- 无标题文档
查看论文信息

论文中文题名:

 基于内聚力模型的核电结构材料氢致开裂断裂参量研究    

姓名:

 张顺    

学号:

 19105016005    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080203    

学科名称:

 工学 - 机械工程 - 机械设计及理论    

学生类型:

 博士    

学位级别:

 工学博士    

学位年度:

 2025    

培养单位:

 西安科技大学    

院系:

 机械工程学院    

专业:

 机械工程    

研究方向:

 结构完整性分析    

第一导师姓名:

 薛河    

第一导师单位:

 西安科技大学    

论文提交日期:

 2025-06-25    

论文答辩日期:

 2025-06-04    

论文外文题名:

 Fracture Parameter Analysis of Hydrogen-Induced Cracking in Nuclear Power Structural Materials Based on Cohesive Zone Model    

论文中文关键词:

 奥氏体不锈钢 ; 氢致开裂 ; 内聚力模型 ; 内聚参数 ; 裂尖力学场    

论文外文关键词:

 Austenitic stainless steel ; Hydrogen-induced cracking ; Cohesive zone model ; Cohesive parameters ; Crack-tip mechanical field    

论文中文摘要:

在核电反应堆压力容器及管道系统中,奥氏体不锈钢因其优异的高温力学性能和耐腐蚀性被广泛采用。然而,这些结构材料长期在力学载荷与含氢环境的协同作用下,可能发生氢致开裂(HIC)现象,进而引发灾难性后果,是影响核电设备长期安全运行的关键工程问题之一。因此,研究氢致开裂的裂纹扩展对保障核电设备安全运行具有重要的工程意义。在分析氢致开裂时,准确表征断裂参量是预测其裂纹扩展行为的关键依据。传统断裂力学参量在描述氢致开裂时难以量化氢对断裂过程区的渐进式损伤。相比之下,内聚力模型(CZM)通过引入牵引-分离法则,可将氢对材料的损伤定量反映到内聚参数中,被广泛应用于氢致开裂研究。基于此,本文以核反应堆压力容器及管道中大量使用的304奥氏体不锈钢为研究对象,基于内聚力模型重点研究了氢致开裂的关键断裂参量(包括内聚强度和内聚能)及其演化规律。通过建立氢致开裂断裂参量的定量表征方法,揭示了裂尖力学场的动态演化特性,为准确预测裂纹扩展行为以评估核电结构安全提供理论依据。主要研究内容包括:

(1)通过将氢致开裂与内聚力模型相结合,阐明了氢对材料变形(应力-应变本构)和断裂(牵引-分离法则)的差异化影响机制。氢通过弱化原子键合力降低内聚强度,这一效应直接反映在牵引-分离法则中。基于能量平衡理论、J积分理论和内聚力模型的对比分析,厘清了内聚能的物理意义,证明了内聚能与J积分的弹性分量Je等效,从而建立了确定氢致开裂内聚能的理论依据。

(2)根据内聚能与J积分之间的关系,通过紧凑拉伸(CT)试样断裂试验和有限元反演法确定了304奥氏体不锈钢氢致开裂的初始内聚参数。对另一种断裂试样即三点弯曲试样进行断裂试验,根据载荷-位移曲线和裂纹前缘形状等试验数据验证所确定的内聚参数,证明了当前内聚参数比传统内聚参数更准确地预测了试验结果。从影响氢扩散的裂尖静水应力场和等效塑性应变场方面对内聚参数的适用性也进行了分析验证。

(3)对304奥氏体不锈钢进行预充氢拉伸试验,分析了氢对304奥氏体不锈钢屈服强度、抗拉强度、延伸率和氢脆敏感性的影响。使用扫描电镜对拉伸试样断口的微观形貌进行观察,从微观层面探讨了氢致开裂的作用机制。重点分析了氢对控制材料变形的应力-应变本构关系的影响。

(4)对304奥氏体不锈钢CT试样进行预充氢断裂试验,比较了充氢与未充氢试样的载荷-位移曲线及裂纹扩展形貌,结果表明氢的引入导致试样的整体承载能力下降,使其裂纹在相同的位移载荷下扩展得更长。确定了充氢与未充氢304奥氏体不锈钢的内聚能和内聚强度,结合已有研究量化了氢对控制材料断裂的牵引-分离法则的影响。

(5)采用数值模拟方法分析了不同氢覆盖率下304奥氏体不锈钢CT试样的载荷-位移曲线变化规律,分析其最大载荷以及下降段趋势,比较了裂纹扩展过程中试样的裂尖张开位移。计算了裂纹在钝化-起裂-扩展过程中裂尖静水应力场、Mises应力场、等效塑性应变场和拉伸塑性应变场的演化规律,揭示了氢致开裂断裂过程区的详细力学机理。

论文外文摘要:

Austenitic stainless steels are widely used in reactor pressure vessels and piping systems of nuclear power plants due to their excellent high-temperature mechanical properties and corrosion resistance. However, under the synergistic effects of mechanical loading and hydrogen-containing environments over long service periods, these structural materials are susceptible to hydrogen-induced cracking (HIC), which may lead to catastrophic failure. HIC is therefore considered a critical engineering issue affecting the long-term safe operation of nuclear equipment. Therefore, investigating crack propagation behavior in HIC is of great engineering significance for ensuring the safe operation of nuclear facilities. In the analysis of HIC, the accurate characterization of fracture parameters is a key basis for predicting crack propagation behavior. Traditional fracture mechanics parameters are limited in their ability to quantify the progressive damage caused by hydrogen in the fracture process zone. In contrast, the cohesive zone model (CZM), by introducing a traction-separation law, allow the damage effects of hydrogen on materials to be quantitatively reflected through cohesive parameters. Based on this approach, the key fracture parameters of HIC, including cohesive strength and cohesive energy, as well as their evolution laws of 304 austenitic stainless steel, extensively used in reactor pressure vessels and piping, was investigated using a CZM. A quantitative characterization method for HIC-related fracture parameters was developed, through which the dynamic evolution characteristics of the mechanical field at the crack tip were revealed. A theoretical basis was provided for accurately predicting crack propagation and evaluating the structural integrity of nuclear components. The main contents of this study are as follows:

(1) By integrating HIC mechanisms with the CZM, the distinct effects of hydrogen on material deformation (described by the stress-strain constitutive relation) and fracture (represented by the traction-separation law) were clarified. It was found that hydrogen weakens atomic bonding and reduces cohesive strength, a phenomenon directly reflected in the traction-separation behavior. Through comparative analysis of energy balance theory, J-integral theory, and CZM, the physical significance of cohesive energy was clarified, and its equivalence to the elastic component (Je) of the J-integral was demonstrated. A theoretical method was thus established for determining cohesive energy.

(2) Initial cohesive parameters for HIC in 304 austenitic stainless steel were determined using compact tension (CT) fracture tests combined with finite element inverse methods, based on the relationship between cohesive energy and the J-integral. The accuracy of these parameters was validated through additional tests on three-point bending specimens. The load-displacement curves and crack front shape showed improved agreement with experimental data compared to traditional parameter sets. The suitability of the parameters was further confirmed through analyses of crack-tip hydrostatic stress and equivalent plastic strain fields, which affect hydrogen diffusion.

(3) Hydrogen pre-charged tensile tests were conducted on 304 austenitic stainless steel to investigate the effects of hydrogen on yield strength, tensile strength, elongation, and hydrogen embrittlement sensitivity. Fracture surfaces were examined using scanning electron microscopy (SEM) to gain insights into the micromechanisms of HIC. The impact of hydrogen on the stress-strain constitutive behavior was also analyzed.

(4) Fracture tests were carried out on hydrogen pre-charged CT specimens and compared with uncharged counterparts. It was observed that hydrogen charging significantly reduced the load-bearing capacity and promoted crack extension under the same displacement loading. The cohesive strength and cohesive energy of both charged and uncharged materials were determined, and the influence of hydrogen on the traction-separation law was quantified.

(5) Numerical simulations were performed to examine the effect of varying hydrogen coverage levels on the load-displacement behavior of CT specimens. The trends in maximum load, post-peak response, and crack-tip opening displacement were analyzed. The evolution of hydrostatic stress, von Mises stress, equivalent plastic strain, and tensile plastic strain during the crack blunting-initiation-propagation process was calculated, providing a detailed understanding of the mechanical mechanisms in the fracture process zone under hydrogen influence.

参考文献:

[1] Zinkle S J, Was G S. Materials challenges in nuclear energy[J]. Acta Materialia, 2013, 61(3): 735-758.

[2] Jiang B, Du X, Peng Q, et al. The impact of alloying elements on the irradiation and hydrogen-induced corrosion of the austenite in nuclear stainless steel[J]. Corrosion Science, 2025: 112859.

[3] Koyama M, Habib K, Masumura T, et al. Gaseous hydrogen embrittlement of a Ni-free austenitic stainless steel containing 1 mass% nitrogen: Effects of nitrogen-enhanced dislocation planarity[J]. International Journal of Hydrogen Energy, 2020, 45(16): 10209-10218.

[4] Mao L Y, Luo Z A, Huang C, et al. Exploring the hydrogen embrittlement behavior in nickel-economized austenitic stainless steel: Investigating the role of manganese in modifying hydrogen-induced crack mechanisms[J]. Corrosion Science, 2024, 226: 111691.

[5] Ali I, Imanova G, Agayev T, et al. Hydrogen production and stainless steel corrosion during water decomposition under gamma radiation[J]. Radiation Physics and Chemistry, 2024, 223: 111902.

[6] Li H, Niu R, Li W, et al. Hydrogen in pipeline steels: Recent advances in characterization and embrittlement mitigation[J]. Journal of Natural Gas Science and Engineering, 2022, 105: 104709.

[7] Laureys A, Depraetere R, Cauwels M, et al. Use of existing steel pipeline infrastructure for gaseous hydrogen storage and transport: A review of factors affecting hydrogen induced degradation[J]. Journal of Natural Gas Science and Engineering, 2022, 101: 104534.

[8] 张舟永, 王俊, 刘洪群, 等. 核电厂辅助锅炉内部螺栓断裂分析[J]. 金属热处理, 2019, 44(S1): 421-424.

[9] Andresen P L. A Brief History of Environmental Cracking in Hot Water[J]. Corrosion, 2018, 75(3): 240-253.

[10] 李坤, 郑嘉懿, 杨庆超, 等. 316L不锈钢应力腐蚀研究进展[J]. 有色金属材料与工程, 2023, 44(05): 36-46.

[11] Dwivedi S K, Vishwakarma M. Hydrogen embrittlement in different materials: A review[J]. International Journal of Hydrogen Energy, 2018, 43(46): 21603-21616.

[12] De Francisco U, Larrosa N O, Peel M J. Cohesive zone modelling of hydrogen environmentally assisted cracking for double cantilever beam samples of 7xxx aluminium alloys[J]. Theoretical and Applied Fracture Mechanics, 2024, 133: 104604.

[13] De Francisco U, Larrosa N O, Peel M J. Development of a microstructural cohesive zone model for intergranular hydrogen environmentally assisted cracking[J]. Engineering Fracture Mechanics, 2022, 260: 108167.

[14] Wu S, Pan J, Korinko P S, et al. Simulations of crack extensions in arc-shaped tension specimens of uncharged and hydrogen-charged 21-6-9 austenitic stainless steels using cohesive zone modeling with varying cohesive parameters[J]. Engineering Fracture Mechanics, 2021, 245: 107603.

[15] Jemblie L, Olden V, Akselsen O M. A review of cohesive zone modelling as an approach for numerically assessing hydrogen embrittlement of steel structures[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 375(2098): 20160411.

[16] Johnson W H. On some remarkable changes produced in iron and steel by the action of hydrogen and acids[J]. Proceedings of the Royal Society of London, 1875, 23: 168-179.

[17] 付永强, 汪志刚, 蔡伟豪. 不锈钢的氢脆研究进展[J]. 有色金属科学与工程, 2024, 1-14.

[18] Katzarov I H, Paxton A T. Hydrogen embrittlement II. Analysis of hydrogen-enhanced decohesion across (111) planes in α -Fe[J]. Physical Review Materials, 2017, 1: 33603.

[19] Araujo L S, de Almeida L H, Dos Santos D S. Hydrogen embrittlement of a hard chromium plated cylinder assembly[J]. Engineering Failure Analysis, 2019, 103: 259-265.

[20] Laliberté-Riverin S, Bellemare J, Sirois F, et al. Internal hydrogen embrittlement of pre-cracked, cadmium-plated AISI 4340 high strength steel with sustained load tests and incremental step-loading tests[J]. Engineering Fracture Mechanics, 2020, 223: 106773.

[21] An T, Zhang S, Feng M, et al. Synergistic action of hydrogen gas and weld defects on fracture toughness of X80 pipeline steel[J]. International Journal of Fatigue, 2019, 120: 23-32.

[22] Pandey C, Mahapatra M M, Kumar P, et al. Some studies on P91 steel and their weldments[J]. Journal of Alloys and Compounds, 2018, 743: 332-364.

[23] Pressouyre G M. Trap theory of hydrogen embrittlement[J]. Acta Metallurgica, 1980, 28(7): 895-911.

[24] Young G A, Richey E, Morton D S. 5 - Hydrogen embrittlement in nuclear power systems[M]. //Gaseous Hydrogen Embrittlement of Materials in Energy Technologies. Woodhead Publishing, 2012: 149-176.

[25] Ohaeri E G, Qin W, Szpunar J. A critical perspective on pipeline processing and failure risks in hydrogen service conditions[J]. Journal of Alloys and Compounds, 2021, 857: 158240.

[26] Long Y, Song W, Fu A, et al. Combined effect of hydrogen embrittlement and corrosion on the cracking behaviour of C110 low alloy steel in O2-contaminated H2S environment[J]. Corrosion Science, 2022, 194: 109926.

[27] Ootsuka S, Fujita S, Tada E, et al. Evaluation of hydrogen absorption into steel in automobile moving environments[J]. Corrosion Science, 2015, 98: 430-437.

[28] 褚武扬. 氢损伤和滞后断裂[M]. 冶金工业出版社, 1988.

[29] Hirata K, Iikubo S, Koyama M, et al. First-principles study on hydrogen diffusivity in BCC, FCC, and HCP iron[J]. Metallurgical and Materials Transactions A, 2018, 49(10): 5015-5022.

[30] Hagi H, Hayashi Y. Effect of dislocation trapping on hydrogen and deuterium diffusion in iron[J]. Transactions of the Japan Institute of Metals, 1987, 28(5): 368-374.

[31] Tuli V, Claisse A, Burr P A. Hydrogen solubility in Zr–Nb alloys[J]. Scripta Materialia, 2022, 214: 114652.

[32] Pundt A, Kirchheim R. Hydrogen in metals: Microstructural aspects[J]. Annual Review of Materials Research, 2006, 36: 555-608.

[33] Lynch S P. 2 - Hydrogen embrittlement (HE) phenomena and mechanisms[M]. Raja V S, Shoji T. Stress Corrosion Cracking. Woodhead Publishing, 2011: 90-130.

[34] 张慧云, 郑留伟, 孟宪明, 等. 电化学充氢对Cr15铁素体不锈钢和304奥氏体不锈钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2021, 41(02): 202-208.

[35] Porter D A, Easterling K, Sherif M Y. Phase Transformations in Metals and Alloys[M]. CRC Press, 2021.

[36] Macdonald D D. The Mathematics of Diffusion[M]. Macdonald D D. Transient Techniques in Electrochemistry. Boston, MA: Springer US, 1977:47-67.

[37] Chateau J P, Delafosse D, Magnin T. Numerical simulations of hydrogen–dislocation interactions in fcc stainless steels.: part I: hydrogen–dislocation interactions in bulk crystals[J]. Acta Materialia, 2002,50(6):1507-1522.

[38] Chateau J P, Delafosse D, Magnin T. Numerical simulations of hydrogen–dislocation interactions in fcc stainless steels. part II: hydrogen effects on crack tip plasticity at a stress corrosion crack[J]. Acta Materialia, 2002, 50(6): 1523-1538.

[39] Jemblie L, Olden V, Akselsen O M. A coupled diffusion and cohesive zone modelling approach for numerically assessing hydrogen embrittlement of steel structures[J]. International Journal of Hydrogen Energy, 2017, 42(16): 11980-11995.

[40] 王艳飞, 李耀州, 黄玉婷, 等. 晶粒尺寸对304L奥氏体不锈钢氢脆的影响[J]. 中国腐蚀与防护学报, 2023, 43(03): 494-506.

[41] Sofronis P, McMeeking R M. Numerical analysis of hydrogen transport near a blunting crack tip[J]. Journal of the Mechanics and Physics of Solids, 1989, 37(3): 317-350.

[42] Krom A H M, Koers R W J, Bakker A. Hydrogen transport near a blunting crack tip[J]. Journal of the Mechanics and Physics of Solids, 1999, 47(4): 971-992.

[43] Krom A H M, Maier H J, Koers R W J, et al. The effect of strain rate on hydrogen distribution in round tensile specimens[J]. Materials Science and Engineering: A, 1999, 271(1): 22-30.

[44] Oriani R A. The diffusion and trapping of hydrogen in steel[J]. Acta Metallurgica, 1970, 18(1): 147-157.

[45] Kumnick A J, Johnson H H. Deep trapping states for hydrogen in deformed iron[J]. Acta Metallurgica, 1980, 28(1): 33-39.

[46] Olden V, Thaulow C, Johnsen R, et al. Influence of hydrogen from cathodic protection on the fracture susceptibility of 25%Cr duplex stainless steel - Constant load SENT testing and FE-modelling using hydrogen influenced cohesive zone elements[J]. Engineering Fracture Mechanics, 2009, 76(7): 827-844.

[47] Taha A, Sofronis P. A micromechanics approach to the study of hydrogen transport and embrittlement[J]. Engineering Fracture Mechanics, 2001, 68(6): 803-837.

[48] Sezgin J, Bosch C, Montouchet A, et al. Modelling of hydrogen induced pressurization of internal cavities[J]. International Journal of Hydrogen Energy, 2017, 42(22): 15403- 15414.

[49] Fischer F D, Svoboda J. Formation of bubbles by hydrogen attack and elastic-plastic deformation of the matrix[J]. International Journal of Plasticity, 2014, 63: 110-123.

[50] Zhou Q J, Qiao L J, Qi H B, et al. Hydrogen blistering and hydrogen-induced cracking in amorphous nickel phosphorus coating[J]. Journal of Non-Crystalline Solids, 2007, 353(44): 4011-4014.

[51] Pfeil L B. The effect of occluded hydrogen on the tensile strength of iron[J]. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1926, 112(760): 182-195.

[52] Johnson H H, Morlet J G, Troiano A R. Hydrogen, crack initiation, and delayed failure in steel[J]. Transactions of the Metallurgical Society of AIME, 1958, 212:4288898.

[53] Oriani R A. A mechanistic theory of hydrogen embrittlement of steels[J]. Berichte der Bunsengesellschaft für physikalische Chemie, 1972, 76(8): 848-857.

[54] Huang S, Chen D, Song J, et al. Hydrogen embrittlement of grain boundaries in nickel: an atomistic study[J]. Computational Materials, 2017, 3(1): 28.

[55] Dadfarnia M, Nagao A, Wang S, et al. Recent advances on hydrogen embrittlement of structural materials[J]. International Journal of Fracture, 2015, 196(1): 223-243.

[56] Wang S, Martin M L, Robertson I M, et al. Effect of hydrogen environment on the separation of Fe grain boundaries[J]. Acta Materialia, 2016, 107: 279-288.

[57] Harris Z D, Lawrence S K, Medlin D L, et al. Elucidating the contribution of mobile hydrogen-deformation interactions to hydrogen-induced intergranular cracking in polycrystalline nickel[J]. Acta Materialia, 2018, 158: 180-192.

[58] Beachem C D. A new model for hydrogen-assisted cracking (hydrogen embrittlement) [J]. Metallurgical Transactions, 1972, 3(2):4 41-455.

[59] Hirth J P. Effects of hydrogen on the properties of iron and steel[J]. Metallurgical Transactions A, 1980, 11(6): 861-890.

[60] Robertson I M. The effect of hydrogen on dislocation dynamics[J]. Engineering Fracture Mechanics, 2001, 68(6): 671-692.

[61] Zhang Q, Kioussis N, Kaxiras E, et al. Hydrogen-enhanced local plasticity in aluminum: an ab initio study[J]. Physical Review Letters, 2001, 87(9): 95501.

[62] Birnbaum H K, Sofronis P. Hydrogen-enhanced localized plasticity—a mechanism for hydrogen-related fracture[J]. Materials Science and Engineering: A, 1994, 176(1): 191- 202.

[63] Huang L, Chen D, Xie D, et al. Quantitative tests revealing hydrogen-enhanced dislocation motion in α-iron[J]. Nature Materials, 2023, 22(6): 710-716.

[64] Nie Y J, Yang F, Meng L X, et al. Hydrogen-enhanced densified deformation twins in 304L austenitic stainless steel fabricated by selective laser melting[J]. Materials Today Communications, 2024, 39: 109130.

[65] Kirchheim R. Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I. Theoretical background[J]. Acta Materialia, 2007, 55(15): 5129-5138.

[66] Nagumo M, Takai K. The predominant role of strain-induced vacancies in hydrogen embrittlement of steels: Overview[J]. Acta Materialia, 2019, 165: 722-733.

[67] Oudriss A, Martin F, Creus J, et al. Contributions of polarized dislocation walls, internal stresses and vacancies on hydrogen trapping processes in tensile strengthening (100) nickel single crystal[J]. Acta Materialia, 2023, 245: 118622.

[68] Saito K, Hirade T, Takai K. Hydrogen desorption spectra from excess vacancy-type defects enhanced by hydrogen in tempered martensitic steel showing quasi-cleavage fracture[J]. Metallurgical and Materials Transactions A, 2019, 50(11): 5091-5102.

[69] Sakaki K, Kawase T, Hirato M, et al. The effect of hydrogen on vacancy generation in iron by plastic deformation[J]. Scripta Materialia, 2006, 55(11): 1031-1034.

[70] Djukic M B, Bakic G M, Sijacki Zeravcic V, et al. The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: Localized plasticity and decohesion[J]. Engineering Fracture Mechanics, 2019, 216: 106528.

[71] Kurushina V, Prathuru A, Soman A, et al. Cohesive zone model for the thermo- mechanical deformation of a high temperature tubular solid oxide electrolysis cell[J]. Engineering Fracture Mechanics, 2025, 318: 110987.

[72] Shirzadeh Z, Fakoor M, Daneshjoo Z. Simulating delamination in composite laminates with fracture process zone effects: A novel cohesive zone modeling approach[J]. Engineering Fracture Mechanics, 2025, 315: 110834.

[73] Yazdanparast R, Rafiee R. A rate-dependent cohesive zone model for dynamic crack growth in carbon nanotube reinforced polymers[J]. International Journal of Solids and Structures, 2024, 300: 112932.

[74] Jiang B, Guo Z. Determination traction-separation parameters and its sensitivity analysis of bilinear cohesive zone model through experimental and numerical peeling analysis of electrodes[J]. International Journal of Adhesion and Adhesives, 2024, 133: 103760.

[75] Zhang M, Wang M, Zhang W. Numerical analysis of fiber reinforced polymer-confined concrete under cyclic compression using cohesive zone models[J]. SDHM Structural Durability and Health Monitoring, 2024, 18(5): 599-622.

[76] Duan Q, Hu H, Cao D, et al. A new mechanism based cohesive zone model for Mode I delamination coupled with fiber bridging of composite laminates[J]. Composite Structures, 2024, 332: 117931.

[77] Jemblie L, Olden V, Mainçon P, et al. Cohesive zone modelling of hydrogen induced cracking on the interface of clad steel pipes[J]. International Journal of Hydrogen Energy, 2017, 42(47): 28622-28634.

[78] Alvaro A, Olden V, Akselsen O M. 3D cohesive modelling of hydrogen embrittlement in the heat affected zone of an X70 pipeline steel[J]. International Journal of Hydrogen Energy, 2013, 38(18): 7539-7549.

[79] Lin M, Yu H, Wang X, et al. A microstructure informed and mixed-mode cohesive zone approach to simulating hydrogen embrittlement[J]. International Journal of Hydrogen Energy, 2022, 47(39): 17479-17493.

[80] Dugdale D S. Yielding of steel sheets containing slits[J]. Journal of the Mechanics and Physics of Solids, 1960, 8(2): 100-104.

[81] Barenblatt G I. The mathematical theory of equilibrium cracks in brittle fracture[M]//. Dryden H L, von Kármán T, Kuerti G, et al. Advances in Applied Mechanics. Elsevier, 1962: 55-129.

[82] Hillerborg A, Modéer M, Petersson P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J]. Cement and Concrete Research, 1976, 6(6): 773-781.

[83] Needleman A. A continuum model for void nucleation by inclusion debonding[J]. Journal of Applied Mechanics, 1987, 54(3): 525-531.

[84] Tvergaard V, Hutchinson J W. The relation between crack growth resistance and fracture process parameters in elastic-plastic solids[J]. Journal of the Mechanics and Physics of Solids, 1992, 40(6): 1377-1397.

[85] Needleman A.Micromechanical modelling of interfacial decohesion[J]. Ultramicroscopy, 1992, 40(3): 203-214.

[86] Xia X, Chen F, Gu X, et al. Interfacial debonding constitutive model and XFEM simulation for mesoscale concrete[J]. Computers & Structures, 2021, 242: 106373.

[87] Cohen G, Fineberg J, Berman N. Dynamics and properties of the cohesive zone in rapid fracture and friction[J]. Physical Review Letters, 2020, 125(12): 125503.

[88] Krull H, Yuan H. Suggestions to the cohesive traction-separation law from atomistic simulations[J]. Engineering Fracture Mechanics, 2011, 78(3): 525-533.

[89] Xu W, Ren Y, Xiao S, et al. A finite crack growth energy release rate for elastic-plastic fracture[J]. Journal of the Mechanics and Physics of Solids, 2023, 181: 105447.

[90] Siegmund T, Brocks W. The role of cohesive strength and separation energy for modeling of ductile fracture[J]. ASTM special technical publication, 2000, 1360: 139- 151.

[91] Brocks W, Cornec A, Scheider I. Computational aspects of nonlinear fracture mechanics[M] // Milne I, Ritchie R O, Karihaloo B. Comprehensive structural integrity: fracture of materials from nano to macro. Volume 3: Numerical and computational methods. Amsterdam: Elsevier, 2003: 127-209.

[92] 陈兴, 舒双文, 周帼彦, 等. 基于内聚力模型的T型钎焊接头裂纹扩展数值模拟[J]. 压力容器, 2014, 31(08): 7-13.

[93] Elices M, Guinea G V, Gómez J, et al. The cohesive zone model: advantages, limitations and challenges[J]. Engineering Fracture Mechanics, 2002, 69(2):1 37-163.

[94] Chen X, Deng X, Sutton M A, et al. An inverse analysis of cohesive zone model parameter values for ductile crack growth simulations[J]. International Journal of Mechanical Sciences, 2014, 79: 206-215.

[95] Kesava Rao B, Balu A S. Assessment of cohesive parameters using high dimensional model representation for mixed mode cohesive zone model[J]. Structures, 2019, 19: 156-160.

[96] Hong S, Kim K. Extraction of cohesive-zone laws from elastic far-fields of a cohesive crack tip: a field projection method[J]. Journal of the Mechanics and Physics of Solids, 2003, 51(7): 1267-1286.

[97] Schwalbe K H, Scheider I, Cornec A. SIAM CM 09—The SIAM method forapplying cohesive models to the damage behaviour of engineering materials and structures[M]. GKSS, 2009.

[98] Huo X, Luo Q, Li Q, et al. On characterization of cohesive zone model (CZM) based upon digital image correlation (DIC) method[J]. International Journal of Mechanical Sciences, 2022, 215: 106921.

[99] 杨弘凡, 李达, 夏焕雄, 等. 基于数字图像相关的粘接界面内聚力模型参数反演识别[J]. 机械设计, 2023, 40(S2): 14-19.

[100] 肖云东, 王玉峰, 李高春, 等. 固体火箭发动机装药粘接界面Ⅰ-Ⅱ混合型内聚力模型反演研究[J]. 推进技术, 2023, 44(08): 245-253.

[101] Scheider I, Schödel M, Brocks W, et al. Crack propagation analyses with CTOA and cohesive model: Comparison and experimental validation[J]. Engineering Fracture Mechanics, 2006, 73(2): 252-263.

[102] Tvergaard V, Hutchinson J W. Effect of T-Stress on mode I crack growth resistance in a ductile solid[J]. International Journal of Solids and Structures, 1994, 31(6): 823-833.

[103] Tvergaard V, Hutchinson J W. Effect of strain-dependent cohesive zone model on predictions of crack growth resistance[J]. International Journal of Solids and Structures, 1996, 33(20): 3297-3308.

[104] Botros K K, Clavelle E J, Uddin M, et al. Next generationductile fracture arrest analyses for high energy pipelines based on detail coupling of CFD and FEA approach[C]. Proceedings of the 2018 12th International Pipeline Conference. Volume 3: Operations, Monitoring, and Maintenance; Materials and Joining. Calgary, Alberta, Canada. 2018.

[105] Cornec A, Scheider I, Schwalbe K. On the practical application of the cohesive model[J]. Engineering Fracture Mechanics, 2003, 70(14): 1963-1987.

[106] Wang Y J, Ru C Q. Determination of two key parameters of a cohesive zone model for pipeline steels based on uniaxial stress-strain curve[J]. Engineering Fracture Mechanics, 2016, 163: 55-65.

[107] Kolesnik M. Micro-mechanisms of the ductile-to-brittle transition in hydrogenated zirconium alloys: A review and a comparison analysis of experimental data and theoretical approaches[J]. Engineering Failure Analysis, 2024, 159:1 08110.

[108] Joseph P, Babu M N, Albert S K. Prediction of propagation of a pre-existing crack in the hardfaced coating made on austenitic stainless steel plate under quasi-static loading using cohesive zone simulation[J]. Transactions of the Indian Institute of Metals, 2024, 77(3): 779-789.

[109] Sørensen B F, Jacobsen T K. Determination of cohesive laws by the J integral approach[J]. Engineering Fracture Mechanics, 2003, 70(14): 1841-1858.

[110] De Maio U, Greco F, Lonetti P, et al. A combined ALE-cohesive fracture approach for the arbitrary crack growth analysis[J]. Engineering Fracture Mechanics, 2024, 301: 109996.

[111] Sung S, Pan J, Korinko P S, et al. Simulations of fracture tests of uncharged and hydrogen-charged additively manufactured 304 stainless steel specimens using cohesive zone modeling[J]. Engineering Fracture Mechanics, 2019, 209: 125-146.

[112] Yuan H, Li X. Effects of the cohesive law on ductile crack propagation simulation by using cohesive zone models[J]. Engineering Fracture Mechanics, 2014, 126: 1-11.

[113] Kumar V, German M D, Shih C F. Engineering approach for elastic-plastic fracture analysis[M]. General Electric Co., 1981.

[114] ASTM E1820-23b. Standard test method for measurement of fracture toughness. West Conshohocken, PA: ASTM International; 2023.

[115] Lu L, Liu Z, Cui Y, et al. Driving force on line fracture process zone and fracture parameters suitable for elastic-plastic materials[J]. International Journal of Solids and Structures, 2021, 217-218: 15-26.

[116] Lu L, Liu Z, Zhuang Z. The physical meanings of two incremental-J-integral-based fracture criteria for crack growth in elastic-plastic materials[J]. Engineering Fracture Mechanics, 2022, 259: 108106.

[117] Zhong-Xin G, Zhi-Lin Z, Xiao-Hua Y. An initial analysis of the local field in the vicinity of a stably growing crack-tip and the correspondent fracture parameters[J]. Engineering Fracture Mechanics, 1989, 34(2): 507-523.

[118] Serebrinsky S, Carter E A, Ortiz M. A quantum-mechanically informed continuum model of hydrogen embrittlement[J]. Journal of the Mechanics and Physics of Solids, 2004, 52(10): 2403-2430.

[119] Alvaro A, Olden V, Akselsen O M. 3D cohesive modelling of hydrogen embrittlement in the heat affected zone of an X70 pipeline steel-Part II[J]. International Journal of Hydrogen Energy, 2014, 39(7): 3528-3541.

[120] Moriconi C, Hénaff G, Halm D. Cohesive zone modeling of fatigue crack propagation assisted by gaseous hydrogen in metals[J]. International Journal of Fatigue, 2014, 68: 56-66.

[121] Olden V, Thaulow C, Johnsen R, et al. Cohesive zone modeling of hydrogen-induced stress cracking in 25% Cr duplex stainless steel[J]. Scripta Materialia, 2007, 57(7): 615- 618.

[122] Scheider I, Pfuff M, Dietzel W. Simulation of hydrogen assisted stress corrosion cracking using the cohesive model[J]. Engineering Fracture Mechanics, 2008, 75(15): 4283-4291.

[123] Raykar N R, Maiti S K, Singh Raman R K, et al. Study of hydrogen concentration dependent growth of external annular crack in round tensile specimen using cohesive zone model[J]. Engineering Fracture Mechanics, 2013, 106: 49-66.

[124] 喻纬鸣, 赵晨宇, 邓俊峰, 等. 316L不锈钢氢致开裂行为的数值模拟[J]. 机械工程材料, 2024, 48(06): 102-107.

[125] Yun H S, Jeon S K, Lee Y, et al. Effect of precharging methods on the hydrogen embrittlement of 304 stainless steel[J]. International Journal of Hydrogen Energy, 2024, 50: 175-188.

[126] Norouzi E, Miresmaeili R, Shahverdi H R, et al. Effect of hydrogen on the deformation mechanisms of metastable 304 austenitic stainless steel[J]. Materials Letters, 2023, 338: 134021.

[127] Zhou C, Ren Y, Yokogawa K, et al. Effect of pre-strain on hydrogen induced cracking of PAW welded 304 austenitic stainless steel[J]. International Journal of Hydrogen Energy, 2024, 54: 713-728.

[128] Merkel D R, Nickerson E K, Seffens R J, et al. Effect of hydrogen on tensile properties of 304L stainless steel at cryogenic temperatures[C]. Proceedings of the . Volume 4: Materials and Fabrication. Virtual, Online. 2021.

[129] Ogawa Y, Hosoi H, Tsuzaki K, et al. Hydrogen, as an alloying element, enables a greater strength-ductility balance in an Fe-Cr-Ni-based, stable austenitic stainless steel[J]. Acta Materialia, 2020, 199: 181-192.

[130] Barrera O, Cocks A C F. Computational modelling of hydrogen embrittlement in welded structures[J]. Philosophical Magazine, 2013, 93(20): 2680-2700.

[131] Oriani R A, Josephic P H. Equilibrium aspects of hydrogen-induced cracking of steels[J]. Acta Metallurgica, 1974, 22(9): 1065-1074.

[132] Jiang D E, Carter E A. First principles assessment of ideal fracture energies of materials with mobile impurities: implications for hydrogen embrittlement of metals[J]. Acta Materialia, 2004, 52(16): 4801-4807.

[133] Nguyen O, Ortiz M. Coarse-graining and renormalization of atomistic binding relations and universal macroscopic cohesive behavior[J]. Journal of the Mechanics and Physics of Solids, 2002, 50(8): 1727-1741.

[134] Ortiz M, Carter E A, Hayes R L. Universal binding-energy relation for crystals that accounts for surface relaxation[J]. Physical Review B, 2004, 69(17): 172104.

[135] Gobbi G, Colombo C, Miccoli S, et al. A numerical model to study the hydrogen embrittlement effect[J]. Procedia Engineering, 2014, 74: 460-463.

[136] Liang Y, Sofronis P. Toward a phenomenological description of hydrogen-induced decohesion at particle/matrix interfaces[J]. Journal of the Mechanics and Physics of Solids, 2003, 51(8): 1509-1531.

[137] Xiao S, Wang H, Liu B, et al. The surface-forming energy release rate based fracture criterion for elastic-plastic crack propagation[J]. Journal of the Mechanics and Physics of Solids, 2015, 84: 336-357.

[138] Wu Z, Ma L, Fan L. Investigation of the characteristics of rock fracture process zone using coupled FEM/DEM method[J]. Engineering Fracture Mechanics, 2018, 200: 355-374.

[139] Olden V, Thaulow C, Johnsen R. Modelling of hydrogen diffusion and hydrogen induced cracking in supermartensitic and duplex stainless steels[J]. Materials & Design, 2008, 29(10): 1934-1948.

[140] Barrera O, Tarleton E, Tang H W, et al. Modelling the coupling between hydrogen diffusion and the mechanical behaviour of metals[J]. Computational Materials Science, 2016, 122: 219-228.

[141] Jin Z, Paulino G H, Dodds R H. Cohesive fracture modeling of elastic-plastic crack growth in functionally graded materials[J]. Engineering Fracture Mechanics, 2003, 70(14): 1885-1912.

[142] Yuan H, Li X. Critical remarks to cohesive zone modeling for three-dimensional elastoplastic fatigue crack propagation[J]. Engineering Fracture Mechanics, 2018, 202: 311-331.

[143] Zhang D, Liu X, Fu Y, et al. Investigation on crack propagation and reasonable wall thickness of supercritical CO2 pipeline[J]. Engineering Fracture Mechanics, 2024, 298: 109951.

[144] Wu S, Pan J, Scarth D A. Finite element analyses of crack extensions in curved compact tension specimens of irradiated Zr-2.5Nb pressure tube materials by nodal release method and cohesive zone modeling approach[J]. Engineering Fracture Mechanics, 2022, 271: 108676.

[145] Metzler T, Gaganidze E, Aktaa J. Numerical prediction of fracture toughness of a reactor pressure vessel steel based on experiments using small specimens[C]. Proceedings of the ASME. Atlanta, Georgia, USA, 2023.

[146] 吴艳青, 张克实. 利用内聚力模型(CZM)模拟弹粘塑性多晶体的裂纹扩展[J]. 应用数学和力学, 2006, (04): 454-462.

[147] Cheon Y, Lee H, Kim H. A numerical-experimental approach to estimate cohesive laws based on continuum damage mechanics for ductile failure[J]. International Journal of Solids and Structures, 2017, 125: 108-121.

[148] Hutchinson J W, Evans A G. Mechanics of materials: top-down approaches to fracture[J]. Acta Materialia, 2000, 48(1): 125-135.

[149] Griffith A A. The phenomena of rupture and flow in solids[J]. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 1921, 221: 163-198.

[150] Orowan E. Energy criteria of fracture[J]. Welding Journal, 1955, 34(3): 1575-1605.

[151] Irwin G R. Fracture[M]//Flügge S. Elasticity and Plasticity/Elastizität und Plastizität. Berlin, Heidelberg: Springer Berlin Heidelberg, 1958: 551-590.

[152] Rice J R. A path independent integral and the approximate analysis of strain concentration by notches and cracks[J]. Journal of Applied Mechanics, 1968, 35(2): 379-386.

[153] Zhu X, Joyce J A. Review of fracture toughness (G, K, J, CTOD, CTOA) testing and standardization[J]. Engineering Fracture Mechanics, 2012, 85: 1-46.

[154] Golewski G L. Comparative measurements of fracture toughgness combined with visual analysis of cracks propagation using the DIC technique of concretes based on cement matrix with a highly diversified composition[J]. Theoretical and Applied Fracture Mechanics, 2022, 121: 103553.

[155] Rahmatabadi D, Ahmadi M, Pahlavani M, et al. DIC-based experimental study of fracture toughness through R-curve tests in a multi-layered Al-Mg (LZ91) composite fabricated by ARB[J]. Journal of Alloys and Compounds, 2021, 883: 160843.

[156] ASTM E8/E8M-22. Standard test methods for tension testing of metallic materials[S]. West Conshohocken, PA: ASTM International. 2022.

[157] Hutchinson J W. Singular behaviour at the end of a tensile crack in a hardening material[J]. Journal of the Mechanics and Physics of Solids, 1968, 16(1): 13-31.

[158] Rice J R, Rosengren G F. Plane strain deformation near a crack tip in a power-law hardening material[J]. Journal of the Mechanics and Physics of Solids, 1968, 16(1):1-12.

[159] Zhang T, Yuan H, Yang S. Fracture energy and tensile strength depending on stress triaxiality along a running crack front in three-dimensional cohesive modeling[J]. Engineering Fracture Mechanics, 2020, 227: 106919.

[160] 郑留伟,张慧云,汪英芝,等.原位充氢-拉伸载荷作用下304不锈钢氢脆行为及显微组织表征[J]. 实验室研究与探索, 2024, 43(02): 28-32.

[161] Ogosi E I, Asim U B, Siddiq M A, et al. Modelling Hydrogen Induced Stress Corrosion Cracking in Austenitic Stainless Steel[J]. Journal of Mechanics, 2020, 36(2): 213-222.

[162] Hondros E D, Seah M P. The theory of grain boundary segregation in terms of surface adsorption analogues[J]. Metallurgical Transactions A, 1977, 8(9): 1363-1371.

[163] Van der Ven A, Ceder G. The thermodynamics of decohesion[J]. Acta Materialia, 2004, 52(5): 1223-1235.

中图分类号:

 O346.1    

开放日期:

 2025-06-25    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式