- 无标题文档
查看论文信息

论文中文题名:

 Power-i电源本质安全性能测评装置    

姓名:

 张海亮    

学号:

 18206033022    

保密级别:

 保密(2年后开放)    

论文语种:

 chi    

学科代码:

 080804    

学科名称:

 工学 - 电气工程 - 电力电子与电力传动    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 电气与控制工程学院    

专业:

 电力电子与电力传动    

研究方向:

 本质安全;测评装置    

第一导师姓名:

 刘树林    

第一导师单位:

 西安科技大学    

论文提交日期:

 2021-06-22    

论文答辩日期:

 2021-06-01    

论文外文题名:

 A test and evaluation device for intrinsic safety performance of Power-i power supplies    

论文中文关键词:

 Power-i ; 本质安全性能 ; 测评装置 ; 自动化    

论文外文关键词:

 Power-i ; Intrinsic Safety Performance ; Evaluation Device ; Automation    

论文中文摘要:

传统本质安全电源输出功率较小,难以满足大功率化的发展需求。Power-i电源可实现本质安全大功率输出,但尚无适用于该电源的本质安全性能评价装置。因此,研制Power-i电源本质安全性能测评装置有助于完善大功率本安电源评价体系,具有重要理论研究意义及工程应用价值。

在分析本质安全电路火花放电形式与引燃理论的基础上,深入探究了Power-i技术限制火花放电能量实现本安电源大功率输出的机理,基于标准 IEC TS 60079-39指出安全有关最大参数、响应时间、评定系数和瞬态保护特性四项评定指标可用于评价Power-i电源的本质安全性能。分析了评定指标测试需求,提出了Power-i电源本质安全性能自动化测评装置设计方案,对用于获取测试波形数据的数据采集模块、能够模拟故障火花的脉冲发生器模块、可调节被测电源输出功率的模拟负载模块、用于测试电源瞬态保护特性的瞬态脉冲试验仪及人机交互模块等进行了软、硬件设计。为提高脉冲发生器可靠性并保证脉冲质量,设计了脉冲发生器前级环路补偿参数,分析了其动态工作范围内的工作模式与最大纹波,并据此得出相关元件参数的设计方法。为提高测评装置的自动化水平,采用了一种基于示波器、微控制器和网络通信功能的数据采集方案,设计了网络接口层硬件电路,移植了LwIP协议栈,基于示波器指令完成了应用层程序设计;针对装置中的可变负载和可变电阻,设计了程控电阻器。为准确地分析响应时间大小以及判断电源关断模式参数是否符合要求,设计了响应时间检测及关断模式判断算法。基于测评装置提出了各项评定指标的测试方法以及综合考虑各项指标的评价方法,并设计了自动化测试、评价流程。

制作了一台Power-i电源本质安全性能测评装置,测试了该装置关键模块的电气性能。采用所研制装置测评了Power-i电源本质安全性能,并通过爆炸性试验检验了测评装置的评价结果,实验验证了理论分析的正确性和设计方法的可行性。

论文外文摘要:

The traditional intrinsically safe power supply has low output power, which is difficult to meet the demand of high-power development. The Power-i power supply can achieve intrinsically safe high-power output, but there is no device suitable for evaluating the intrinsic safety performance of the power supply. Therefore, the development of Power-i intrinsically safe power supply test and evaluation device is helpful to improve the high-power intrinsically safe power supply evaluation system, which has important theoretical research significance and engineering application value.

Based on the analysis of the spark discharge form and ignition theory of intrinsically safe circuits, the mechanism of Power-i technology limiting spark discharge energy to achieve a high-power output of intrinsically safe power supply was studied. Based on the Standard IEC TS 60079-39, it was pointed out that the safety-related maximum parameters, the response time, the assessment factor, and the transient protection performance can be used to evaluate the intrinsic safety performance of Power-i power supplies. After analyzing the test requirements of the evaluation indexes, the design scheme of the automatic evaluation device for the intrinsic safety performance of Power-i power supply was proposed, and the software and hardware design of each test and evaluation module was completed, which mainly included a data acquisition module used to obtain test waveform data, a pulse generator module for simulating fault sparks, a simulated load module that can adjust the output power of the power supply under test, a transient pulse tester for testing the transient protection characteristics of the power supply, a human-machine interaction module, and so on. In order to improve the reliability of the pulse generator and ensure the pulse quality, the loop compensation parameters of the front stage of the pulse generator were designed, the working mode and the maximum ripple in the dynamic working range were analyzed, and the design method of the relevant component parameters was obtained accordingly. To improve the automation level of the evaluation device, a data acquisition scheme based on an oscilloscope, a microcontroller, and the network communication function was adopted, the hardware circuit of the network interface layer was designed, the LwIP protocol stack was transplanted, and the application layer program design was completed based on oscilloscope instructions; For the variable load and variable resistance in the device, the programmable resistors were designed. In order to accurately analyze the response time and judge whether the parameters of the power-off mode meet the requirements, a response time detection and off mode judgment algorithm was designed. Based on the evaluation device, the test method of each evaluation index, and the evaluation method of comprehensive consideration the indexes were proposed, and the automatic test and evaluation process was designed.

A test and evaluation device for the intrinsic safety performance of Power-i power supplies was made, and the electrical performance of the key modules was tested. The intrinsic safety performance of the Power-i power supply was evaluated by the developed device, and the evaluation results were verified by the explosive test. The correctness of the theoretical analysis and the feasibility of the design method was verified by the experiment.

参考文献:

[1] IEC60079-11. Electrical apparatus for explosive gas atmospheres: Intrinsic Safety “i”[S]. International Standard, Third Edition, 1991.

[2] GB 3836.4-2010. 爆炸性环境第4部分:由本质安全型“i”保护的设备[S]. 北京:中国标准出版社, 2010.

[3] GB/T 3836.18-2017. 爆炸性环境第18部分:本质安全电气系统[S]. 北京: 中国标准出版社, 2017.

[4] 于月森. 本质安全型开关电源基础理论与应用研究[D]. 江苏: 中国矿业大学, 2012.

[5] 郑学召, 闫兴, 郭军等. 煤矿救灾机器人防爆技术研究[J]. 工矿自动化, 2019, 45(09): 13-17.

[6] 刘树林. 本质安全开关变换器基础理论及关键技术研究[D]. 陕西: 西安科技大学, 2007.

[7] 何敏. 智慧矿山重要特征与实现途径[J]. 工矿自动化, 2018, 44(3): 31-34.

[8] 康骞, 许春雨, 田慕琴等. 基于故障电流变化率的大功率本安电源设计[J]. 工矿自动化, 2021, 49(02): 6-12.

[9] IEC/TS 60079-39, Ed. 1: 爆炸性气体环境.第39部分:带电子控制火花持续时间限制的本安型系统[S]. 国际电工委员会, 2012.

[10] Greenwood A N. Intrinsically safe power supply apparatus[P]. United States Patent: 3955132, 1976-04-04.

[11] Alexander R, Kindschuh D. Intrinsically safe battery circuit[P]. United States Patent: 4749934, 1988-01-07.

[12] Geuns G. Intrinsically safe power supply unit[P]. United States Patents: 5365420, 1991-9-17.

[13] Bockhorst R W, Zimmerman W E. Intrinsically safe regulated power supply[P]. United States Patents: 4264950, 1981-04-28.

[14] Rohl W. Intrinsically safe power supply with a current regulator[P]. United States Patents: 4646219, 1987-02-24.

[15] Cadman G R. High efficiency intrinsically safe power supply[P]. United States Patent: 5365420, 1994-11-15.

[16] Cawley J C, MD Dimartino, Fisher T J, et al. Power supply for an intrinsically safe circuit[P]. United States Patent: 4438473, 1984-3-20.

[17] Gerlach U, Uehlken T, Johannsmeyer U. High-power intrinsic safety with "C-I-S"[J]. Ex-Magazine, 2004(06): 66-67.

[18] Uehlken G TH. New challenges with supply systems providing high power in type of protection Intrinsic Safety[J]. PTB-BAM-Kolloquium, 2007(01): 221-225.

[19] Gerlach U, Uehlken T, Junker M. DART — The new dimension in intrinsic safety[C]// Petroleum and Chemical Industry Conference Europe - Electrical and Instrumentation Applications, 2008. PCIC Europe 2008. 5th. IEEE, 2008.

[20] Liebers L. DART - Dynamic arc recognition and termination intrinsic safety without the power limits[C]//Sice Conference. IEEE, 2011.

[21] Gerlach U, Johannsmeyer U, Uehiken T. Power-i" a significantly improved approach to explosion protection by intrinsic safety[C]//2016 Petroleum and Chemical Industry Conference Europe (PCIC Europe). IEEE, 2016, 1-10.

[22] Liu S L, Wu H, Zhang Y X, et al. The analysis and design of high-power intrinsic safe forward converter based on Power-i technology[J]. IOP Conference Series: Materials Science and Engineering, 2019, 533(1): 012015.

[23] 章良海. 安全火花原理及应用[M]. 北京: 煤炭工业出版社, 1984.

[24] 陈向东. 矿用本质安全电源[J]. 煤炭科学技术, 1997, 25(06): 35-38.

[25] 郭凤仪, 李文江, 高维生等. KF1019矿用隔爆兼本安电源箱的设计与实现[J]. 阜新矿业学院学报(自然科学版), 1994, 16(01): 86-88.

[26] 程诗恩. 一种AC/DC DCM反激变换器输出电容在线监测方法[J]. 电气技术, 2018, 19(04): 37-41.

[27] 刘春权, 马海超, 刘冰等. 宽适应性驱动电源电路研究[J]. 电气技术, 2018, 19(08): 191-194+198.

[28] 尹协一, 陈鼎智, 陈星耘. 开关型本安电源在煤矿监控系统中的应用[J]. 煤矿自动化, 1992, 20(01): 3-5.

[29] 刘树林, 刘健, 寇蕾. 开关变换器的本质安全特性分析与设计[J]. 电工技术学报, 2006, 21(05): 36-41.

[30] 柳平风. Buck-Boost变换器的本质安全特性与优化设计研究[J]. 科技展望, 2017,27(03): 55.

[31] 钟宁帆, 冯展华, 王小婧. 矿用本安型电源软开关电路的设计[J]. 煤炭技术, 2018, 37(01): 224-226.

[32] 李艳, 刘树林, 吴浩等. 基于基波纹波比的大功率本安Buck变换器的设计[J]. 科学技术与工程, 2020, 20(20): 8218-8223.

[33] 刘树林, 郝雨蒙, 李艳等. 基于最大功率的本安Buck变换器设计方法[J]. 电工技术学报, 2021, 36(03): 542-551.

[34] 李艳, 刘树林. 改进型本安Buck变换器的分析与设计[J]. 西安科技大学学报, 2019, 39(02): 360-365.

[35] 柳军停. 输出本质安全型EC电路放电特性及非爆炸本安评价研究[D]. 江苏: 中国矿业大学, 2018.

[36] 商立群, 贾文胜, 施围. 提高本质安全电感电路功率的方法[J]. 工矿自动化, 2003, 31(06): 20-21.

[37] 谢晓春, 汪淳, 俞喆. 增大本安电源容量方法的探讨[J]. 电气防爆, 1998, 40(02): 17-18.

[38] 柳玉磊, 陈云碧, 桂玲玲. 浅谈提高电路本质安全性能的常用措施[J]. 电气防爆, 2007, 49(01): 3-4.

[39] 于月森, 戚文艳, 伍小杰. 软火花电路的本安特性及优化分析[J]. 煤炭学报, 2014, 39(10): 2134-2140.

[40] 孟庆海, 李帅, 焦政国. 一种基于动态电弧识别及关断技术的截流型保护电路[J]. 电气技术, 2019, 20(07): 23-27.

[41] Meng Q H, Wang J J. Dual normal distribution of arc discharge time for inductive intrinsically safe circuits[J]. Transactions of China Electrotechnical Society, 2017, 32(02), 119-124.

[42] 赵曼. 防爆型电气设备及电路本质安全性能评价[J]. 电子科技, 2013, 26(05): 174-176.

[43] Reynolds S E, Bantic M. FMECA for intrinsically safe devices[C]//Annual Reliability and Maintainability Symposium (RAMS). IEEE, 2016: 1-5.

[44] Ahirwal B, Vishwakarma R K. Study of temperature classification, spark ignition and drop test assessment on secondary cells for intrinsically safe equipment for explosive atmospheres[J]. Process Safety Progress, 2019, 38(4): 127-135.

[45] 王振龙, 吴冬妮. 复杂本质安全电路容性放电引燃特性研究[J]. 煤矿安全, 2019, 050(004): 112-115.

[46] 柯拉夫钦克著, 张丙军译. 安全火花电路[M]. 北京: 煤炭工业出版社, 1981.

[47] 刘树林, 崔强, 李勇. Buck变换器的输出短路火花放电能量及输出本质安全判据[J]. 物理学报, 2013, 62(16): 438-447.

[48] 孟庆海, 袁明华, 王进己. 电感性本质安全电路火花放电全过程仿真[J]. 北方工业大学学报, 2017, 029(005): 50-54.

[49] 孟庆海, 牟龙华, 王崇林等. 本质安全电路的功率判别式[J]. 中国矿业大学学报, 2004, 33(03): 58-60.

[50] 刘树林, 祁俐俐. Buck变换器的等效简单电感电路及内部本安判据[J]. 西安科技大学学报, 2016, 36(03): 434-439.

[51] 皇金锋, 李林鸿, 任舒欣等. 考虑滤波电容等效串联电阻的输出本质安全型Buck-Boost变换器分析与设计[J/OL]. 电工技术学报: 1-13 [2021-04-17]. https://doi.org/10.19595/j.cnki.1000-6753.tces.200293.

[52] 朱世安. 基于神经网络的本安电路评价方法的研究[J]. 煤矿安全, 2009, 40(08): 8-12.

[53] 刘建华. 爆炸性气体环境下本质安全电路放电理论及非爆炸评价方法的研究[D]. 江苏: 中国矿业大学, 2008.

[54] 刘树林, 汪子为, 钟明航等. 基于Matlab的Boost变换器输出本安性能评价系统[J]. 煤炭学报, 2017, 42(S1): 282-287.

[55] 刘树林, 刘健. 开关变换器分析与设计[M]. 北京: 机械工业出版社, 2011.

[56] 张玮麟, 刘东立, 张耀昌. 非理想Buck变换器建模与控制研究[J]. 电器与能效管理技术, 2020, 592(07): 25-28.

中图分类号:

 TM46    

开放日期:

 2023-06-22    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式