样的载荷-位移曲线变化规律,分析其最大载荷以及下降段趋势,比较了裂纹扩展过程中试样的裂尖张开位移。计算了裂纹在钝化-起裂-扩展过程中裂尖静水应力场、Mises应力场、等效塑性应变场和拉伸塑性应变场的演化规律,揭示了氢致开裂断裂过程区的详细力学机理。 |
论文外文摘要: |
Austenitic stainless steels are widely used in reactor pressure vessels and piping systems of nuclear power plants due to their excellent high-temperature mechanical properties and corrosion resistance. However, under the synergistic effects of mechanical loading and hydrogen-containing environments over long service periods, these structural materials are susceptible to hydrogen-induced cracking (HIC), which may lead to catastrophic failure. HIC is therefore considered a critical engineering issue affecting the long-term safe operation of nuclear equipment. Therefore, investigating crack propagation behavior in HIC is of great engineering significance for ensuring the safe operation of nuclear facilities. In the analysis of HIC, the accurate characterization of fracture parameters is a key basis for predicting crack propagation behavior. Traditional fracture mechanics parameters are limited in their ability to quantify the progressive damage caused by hydrogen in the fracture process zone. In contrast, the cohesive zone model (CZM), by introducing a traction-separation law, allow the damage effects of hydrogen on materials to be quantitatively reflected through cohesive parameters. Based on this approach, the key fracture parameters of HIC, including cohesive strength and cohesive energy, as well as their evolution laws of 304 austenitic stainless steel, extensively used in reactor pressure vessels and piping, was investigated using a CZM. A quantitative characterization method for HIC-related fracture parameters was developed, through which the dynamic evolution characteristics of the mechanical field at the crack tip were revealed. A theoretical basis was provided for accurately predicting crack propagation and evaluating the structural integrity of nuclear components. The main contents of this study are as follows: (1) By integrating HIC mechanisms with the CZM, the distinct effects of hydrogen on material deformation (described by the stress-strain constitutive relation) and fracture (represented by the traction-separation law) were clarified. It was found that hydrogen weakens atomic bonding and reduces cohesive strength, a phenomenon directly reflected in the traction-separation behavior. Through comparative analysis of energy balance theory, J-integral theory, and CZM, the physical significance of cohesive energy was clarified, and its equivalence to the elastic component (Je) of the J-integral was demonstrated. A theoretical method was thus established for determining cohesive energy. (2) Initial cohesive parameters for HIC in 304 austenitic stainless steel were determined using compact tension (CT) fracture tests combined with finite element inverse methods, based on the relationship between cohesive energy and the J-integral. The accuracy of these parameters was validated through additional tests on three-point bending specimens. The load-displacement curves and crack front shape showed improved agreement with experimental data compared to traditional parameter sets. The suitability of the parameters was further confirmed through analyses of crack-tip hydrostatic stress and equivalent plastic strain fields, which affect hydrogen diffusion. (3) Hydrogen pre-charged tensile tests were conducted on 304 austenitic stainless steel to investigate the effects of hydrogen on yield strength, tensile strength, elongation, and hydrogen embrittlement sensitivity. Fracture surfaces were examined using scanning electron microscopy (SEM) to gain insights into the micromechanisms of HIC. The impact of hydrogen on the stress-strain constitutive behavior was also analyzed. (4) Fracture tests were carried out on hydrogen pre-charged CT specimens and compared with uncharged counterparts. It was observed that hydrogen charging significantly reduced the load-bearing capacity and promoted crack extension under the same displacement loading. The cohesive strength and cohesive energy of both charged and uncharged materials were determined, and the influence of hydrogen on the traction-separation law was quantified. (5) Numerical simulations were performed to examine the effect of varying hydrogen coverage levels on the load-displacement behavior of CT specimens. The trends in maximum load, post-peak response, and crack-tip opening displacement were analyzed. The evolution of hydrostatic stress, von Mises stress, equivalent plastic strain, and tensile plastic strain during the crack blunting-initiation-propagation process was calculated, providing a detailed understanding of the mechanical mechanisms in the fracture process zone under hydrogen influence. |
参考文献: |
[8] 张舟永, 王俊, 刘洪群, 等. 核电厂辅助锅炉内部螺栓断裂分析[J]. 金属热处理, 2019, 44(S1): 421-424. [10] 李坤, 郑嘉懿, 杨庆超, 等. 316L不锈钢应力腐蚀研究进展[J]. 有色金属材料与工程, 2023, 44(05): 36-46. [17] 付永强, 汪志刚, 蔡伟豪. 不锈钢的氢脆研究进展[J]. 有色金属科学与工程, 2024, 1-14. [28] 褚武扬. 氢损伤和滞后断裂[M]. 冶金工业出版社, 1988. [34] 张慧云, 郑留伟, 孟宪明, 等. 电化学充氢对Cr15铁素体不锈钢和304奥氏体不锈钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2021, 41(02): 202-208. [40] 王艳飞, 李耀州, 黄玉婷, 等. 晶粒尺寸对304L奥氏体不锈钢氢脆的影响[J]. 中国腐蚀与防护学报, 2023, 43(03): 494-506. [92] 陈兴, 舒双文, 周帼彦, 等. 基于内聚力模型的T型钎焊接头裂纹扩展数值模拟[J]. 压力容器, 2014, 31(08): 7-13. [99] 杨弘凡, 李达, 夏焕雄, 等. 基于数字图像相关的粘接界面内聚力模型参数反演识别[J]. 机械设计, 2023, 40(S2): 14-19. [100] 肖云东, 王玉峰, 李高春, 等. 固体火箭发动机装药粘接界面Ⅰ-Ⅱ混合型内聚力模型反演研究[J]. 推进技术, 2023, 44(08): 245-253. [124] 喻纬鸣, 赵晨宇, 邓俊峰, 等. 316L不锈钢氢致开裂行为的数值模拟[J]. 机械工程材料, 2024, 48(06): 102-107. [146] 吴艳青, 张克实. 利用内聚力模型(CZM)模拟弹粘塑性多晶体的裂纹扩展[J]. 应用数学和力学, 2006, (04): 454-462. [150] Orowan E. Energy criteria of fracture[J]. Welding Journal, 1955, 34(3): 1575-1605. [160] 郑留伟,张慧云,汪英芝,等.原位充氢-拉伸载荷作用下304不锈钢氢脆行为及显微组织表征[J]. 实验室研究与探索, 2024, 43(02): 28-32. |
中图分类号: | O346.1 |
开放日期: | 2025-06-25 |