- 无标题文档
查看论文信息

论文中文题名:

 地下非机动车库电动自行车火灾特性及消防喷淋控制效果评价    

姓名:

 杨智翔    

学号:

 20220226060    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 消防科学与工程    

第一导师姓名:

 邓军    

第一导师单位:

 西安科技大学    

第二导师姓名:

 李青蔚    

论文提交日期:

 2023-06-20    

论文答辩日期:

 2023-06-07    

论文外文题名:

 Evaluation of electric bicycle fire characteristics and fire sprinkler control effect in underground non-motorized vehicle storage    

论文中文关键词:

 电动自行车 ; 地下非机动车库 ; 燃烧特性 ; 火灾蔓延 ; 喷淋效果    

论文外文关键词:

 Electric bicycle ; Underground non-motorized vehicle storage ; Combustion characteristics ; Fire spread ; Spraying effect    

论文中文摘要:

电动自行车因其在短途出行方面的显著优势,已成为我国居民短途交通的重要工具之一,据统计,我国电动自行车保有量达到4亿辆。然而,由于不安全的充电行为、电池的热失控特性、电动自行车材料的燃烧特性等,电动自行车火灾频发,仅在2022年,全国发生电动自行车火灾1.8万起。此外,由于大部分电动自行车停放于地下非机动车库,一旦电动自行车发生火灾,在地下受限空间内,燃烧产生的热量迅速累积,极易导致火势扩大、烟气积聚,且地下非机动车库具有层高低、通道窄、构筑物分隔复杂的特点,为火灾的扑救带来极大困难,严重威胁人民的人身和财产安全。因此掌握电动自行车火灾特性及蔓延规律对地下非机动车库火灾科学防控具有重要意义。

本文以某小区地下非机动车库为研究对象,通过电动自行车燃烧特征试验测试和数值模拟相结合的方法,研究了电动自行车燃烧过程中的火焰传播、温度分布、热释放速率、烟气产生等特性。分析了地下非机动车库受限空间内,电动自行车火灾时的热释放特性、烟气蔓延特性;基于温度、CO浓度、能见度等指标,划分了危险区域,揭示了不同条件下危险区域的变化规律。此外,分析了该小区消防喷淋系统对电动自行车火灾的控制效果,并进一步提出了优化建议。取得主要成果如下:

(1)电动自行车自身燃烧过程中,水平方向上,火焰从中间向两边蔓延,向车座后方蔓延最快,车头燃烧较为延后,在垂直方向上,从上方向下方蔓延,火焰温度最高达到1105 ℃。热释放速率最大值为5886 kw,火灾因子在0.02066~0.0464之间,介于中速火与快速火之间,且呈现出由中速火向快速火发展的趋势。车位空间内,燃烧中心所在层面温度最高,随着空间高度升高温度降低;烟气层高度最高达到2.11 m,其中CO浓度最大值为3062 ppm,CO2浓度最大为71737 ppm,能见度最低时不足1m。地下非机动车库电动自行车火灾发展过程中,燃烧初期的火源热释放速率、车库内温度、CO浓度上升缓慢;初期发展至充分发展阶段火源热释放速率、通道内温度快速上升并达到最大值;衰退阶段,火源处温度、CO浓度、离火源较远区域CO浓度会持续上升,其余位置温度、CO浓度均会下降。

(2)火源规模越大,燃烧初期至充分发展阶段的温度危险区域边缘距火源直线距离越大,衰退阶段的危险区域衰退面积也越大;同时,相同测点温度值、CO浓度值越大、低能见度区域及烟气层高度均会变大。燃烧初期至初期增长阶段,通风不良的情况下,温度危险区域面积会增大了一倍以上,而在充分发展阶段,通风良好的火源燃烧更加剧烈,火源处CO浓度值更高,温度危险区域面积更大。车位相对封闭时,热量积聚较快,整体热释放速率略高,达到最大热释放速率时间会提前。分隔墙长度为2 m以上,可以有效防护隔墙外侧车辆被引燃。

(3)该小区地下非机动车库中危险I级喷淋系统对火源热释放速率控制效果在充分发展阶段至衰退阶段最为明显,最大火源热释放速率下降了36.82~37.63%,火源处、通道内的最高温度分别下降了517 ℃和405 ℃,且对1.5 m高度处降温效果比2.3 m高度处更加显著。充分发展阶段之前,车库内整体区域CO浓度提升;充分发展阶段至衰退阶段,空间内最大CO浓度减小,通道、火源处CO浓度最高分别下降1182 ppm、1900ppm。因此,该小区地下非机动车库消防喷淋系统对地下非机动车库电动自行车火灾热释放速率、温度、CO浓度大小控制效果明显,但通道内温度仍处于很危险的高温范围、CO浓度处于较危险的中危险区域范围,可以通过使用快速响应喷头、增大喷头工作压力、按中危险等级II级进行喷水强度的设置、设置挡烟垂壁、排风扇等方式增强消防系统对地下非机动车库电动自行车火灾的控制效果,同时可以强化地下非机动车库管理与火灾监测,防止火灾发生与扩大。

论文外文摘要:

Electric bicycles have become one of the important tools for short-distance transportation for residents in China due to their significant advantages in short-distance travel, and according to statistics, the number of electric bicycles in China has reached 400 million. However, due to unsafe charging behavior, thermal runaway characteristics of batteries, and combustion characteristics of e-bike materials, e-bike fires are frequent, and in 2022 alone, 18,000 e-bike fires occurred nationwide. In addition, because most of the electric bicycles are parked in underground non-motorized garage, once the electric bicycle fire, in the underground restricted space, the heat generated by combustion accumulates rapidly, which easily leads to fire expansion and smoke accumulation, and the underground non-motorized garage has the characteristics of low floor height, narrow passageways and complex separation of structures, which brings great difficulties for fire fighting and seriously threatens people's personal and property safety. Therefore, it is important to master the characteristics of electric bicycle fire and the law of spreading for the scientific prevention and control of underground non-motorized garage fires.

In this paper, the flame propagation, temperature distribution, heat release rate, smoke generation and other characteristics of the combustion process of electric bicycles are studied by combining experimental tests and numerical simulations of the combustion characteristics of electric bicycles in an underground non-motorized garage of a community. The heat release characteristics and smoke spread characteristics of the electric bicycle fire in the restricted space of the underground non-motorized garage were analyzed; based on temperature, CO concentration, visibility and other indicators, the danger zone was divided and the change law of the danger zone under different conditions was revealed. In addition, the fire sprinkler system of the district was analyzed for its effectiveness in controlling electric bicycle fires, and further suggestions for optimization were made. The main results were obtained as follows:

(1)During the combustion of the electric bicycle itself, horizontally, the flame spreads from the middle to both sides, spreading fastest to the back of the seat, with the front end burning more delayed, and in the vertical direction, spreading from above to below, with the highest flame temperature reaching 1105 ℃. The maximum heat release rate was 5886 kw, and the fire factor was between 0.02066~0.0464, which was between medium-speed fire and fast fire, and showed a trend of development from medium-speed fire to fast fire. In the parking space, the temperature at the level where the center of combustion is located is the highest, and decreases with the height of the space; the height of the smoke layer reaches up to 2.11 m, in which the maximum CO concentration is 3062 ppm and the maximum CO2 concentration is 71737 ppm, and the visibility is less than 1 m at the lowest. temperature and CO concentration rise slowly; the initial development to fully developed stage fire source heat release rate, temperature in the channel rises rapidly and reaches the maximum; the decline stage, the temperature at the fire source, CO concentration, and CO concentration in the area far from the fire source will continue to rise, and the temperature and CO concentration in the rest of the location will fall.

(2)The larger the size of the fire source, the larger the temperature danger area edge from the fire source at the early to fully developed stage of combustion, the larger the danger area recession area at the recession stage; at the same time, the same measurement point temperature values, CO concentration values, the larger the low visibility area and smoke layer height will become larger. The temperature danger area will be more than double in the case of poor ventilation in the initial to initial growth stage of combustion, while in the fully developed stage, the well-ventilated fire source burns more intensely, the CO concentration value at the fire source is higher, and the temperature danger area is larger. When the parking space is relatively closed, the heat accumulation is faster, the overall heat release rate is slightly higher, and the time to reach the maximum heat release rate will be earlier. The length of the partition wall is 2 m or more, which can effectively protect the vehicles on the outside of the partition wall from being ignited.

(3)The effect of the hazard I sprinkler system in the underground non-motorized garage of the district on the control of the heat release rate of the fire source was most obvious from the fully developed stage to the declining stage, and the maximum heat release rate of the fire source decreased by 36.82~37.63%, and the maximum temperature at the fire source and in the passage decreased by 517 ℃ and 405 ℃, respectively, and the cooling effect was more significant for the 1.5 m height than for the 2.3 m height. Before the full development stage, the overall regional CO concentration in the garage was elevated; from the full development stage to the recession stage, the maximum CO concentration in the space decreased, and the highest CO concentration at the channel and fire source decreased by 1182 ppm and 1900 ppm, respectively. therefore, the fire sprinkler system of the underground non-motorized garage in this district controlled the heat release rate, temperature, and CO concentration size of the electric bicycle fire in the underground non-motorized garage The effect is obvious, but the temperature in the channel is still in a very dangerous high temperature range, and the CO concentration is in a more dangerous medium-risk area range, so the fire protection system can be enhanced by using fast response nozzles, increasing the working pressure of nozzles, setting the water spray intensity according to medium-risk level II, setting smoke retaining walls and exhaust fans, etc. The fire control effect of the underground non-motorized garage electric bicycle fire can also be strengthened. Non-motorized garage management and fire monitoring to prevent the occurrence and expansion of fire.

参考文献:

[1]丁宏军.从消防角度看电动车的发展[J].建筑电气, 2019, 38(02): 3-7.

[2]中国两轮电动车智能化白皮书 2021年[C]//. 上海:艾瑞咨询系列研究报告(2021年第6期), 2021: 609-662.

[3]Wang Q, Mao B, Stoliarov S I, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies[J]. Progress in Energy and Combustion Science, 2019, 73(JUL.): 95-131.

[4]Meng Xiangdong, Li Shi, Fu Weidong,et al. Experimental study of intermittent spray cooling on suppression for lithium iron phosphate battery fires[J]. eTransportation, 2022, 11

[5]Mingyi, Chen, Ouyang, et al. Investigation on thermal and fire propagation behaviors of multiple lithium-ion batteries within the package - ScienceDirect[J]. Applied Thermal Engineering, 157: 113750-113750.

[6]Kim J, Oh J, Lee H. Review on battery thermal management system for electric vehicles[J]. Applied Thermal Engineering, 2019, 149: 192-212.

[7]Huang P, Verma A, Robles D J, et al. Probing the Cooling Effectiveness of Phase Change materials on Lithium-ion Battery Thermal Response under Overcharge Condition[J]. Applied Thermal Engineering, 2017, 132: 521-530.

[8]张青松, 刘添添, 白伟. 加热方式对锂离子电池热失控行为影响[J].中国安全科学学报, 2021, 31(09): 44-51.

[9]孙强, 贾井运, 王海斌, 李旦, 贺元骅, 陈现涛. 常压及低压下锂电池热失控随数量变化特性[J]. 中国安全科学学报, 2022, 32(02): 145-151.

[10]张运勇, 范明豪, 陈津,等. 小/微电流配电电气火灾案例及分析[J]. 消防科学与技术, 2020, 39(1): 3.

[11]尤建军. 电动车安全隐患分析及预防措施[J]. 消防界(电子版), 2021, 7(04): 124-125.

[12]GB 50016-2014(2018年版), 建筑设计防火规范(2018年版)[S].

[13]王伟. 电动自行车停车库(棚)设置现状及安全对策[J]. 消防科学与技术, 2017, 36(08): 1163-1165.

[14]李君. 电动车火灾调查与物证检测技术研究[D]. 华南理工大学, 2018

[15]廖洋. 电动自行车停车空间设计研究[D]. 广西大学, 2020.

[16]来艳利. 典型电动自行车火灾特征与防范对策[D]. 西安科技大学, 2019.

[17]马恩强, 苏文威. 电动自行车火灾综合防治探究[J]. 消防科学与技术, 2016, 35(05): 704-707.

[18]Larsson F, Bertilsson S, Furlani M, et al. Gas explosions and thermal runaways during external heating abuse of commercial lithium-ion graphite-Li Co O2 cells at different levels of ageing[J]. Journal of Power Sources, 2018, 373: 220-231.

[19]Zhong G, Mao B, Wang C, et al. Thermal runaway and fire behavior investigation of lithium ion batteries using modified cone calorimeter[J]. Journal of Thermal Analysis and Calorimetry, 2019, 135(5): 2879-2889.

[20]Huang P, Ping P, Li K, et al. Experimental and modeling analysis of thermal runaway propagation over the large format energy storage battery module with Li4Ti5O12 anode[J]. Applied Energy, 2016, 183: 659-673.

[21]Andersson P, Blomqvist P, Lorén A, et al. Investigation of fire emissions from Li-ion batteries[J]. Fire Technology, 2013,15: 1-110.

[22]GOLUBKOV A W, FUCHS D, WAGNER J, et al. Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes [J]. Rsc Advances, 2014, 4(7): 3633-3642.

[23]PING P, WANG Q S, HUANG P F, et al. Study of the fire behavior of high-energy lithium-ion batteries with full-scale burning test [J]. Journal of Power Sources, 2015, 285: 80-89.

[24]JHU C-Y, WANG Y-W, SHU C-M, et al. Thermal explosion hazards on 18650 lithiumion batteries with a VSP2 adiabatic calorimeter [J]. Journal of Hazardous Materials, 2011, 192(1): 99-107.

[25]HARRIS S J, TIMMONS A, PITZ W J. A combustion chemistry analysis of carbonate solvents used in Li-ion batteries[J].Power Sources 2009; 193 :855–8 .

[26]张建法. 一起停车库电动车火灾事故的调查与分析[J]. 消防科学与技术, 2014, 33(05): 597-600.

[27]王刚, 张万民. 电动车充电过程起火原因分析及技术防范措施[J]. 消防科学与技术, 2012, 31(12): 1376-1379.

[28]LI L, LIU B, ZHENG W, et al. Investigation and numerical reconstruction of a full-scale electric bicycle fire experiment in high-rise residential building[J]. Case Studies in Thermal Engineering, 2022, 37: 102304.

[29]王红双, 李莉, 朱龙龙,等. 基于锥形量热仪的典型软垫座椅材料燃烧特性研究[J]. 安全与环境学报, 2018, 18(01): 79-84.

[30]陈胜朋, 梁栋, 莫善军. 楼梯间电动车火灾数值模拟研究[J]. 火灾科学, 2018, 27(02): 100-106.

[31]阮立, 袁天梦, 胡煜, 等. 电动自行车充电过程起火原因分析及技术防范措施[J]. 小型内燃机与车辆技术, 2020, 49(04): 89-92.

[32]李胜利, 李孝斌, FDS火灾数值模拟[C]. 化学工业出版社

[33]CHOW W K,LI S S,GAO Y,et al.Numerical Studies on AtriumSmoke M ovement and Control with Validation by Field Tests [J].Buildingand Environment, 2008, 44(6): 1150-1155.

[34]YAO H-W, DONG W-L, LIANG D, et al. Simulation of Full-scale Smoke Control in Atrium[J]. Procedia Engineering, 2011, 11(11): 608-613.

[35]李松阳. 地下狭长空间轰燃演化机理的实验与理论研究[D]. 中国科学技术大学, 2011.

[36]陈爱平, 刘滨, 杨守生. 回燃发生条件的理论分析与实验研究[J]. 热科学与技术, 2010, 9(04): 348-355.

[37]毛军, 郗艳红, 白光, 樊洪明. 地铁隧道火灾中回燃现象的试验研究[J]. 铁道学报, 2010, 32(06): 132-139.

[38]陆松伦, 孙强. 建筑物火灾荷载密度的确定方法和应用[J]. 安徽建筑工业学院学报(自然科学版), 2005(06): 20-22.

[39]廖曙江, 付祥钊, 刘方. 对某大型商场服装层活动火灾荷载的调查和研究[J]. 消防科学与技术, 2003(01): 14-16.

[40]王金平, 陈景辉, 马道贞. 建筑中活动式火灾荷载确定的理论方法研究[C]//. 自主创新与持续增长第十一届中国科协年会论文集(3), 2009: 399-405.

[41]赵声萍, 郑洁, 仝庆贵, 赵声蓉. 火源释热速率的实验研究[J]. 消防技术与产品信息, 2002(12): 35-38.

[42]董惠, 邹高万, 郜冶. ISO9705标准房间热释放率实验研究[J]. 哈尔滨工程大学学报, 2002(04): 110-113+117.

[43]褚冠全, 孙金华. 性能化防火设计中的火灾危险源分析及设定火灾[J]. 火灾科学, 2004(02): 111-115+134.

[44]程远平, 陈亮, 张孟君. 火灾过程中火源热释放速率模型及其实验测试方法[J]. 火灾科学, 2002(02): 70-125+71-74+62.

[45]王志刚, 倪照鹏, 王宗存, 姜明理. 设计火灾时火灾热释放速率曲线的确定[J]. 安全与环境学报, 2004(S1): 50-54.

[46]何明星. 通风系统对地下车库火灾安全影响分析研究[D]. 北方工业大学, 2019.

[47]X.G. Zhang, Y.C. Guo, C.K. Chan, W.Y. 2007 Lin,Numerical simulations on fire spread and smoke movement in an underground car park,Building and Environment,Volume 42, 2007, Pages, 3466-3475.

[48]Tharima A F, Rahman M M, Yusoff M Z, et al. Multi-objective optimization of underground car park design for tenability under fire-induced smoke[J]. Tunnelling and underground space technology, 2019, 85(MAR.):220-230.

[49]王印. 复杂地下空间火灾安全数值模拟分析研究[D]. 上海应用技术大学, 2020.

[50]陈永宽. 地下车库火灾控制效果数值模拟研究[D]. 安徽理工大学, 2019.

[51]吕辰. 扁平大空间地下车库火灾烟气流动数值模拟研究[D]. 安徽理工大学, 2015.

[52]李镇韬. 基于Pyrosim地下车库烟气蔓延模拟研究[D]. 安徽建筑大学, 2020.

[53]奚翠萍. 地下车库火灾烟气蔓延及通风排烟模拟研究[D]. 安徽建筑大学, 2021.

[54]GB 50067-2014, 汽车库、修车库、停车场设计防火规范[S].

[55]北京建筑大学. 车库建筑设计规范 JGJ100-2015[M]. 中国建筑工业出版社, 2015.

[56]高晓嵘. 住宅小区电动自行车消防安全隐患的预防与对策[J]. 科技与创新, 2020(13): 89-90.

[57]Yuan Jian-ping,Fang Zheng,Tang Zhi,Sun Jia-yuan.Numerical Simulations on Sprinker System and Impulse Ventilation in an Underground Car Park[J]. Procedia Engineering. 2011,11: 634-639

[58]臧蕾. 基于FDS的地下车库补风系统及防烟分区优化设置研究[D]. 大连交通大学, 2020.

[59]付红玉, 苏华, 郭婷婷, 代雪梅. 地下车库自然排烟数值模拟分析[J]. 建筑节能(中英文), 2022, 50(01):9 1-95.

[60]张淑慧. 利用FDS对地下车库火灾场景的模拟研究[D]. 西华大学, 2014.

[61]李大燕. 地下车库火灾蔓延规律及烟气发展过程研究[D]. 中国矿业大学, 2018.

[62]徐文强, 刘芳, 董龙洋, 李列平. 基于FDS的地下停车场火灾数值模拟分析[J]. 安全与环境工程, 2012, 19(01): 73-76.

[63]张凌博. 细水雾幕对地下空间火灾烟气抑制研究[D]. 中原工学院, 2021

[64]宋敏丽. 地下立体车库火灾灭火效能评估及防控技术研究[D]. 华南理工大学, 2015.

[65]奚翠萍, 卢平, 李镇韬等. 地下车库火灾烟气蔓延模拟分析[J]. 兰州工业学院学报, 2021,28(01): 47-50+61.

[66]粟庄宇. 地下车库高压细水雾灭火系统模拟研究[D]. 西华大学, 2018.

[67]廖洋, 熊伟. 电动自行车停车空间尺度设计研究——以南宁市城区为例[J]. 华中建筑, 2022, 40(07): 45-49.

[68]黄岩, 张胜, 廖祖杏. 非机动车系统规划设计研究[J]. 城市道桥与防洪, 2014(08): 249-252+20.

[69]欧阳萍莉. 第2部分 电动自行车现状令人堪忧[J]. 中国消防, 2018(06): 10-11.

[70]GB/T 8323.2-2008 , 塑料 烟生成 [S].

[71]卜庆伟, 王志, 张旭, 等. 飞机典型密封材料发烟特性研究[J]. 消防科学与技术, 2017, 36(12): 1652-1654.

[72]NIMMO W, SINGH S, GIBBS B M. The evaluation of waste tyre pulverized fuel for NOx reduction by reburning[J]. Fuel, 2008, 87: 2893-2900.

[73]路世昌, 智会强, 赵雅娟. 橡胶轮胎燃烧特性的实验研究[J]. 安全, 2012, 33(06): 11-14.

[74]汪磊, 季经纬, 程远平, 等. 常见可燃物燃烧特性实验与数值模拟研究[J]. 中国矿业大学学报, 2006(06): 732.

[75]王霁. 建筑火灾轰燃的影响因素与预测[J]. 安全与环境工程, 2010, 17(01): 90-94.

[76]张家荣, 赵廷元. 工程常用物质的热物理性质手册[M]. 新时代出版社, 1987.

[77]程远平, 李增华. 消防工程学[M]. 徐州: 中国矿业大学出版社, 2002.

[78]邹丽, 邱榕. 热诱导浮力羽流涡旋结构直接数值模拟[J]. 火灾科学, 2010, 19(03): 116-122.

[79]黎昌海, 陆守香, 袁满, 周洋. 封闭空间池火火焰游走实验研究[J]. 中国科学技术大学学报, 2010, 40(07): 751-756.

[80]胡开智. 正向风作用下开口火溢流卷吸行为与火焰高度模型研究[D]. 中国科学技术大学, 2018.

[81]党晓贝. 不同边沿高度条件下正庚烷油池火燃烧特性研究[D]. 中国科学技术大学, 2018.

[82]GB/T 8323.2-2008 , 塑料 烟生成 [S].

[83]卜庆伟, 王志, 张旭, 等. 飞机典型密封材料发烟特性研究[J]. 消防科学与技术, 2017, 36(12): 1652-1654.

[84]NIMMO W, SINGH S, GIBBS B M. The evaluation of waste tyre pulverized fuel for NOx reduction by reburning[J]. Fuel, 2008, 87: 2893-2900.

[85]路世昌, 智会强, 赵雅娟. 橡胶轮胎燃烧特性的实验研究[J]. 安全, 2012, 33(06): 11-14.

[86]汪磊, 季经纬, 程远平 ,等. 常见可燃物燃烧特性实验与数值模拟研究[J]. 中国矿业大学学报, 2006(06): 732.

[87]GB 8624-2012, 建筑材料及制品燃烧性能分级[S].

[88]Y.Luo, T.He,Detection of are short circuit inpower supply line, Fire Sci. Technol. 37(2018)1557-1559.

[89]王宇宁, 刘栋栋, 赵东拂, 李磊, 王远. 地下建筑烟气扩散分析及研究[C]//. 第2届全国工程安全与防护学术会议论文集(上册), 2010: 190-195.

[90]王妤甜, 李剑峰, 龚宝钐, 甘元庆. 基于概率风险分析的地铁车站疏散性能评估[J]. 安全与环境学报, 2022, 22(05): 2711-2719.

[91]邓权龙. 矿山井巷火灾时期烟气毒性评价及其流动时变规律研究[[D]. 江西: 江西理工大学, 2015.

[92]尼妹丽, 邓权龙.矿山井巷火灾时期烟气毒性评价及其流动时变规律研究[D]. 江西: 江西理工大学, 2015.

[93]Draft British Standard BS DD240 fire safety engineering in buildings, Part 1:guide to the application of fire safety engineering principles. British Standards Institution, 1997.

[94]杨海明, 赵道亮, 孙康娴, 刘谦, 曾美婷, 杨莉. 基于MassMotion及PyroSim的高层宿舍火灾模拟研究[J]. 消防科学与技术, 2020, 39(01): 52-55.

[95]杨晖, 李恒松, 张思健, 曹诚. 不同补风形式对某火车站中庭火灾安全的影响[J]. 中国安全生产科学技术, 2015, 11(12): 52-58.

[96]吴爱臣, 付海明. 排烟系统开启时间对安全疏散影响的数值模拟[J]. 消防科学与技术, 2010, 29(11): 962-964.

[97]霍然, 袁宏永. 性能化建筑防火分析与设计[M]. 合肥: 安徽科学技术出版社, 2003.

[98]鲁亚丽. 矿井倾斜巷道火灾烟气运动规律及危害控制研究[D]. 武汉科技大学, 2016.

[99]GB 50084-2017, 自动喷水灭火系统设计规范[S].

[100]王毅, 黄晓家, 尧炜杰, 谢水波, 张雷, 陈鹏, 王燚. 净空3~9m高度场所快速响应自动喷水喷头灭火仿真模拟研究[J]. 给水排水, 2021, 57(11): 103-114.

中图分类号:

 X932    

开放日期:

 2023-11-02    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式