- 无标题文档
查看论文信息

论文中文题名:

 煤矿关闭采空区化学固碳机制及安全储量研究    

姓名:

 王梦迪    

学号:

 21220226149    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 煤系CO2地质安全封存    

第一导师姓名:

 丁洋    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-19    

论文答辩日期:

 2024-06-01    

论文外文题名:

 Study on carbon sequestration effect and safe reserves in closed gob of coal mine during chemical sequestration    

论文中文关键词:

 煤矿采空区 ; 化学封存 ; 固碳效应 ; 孔隙演变 ; 安全性 ; CO2储量模型    

论文外文关键词:

 Coal mine goaf ; Chemical storage ; Carbon sequestration effect ; Pore evolution ; Security ; CO2 storage model    

论文中文摘要:

我国是世界煤炭第一生产大国,众多未经开发的地下采空区域资源存在利用效率偏低的现象。特别是在当前我国积极响应“双碳”政策的形势下,对于CO2地质储存技术的发展尤为迫切。煤矿废弃采空区所蕴藏的巨大潜力,使其成为非常规CO2储存地质体的有力候选,其CO2储存容量的精准评估意义重大。然而,在CO2注入所导致的溶解、矿化等固碳作用机理及多重因素影响下煤岩体孔隙结构的变化,以及随之而来的CO2封存安全性问题,仍是一个令人关注的研究领域。为此,本研究选取陕西黄陵矿区某关闭采空区作为案例,系统探究了CO2与水和煤岩体反应的化学固碳机制及其安全性问题,并创新提出了防沉阻漏的注浆协同充填技术及CO2化学封存容量的估算模型。本研究取得的主要成果如下:

搭建了关闭采空区CO2化学反应实验平台,可以实现高温高压反应装置-离子色谱系统联用,有效观测了CO2-H2O-煤岩体相互作用的整个水化学过程。通过开展关闭采空区化学模拟实验,从煤岩矿物组分的变化特征、水化学变化特征及反应过程中的化学动力学分析等不同角度,对煤矿采空区CO2封存过程中破碎煤岩体的固碳效应进行了深入研究,进一步的分析揭示了采空区煤岩体的孔隙结构、有机结构变化及其分形特征,提出了一个表征多因素影响下的煤岩体孔隙演变的概念模型。

在整个CO2-H2O-煤岩体相互作用过程中起固碳作用的主要金属阳离子(Mg2+和Ca2+)的浓度趋势首先迅速增加后渐趋平稳直至达到新的化学平衡状态。Ca2+的浓度变化最为显著,不同压力条件下初始浓度为124.17ppm、164.38ppm、194.71ppm,而监测的最终浓度为293.92ppm、294.55ppm、301.95ppm。在此过程中,水化学环境也发生了变化,由于CO2的溶解和煤岩体相互作用,pH和TDS(溶解性固体总量)也呈现出随反应时间逐渐变缓的趋势。同时观察到作用前后矿物组分含量发生了变化,主要是次生矿物高岭石的增长和方解石的溶解,煤样中Ca元素和氧化物含量分别减少76.52%和79.9%,岩样中Ca、Mg元素含量分别降低了20.4%和7.1%,这凸显了在CO2注入初期对矿物溶解-沉淀动力学的显著影响。

通过扫描电镜、压汞测试和傅里叶红外光谱相关实验对比分析,发现CO2-H2O-煤岩体相互作用后破碎煤岩体的孔隙体积与孔隙率均分别增加了10.8%、4.5%和1.41%、5.59%。样品表面矿物颗粒分布和矿物簇的溶蚀,同时表面的原有裂隙扩展,并伴随新的表面裂隙的生成等现象,说明了反应过程中无机矿物组分对孔裂隙发育的影响。煤样的有机结构特征在反应前后发生了变化,在最大反应压力条件下矿物吸收峰、芳香族和脂肪族结构的含量分别减少71.97%、70.97%和83.23%,反应过后含氧官能团含量增长了216.38%,导致了煤体表面的吸附特性发生了改变。

基于溶解和矿化两种形态,构建了关闭煤矿采空区CO2化学封存储量的估算模型,并对案例关闭煤矿采空区进行了CO2化学封存潜力评估。由于采空区应力分布的不均匀性,在深部关闭煤矿采空区压实区和非压实区及覆岩裂隙中CO2将分别以超临界态和气态的形式存在。基于此,提出了根据CO2不同区域的赋存相态的差异计算CO2储量的方法,得到了案例关闭煤矿采空区的CO2溶解态的理论储量为3.9×105t,通过矿化作用固定的CO2理论储量为6.42×105t,整个采空区的化学封存潜力为1.03×106t。针对化学固碳过程中可能出现的封存安全问题,提出了顶部注浆-底部充填技术构想。

本研究增强了对采空区作为CO2地质储层的认识,通过建立科学的估算模型和提出针对性的技术方案,为安全地利用煤矿关闭采空区进行CO2地质储存提供了重要的理论基础和技术支撑。

论文外文摘要:

China is the world 's largest producer of coal, and many untapped underground goafs have low utilization efficiency of resources. Especially in the current situation of China 's active response to the ' double carbon ' policy, the development of CO2 geological storage technology is particularly urgent. The huge potential of the abandoned goaf in the coal mine makes it a strong candidate for unconventional CO2 storage geological bodies, and the accurate evaluation of its CO2 storage capacity is of great significance. However, the mechanism of carbon fixation such as dissolution and mineralization caused by CO2 injection and the change of pore structure of coal and rock mass under the influence of multiple factors, as well as the safety of CO2 storage, are still a research field of concern. Therefore, this study selected a closed goaf in Huangling mining area of Shaanxi Province as a case to systematically explore the chemical carbon fixation mechanism and safety problems of CO2 reaction with water and coal rock mass, and innovatively proposed a grouting collaborative filling technology to prevent subsidence and leakage and an estimation model of CO2 chemical storage capacity. The main results of this study are as follows :

The experimental platform of CO2 chemical reaction in closed goaf was built, which can realize the combination of high temperature and high pressure reaction device and ion chromatography system, and effectively observe the whole water chemical process of CO2-H2O-coal rock interaction. Through the chemical simulation experiment of closed goaf, the carbon sequestration effect of broken coal and rock mass in the process of CO2 storage in coal mine goaf was studied from different angles, such as the variation characteristics of coal and rock mineral composition, the characteristics of water chemical change and the chemical kinetic analysis in the reaction process. Further analysis revealed the pore fracture structure, organic structure change and fractal characteristics of coal and rock mass in goaf, and put forward a conceptual model to characterize the pore evolution of coal and rock mass under the influence of multiple factors.

The concentration trend of the main metal cations (Mg2+ and Ca2+) that play a role in carbon sequestration during the whole CO2-H2O-coal-rock interaction process first increases rapidly and then gradually stabilizes until it reaches a new chemical equilibrium state. The concentration of Ca2+ changes most significantly. The initial concentration under different pressure conditions is 124.17ppm, 164.38ppm, 194.71ppm, while the final concentration monitored is 293.92ppm, 294.55ppm, 301.95ppm. During this process, the hydrochemical environment also changed. Due to the dissolution of CO2 and the interaction between coal and rock, pH and TDS ( Total Dissolved Solids ) also showed a trend of gradually slowing down with the reaction time. At the same time, it was observed that the content of mineral components changed before and after the action, mainly the growth of secondary mineral kaolinite and the dissolution of calcite. The contents of Ca and oxides in coal samples decreased by 76.52 % and 79.9 %, respectively, and the contents of Ca and Mg in rock samples decreased by 20.4 % and 7.1 %, respectively, which highlighted the significant effect of CO2 injection on the dissolution-precipitation kinetics of minerals at the initial stage of CO2 injection.

Through the comparative analysis of scanning electron microscopy, mercury intrusion test and Fourier transform infrared spectroscopy, it was found that the pore volume and porosity of broken coal and rock mass increased by 10.8%, 4.5% and 1.41%, 5.59% respectively after the interaction of CO2-H2O-coal and rock mass. The distribution of mineral particles and the dissolution of mineral clusters on the surface of the sample, as well as the expansion of the original cracks on the surface, accompanied by the formation of new surface cracks, illustrate the influence of inorganic mineral components on the development of pores and cracks in the reaction process. The organic structure characteristics of coal samples changed before and after the reaction. Under the condition of maximum reaction pressure, the content of mineral absorption peak, aromatic and aliphatic structure decreased by 71.97 %, 70.97 % and 83.23 % respectively. After the reaction, the content of oxygen-containing functional groups increased by 216.38 %, which led to the change of adsorption characteristics on the surface of coal.

Based on the two forms of dissolution and mineralization, an estimation model of CO2 chemical storage reserves in closed coal mine goafs was constructed, and the potential of CO2 chemical storage in closed coal mine goafs was evaluated. Due to the non-uniformity of the stress distribution in the goaf, CO2 will exist in the form of supercritical and gaseous state in the compacted and non-compacted areas of the deep closed coal mine goaf and in the overlying rock fissures, respectively. Based on this, we propose a method to calculate CO2 reserves based on the difference in the occurrence phase of CO2 in different regions. The theoretical reserves of CO2 dissolved state in the closed coal mine goaf are 3.9×105t. The theoretical reserves of CO2 fixed by mineralization are 6.42×105t, and the chemical storage potential of the entire goaf is 1.03×106t. Aiming at the possible storage safety problems in the process of chemical carbon sequestration, the idea of top grouting-bottom filling technology is put forward.

This study enhances the understanding of the goaf as a CO2 geological reservoir. By establishing a scientific estimation model and proposing targeted technical solutions, it provides an important theoretical basis and technical support for the safe use of coal mines to close goafs for CO2 geological storage.

参考文献:

[1] 罗一凡, 岳子静, 张墨苇, 等. 中国碳达峰、碳中和能源控制目标及供给侧清洁化进程[J]. 能源研究与管理, 2022, 14(03): 12-19+25.

[2] 李海峰, 王强. CCUS中CO2利用和地质封存研究[J]. 现代化工, 2022, 42(10): 86-90+95.

[3] KAKOUEI A, VATANI A, RASAEI M, et al. Carbon dioxide geological storage (cgs) – current status and opportunities[C]. MOYA B L, POUS J, eds.. InTech, 2016.

[4] 包一翔, 李井峰, 郭强, 等. 二氧化碳用于地质资源开发及同步封存技术综述[J]. 煤炭科学技术, 2022, 50(06): 84–95.

[5] 李树志, 李学良, 尹大伟. 碳中和背景下煤炭矿山生态修复的几个基本问题[J]. 煤炭科学技术, 2022, 50(01): 286–292.

[6] 王根锁, 刘宏磊, 武强, 等. 碳中和背景下废弃矿山环境正效应资源化开发利用[J]. 煤炭科学技术, 2022, 50(06): 321–328.

[7] 刘峰, 郭林峰, 赵路正. 双碳背景下煤炭安全区间与绿色低碳技术路径[J]. 煤炭学报, 2022, 47(01): 1–15.

[8] ZHANG S, DEPAOLO D J. Rates of CO2 mineralization in geological carbon storage[J]. Accounts of Chemical Research, 2017, 50(9): 2075–2084.

[9] 桑树勋, 王冉, 周效志, 等. 论煤地质学与碳中和[J]. 煤田地质与勘探, 2021, 49(01): 1–11.

[10] 包一翔, 李井峰, 郭强, 等. 二氧化碳用于地质资源开发及同步封存技术综述[J]. 煤炭科学技术, 2022, 50(06): 84–95.

[11] JIANG R, YU H. Interaction between sequestered supercritical CO2 and minerals in deep coal seams[J]. International Journal of Coal Geology, 2019, 202: 1–13.

[12] ZHANG X G, RANJITH P G, RANATHUNGA A S, et al. Variation of mechanical properties of bituminous coal under CO2 and H2O saturation[J]. Journal of Natural Gas Science and Engineering, 2019, 61: 158–168.

[13] LIU C J,SANG S X,ZHANG K et al. Effects of temperature and pressure on pore morphology of different rank coals: implications for CO2 geological storage[J]. Journal of CO2 Utilization, 2019, 34: 343-352.

[14] HOU X W, HUANG D G, LI H Z, et al. Research on the mechanism and capacity of CO2 stored in abandoned coal mine gob[J]. Applied Mechanics and Materials, 2014, 522–524: 196–200.

[15] LI W, REN T, SU E, et al. Is the long-term sequestration of CO2 in and around deep, abandoned coal mines feasible?[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2018, 232(1): 27–38.

[16] RAY S, DEY K. Feasibility of CO2 sequestration as a closure option for underground coal mine[J]. Journal of The Institution of Engineers (India): Series D, 2018, 99(1): 57–62.

[17] JALILI P, SAYDAM S, CINAR Y. CO2 storage in abandoned coal mines[C]. .

[18] WANG F, YAN J. CO2 storage and geothermal extraction technology for deep coal mine[J]. Sustainability, 2022, 14(19): 12322.

[19] ALI M, JHA N K, PAL N, et al. Recent advances in carbon dioxide geological storage, experimental procedures, influencing parameters, and future outlook[J]. Earth-Science Reviews, 2022, 225: 103895.

[20] XUAN D, XU J, WANG B, et al. Borehole investigation of the effectiveness of grout injection technology on coal mine subsidence control[J]. Rock Mechanics and Rock Engineering, 2015, 48(6): 2435–2445.

[21] LUTYŃSKI M. A concept of enhanced methane recovery by high pressure CO2 storage in abandoned coal mine[J]. Gospodarka Surowcami Mineralnymi-mineral Resources Management, 2010.

[22] SINGH* G S P, SINGH U K. Assessment of goaf characteristics and compaction in longwall caving[J]. Mining Technology, 2011, 120(4): 222–232.

[23] KARACAN C Ö. Prediction of porosity and permeability of caved zone in longwall gobs[J]. Transport in Porous Media, 2010, 82(2): 413–439.

[24] 黄定国, 杨小林, 余永强, 等. CO2地质封存技术进展与废弃矿井采空区封存CO2[J]. 洁净煤技术, 2011, 17(05): 93–96.

[25] 黄定国, 侯兴武, 吴玉敏. 煤矿废弃矿井采空区封存CO2的机理分析和能力评价[J]. 环境工程, 2014, 32(S1): 1076–1080.

[26] 张军建, 常象春, 吕大炜, 等. 双碳目标下煤层发育区二氧化碳地质封存研究与评价[J]. 煤炭科学技术, 2023, 51(S1): 206-214.

[27] 王双明, 申艳军, 孙强, 等. “双碳”目标下煤炭开采扰动空间CO2地下封存途径与技术难题探索[J]. 煤炭学报, 2022, 47(01): 45–60.

[28] 李百宜, 张吉雄, 刘恒凤, 等. 煤矿采空区储能式充填技术及储能增效机制[J]. 采矿与安全工程学报, 2022, 39(6): 1161-1168+1176.

[29] HOU X W, HUANG D G, LI H Z, et al. Research on the mechanism and capacity of CO2 stored in abandoned coal mine gob[J]. Applied Mechanics and Materials, 2014, 522–524: 196–200.

[30] 李树刚, 张静非, 尚建选, 等. 双碳目标下煤气同采技术体系构想及内涵[J]. 煤炭学报, 2022, 47(4): 1416–1429.

[31] 李树刚, 张静非, 林海飞, 等. 双碳战略中煤气共采技术发展路径的思考[J]. 煤炭科学技术, 2024, 52(1): 138-153.

[32] ZHANG S, DEPAOLO D J. Rates of CO2 mineralization in geological carbon storage[J]. Accounts of Chemical Research, 2017, 50(9): 2075–2084.

[33] PEARCE J, RAZA S, BAUBLYS K, et al. Unconventional CO2 storage: CO2 mineral trapping predicted in characterized shales, sandstones, and coal seam interburden[J]. SPE Journal, 2022, 27(05): 3218–3239.

[34] WANG Y, VUIK C, HAJIBEYGI H. CO2 storage in deep saline aquifers: impacts of fractures on hydrodynamic trapping[J]. International Journal of Greenhouse Gas Control, 2022, 113: 103552.

[35] YANG X, LV P, ZHU S, et al. Release of Ca during coal pyrolysis and char gasification in H2O, CO2 and their mixtures[J]. Journal of Analytical and Applied Pyrolysis, 2018, 132: 217–224.

[36] 李万伦, 陈晶, 贾凌霄, 等. 玄武岩CO2地质封存研究进展[J]. 地质论评, 2022, 68(02): 648–657.

[37] WHITE S K, SPANE F A, SCHAEF H T, et al. Quantification of co 2 mineralization at the wallula basalt pilot project[J]. Environmental Science & Technology, 2020, 54(22): 14609–14616.

[38] MATTER J M, KELEMEN P B. Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation[J]. Nature Geoscience, 2009, 2(12): 837–841.

[39] LIU C, SANG S, FAN X, et al. Influences of pressures and temperatures on pore structures of different rank coals during CO2注入煤岩力学响应特征及机理研究进展[J]. 地球科学, 2022, 47(5): 1849–1864.

[41] ZHANG W. Density-driven enhanced dissolution of injected CO2 during long-term co2 geological storage[J]. Journal of Earth System Science, 2013, 122(5): 1387–1397.

[42] LIU T, LI M, LI J, et al. Interactions of CO2–H2O-coal and its impact on micro mechanical strength of coal[J]. Geoenergy Science and Engineering, 2023, 227: 211915.

[43] PHUKAN M, VU H P, HAESE R R. Mineral dissolution and precipitation reactions and their net balance controlled by mineral surface area: an experimental study on the interactions between continental flood basalts and CO2-saturated water at 80 bars and 60 °C[J]. Chemical Geology, 2021, 559: 119909.

[44] LI S, ZHANG S, XING H, et al. CO2–brine–rock interactions altering the mineralogical, physical, and mechanical properties of carbonate-rich shale oil reservoirs[J]. Energy, 2022, 256: 124608.

[45] DU Y, SANG S, PAN Z, et al. Experimental study of supercritical CO2-H2O-coal interactions and the effect on coal permeability[J]. Fuel, 2019, 253: 369–382.

[46] PAN S-Y, CHEN Y-H, FAN L-S, et al. CO2 mineralization and utilization by alkaline solid wastes for potential carbon reduction[J]. Nature Sustainability, 2020, 3(5): 399–405.

[47] Anonymous. Variations in mineralization potential for CO2 related to sedimentary facies and burial depth – a comparative study from the north sea.[J].Energy Procedia, 2014, 11(63):5063-5070.

[48] 张泉, 林进, 折印楠, 等. 我国二氧化碳地质封存潜力评价研究进展[J]. 中国石油和化工标准与质量, 2022, 42(11): 144–146.

[49] 刘廷, 马鑫, 刁玉杰, 等. 国内外CO2地质封存潜力评价方法研究现状[J]. 中国地质调查, 2021, 8(4): 101–108.

[50] 高志豪, 夏菖佑, 廖松林, 等. 玄武岩CO2矿化封存潜力评估方法研究现状及展望[J]. 高校地质学报, 2023, 29(1): 66–75.

[51] 李鹏春, 江静练, 程锦辉, 等. 广东雷州半岛火山岩二氧化碳矿化封存潜力评估[J]. 高校地质学报, 2023, 29(1): 76–84.

[52] 李阳, 王锐, 赵清民, 等. 含油气盆地咸水层二氧化碳封存潜力评价方法[J]. 石油勘探与开发, 2023, 50(2): 424–430.

[53] 曹涛涛, 宋之光, 刘光祥, 等. 氮气吸附法—压汞法分析页岩孔隙、分形特征及其影响因素[C]. .

[54] SUN X, YAO Y, LIU D, et al. How does CO2 adsorption alter coal wettability? implications for CO2 geo‐sequestration[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(5): e2021JB023723.

[55] MUDOI M P, SHARMA P, KHICHI A S. A review of gas adsorption on shale and the influencing factors of CH4 and CO2 adsorption[J]. Journal of Petroleum Science and Engineering, 2022, 217: 110897.

[56] DING J, YAN C, WANG G, et al. Competitive adsorption between CO2 and CH4 in tight sandstone and its influence on co2-injection enhanced gas recovery (egr)[J]. International Journal of Greenhouse Gas Control, 2022, 113: 103530.

[57] ZHANG Y, SHI L, YE Z, et al. Experimental investigation of supercritical CO2–rock–water interactions in a tight formation with the pore scale during CO2–EOR and sequestration[J]. ACS Omega, 2022, 7(31): 27291–27299.

[58] ZANDVAKILI A, RAHBAR SHAHROUZI J, TABATABAEI-NEJAD S A, et al. Experimental investigation of CO2–rock–brine interaction for injection of CO2 in an iranian oil reservoir as an eor method[J]. Environmental Earth Sciences, 2020, 79(20): 480.

[59] KOUKOUZAS N, KYPRITIDOU Z, PURSER G, et al. Assessment of the impact of co2 storage in sandstone formations by experimental studies and geochemical modeling: the case of the mesohellenic trough, nw greece[J]. International Journal of Greenhouse Gas Control, 2018, 71: 116–132.

[60] MAPHALA T. Effects of carbon dioxide storage in coal on the physical and chemical properties of coal[C]. .

[61] XU R, LI R, MA J, et al. Effect of mineral dissolution/precipitation and CO2 exsolution on CO2 transport in geological carbon storage[J]. ACS Publications, 2017, 50, 2056-2066.

[62] CHEN K, LIU X, NIE B, et al. Mineral dissolution and pore alteration of coal induced by interactions with supercritical CO2[J]. Energy, 2022, 248: 123627.

[63] MA X C, DU Y, FU C Q, et al. Effects of supercritical CO2 on the pore structure complexity of high-rank coal with water participation and the implications for CO2 ECBM[J]. ACS Publications, 2023, 2: 18964-18980.

[64] ZHOU Y, ZHU S, YAN L, et al. Interaction between CO2 and H2O on char structure evolution during coal char gasification[J]. Applied Thermal Engineering, 2019, 149: 298–305.

[65] ZHAI X W, GE H, WANG T Y, et al. Effect of water immersion on active functional groups and characteristic temperatures of bituminous coal[J].Energy, 2020, 205: 118076

[66] WANG Y-L, ZHU S-H, GAO M-Q, et al. A study of char gasification in H2O and CO2 mixtures: role of inherent minerals in the coal[J]. Fuel Processing Technology, 2016, 141: 9–15.

[67] LIU T, LI M, LI J, et al. Interactions of CO2–H2O-coal and its impact on micro mechanical strength of coal[J]. Geoenergy Science and Engineering, 2023, 227: 211915.

[68] DOUGHTY C. Modeling geologic storage of carbon dioxide: comparison of non-hysteretic and hysteretic characteristic curves[J]. Energy Conversion and Management, 2007, 48(6): 1768–1781.

[69] SIEMONS N, BRUINING H, CASTELIJNS H, et al. Pressure dependence of the contact angle in a CO2–H2O–coal system[J]. Journal of Colloid and Interface Science, 2006, 297(2): 755–761.

[70] JIANG R, YU H. Interaction between sequestered supercritical CO2 and minerals in deep coal seams[J]. International Journal of Coal Geology, 2019, 202: 1–13.

[71] DU Q, LIU X, WANG E, et al. Effects of CO2–water interaction with coal on mineral content and pore characteristics[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2020, 12(2): 326–337.

[72] XU Y, LUN Z, HU Z, et al. Alterations in pore and fracture structure of coal matrix and its surrounding rocks due to long-term CO2-H2O-rock interaction: implications for CO2-ECBM[J]. Fuel, 2023, 352: 129104.

[73] DEMIN V, NEMOVA N. Study of regularities of changes in stress-strain state of coal–rock mass in fractured zones[J]. IOP Conference Series: Earth and Environmental Science, 2021, 773(1): 012006.

[74] ZHAO Y, WU S, CHEN Y, et al. CO2-water-rock interaction and pore structure evolution of the tight sandstones of the quantou formation, songliao basin[J]. Energies, 2022, 15(24): 9268.

[75] DU Y, FU C, PAN Z, et al. Geochemistry effects of supercritical CO2 and H2O on the mesopore and macropore structures of high-rank coal from the qinshui basin, china[J]. International Journal of Coal Geology, 2020, 223: 103467.

[76] MA L, WEI G M, LI Z B, et al. Damage effects and fractal characteristics of coal pore structure during liquid CO2 injection into a coal bed for E-CBM[J]. Resource, 2018, 7(2): 30.

[77] 申林方, 冯夏庭, 潘鹏志, 等. 单裂隙花岗岩在应力-渗流-化学耦合作用下的试验研究[J]. 岩石力学与工程学报, 2010, 29(7): 1379–1388.

[78] ILGEN A, AMAN M, FELDMAN J, 等. Shale-brine-CO2 interactions and the long-term stability of shale caprock.[C].

[79] 冯杰, 李文英, 谢克昌. 傅立叶红外光谱法对煤结构的研究[J]. 中国矿业大学学报, 2002(5): 25–29.

[80] LIU S, SUN H, ZHANG D, et al. Experimental study of effect of liquid nitrogen cold soaking on coal pore structure and fractal characteristics[J]. Energy, 2023, 275: 127470.

[81] 王伟, 刘桃根, 吕军, 等. 水岩化学作用对砂岩力学特性影响的试验研究[J]. 岩石力学与工程学报, 2012, 31(S2): 3607–3617.

[82] 鲁祖德, 丁梧秀, 冯夏庭, 等. 裂隙岩石的应力–水流–化学耦合作用试验研究[J]. 岩石力学与工程学报, 2008(4): 796–804.

[83] 盛金昌, 李凤滨, 姚德生, 等. 渗流-应力-化学耦合作用下岩石裂隙渗透特性试验研究[J]. 岩石力学与工程学报, 2012, 31(5): 1016–1025.

[84] 李世平, 李玉寿, 吴振业. 岩石全应力应变过程对应的渗透率-应变方程[J]. 岩土工程学报, 1995(2): 13–19.

[85] FAN L, LIU S. A conceptual model to characterize and model compaction behavior and permeability evolution of broken rock mass in coal mine gobs[J]. International Journal of Coal Geology, 2017, 172: 60–70.

[86] ARASTEH H, SAEEDI G, FARSANGI M A E, et al. A new model for calculation of the plastic compression index and porosity and permeability of gob materials in longwall mining[J]. Geotechnical and Geological Engineering, 2020, 38(6): 6407–6420.

[87] NOMURA S, YAMAMOTO Y, SAKAGUCHI H. Modified expression of kozeny–carman equation based on semilog–sigmoid function[J]. Soils and Foundations, 2018, 58(6): 1350–1357.

[88] 申林方, 冯夏庭, 潘鹏志, 等. 应力作用下岩石的化学动力学溶解机制研究[J]. 岩土力学, 2011, 32(5): 1320–1326.

[89] LI J, YIN Z Q, LI Y, et al. Waste rock filling in fully mechanized coal mining for goaf-side entry retaining in thin coal seam[J]. Arabian Journal of Geosciences, 2019, 12(16): 509.

[90] HUANG N, ZHANG X-W, CHEN J-H, et al. Research on goaf retaining technology of double-layer “combined” filling body in high gas mine[J]. Advances in Civil Engineering, 2022, 2022: 1–8.

[91] PEARCE J K, DAWSON G K W, BLACH T P, et al. Impure CO2 reaction of feldspar, clay, and organic matter rich cap-rocks: decreases in the fraction of accessible mesopores measured by sans[J]. International Journal of Coal Geology, 2018, 185: 79–90.

[92] LI B, LIANG Y P, ZHANG L, et al. Breakage law and fractal characteristics of broken coal and rock masses with different mixing ratios during compaction[J]. Energy Science & Engineering, 2019, 7(1): 1000-1015.

[93] ZOBACK M D, GORELICK S M. Earthquake triggering and large-scale geologic storage of carbon dioxide[J]. Proceedings of the National Academy of Sciences, 2012, 109(26): 10164–10168.

[94] DING Y, LI S, ZHU B, et al. Research on the feasibility of storage and estimation model of storage capacity of CO2 in fissures of coal mine old goaf[J]. International Journal of Mining Science and Technology, 2023.

[95] SHANG X, WANG J, WANG H, et al. Combined effects of CO2 adsorption-induced swelling and dehydration-induced shrinkage on caprock sealing efficiency[J]. International Journal of Environmental Research and Public Health, 2022, 19(21): 14574.

[96] LUCIER A, ZOBACK M, GUPTA N, et al. Geomechanical aspects of CO2 sequestration in a deep saline reservoir in the ohio river valley region[J]. Environmental Geosciences, 2006, 13(2): 85–103.

[97] CHEN Z, NARAYAN S P, YANG Z, et al. An experimental investigation of hydraulic behaviour of fractures and joints in granitic rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(7): 1061–1071.

[98] MARTINEZ M J, HESSE M A. Two‐phase convective CO2 dissolution in saline aquifers[J]. Water Resources Research, 2016, 52(1): 585–599.

[99] TSINOBER A, ROSENZWEIG R, CLASS H, et al. The role of mixed convection and hydrodynamic dispersion during CO2 dissolution in saline aquifers: a numerical study[J]. Water Resources Research, 2022, 58(3): 1056-1064.

[100] GILMORE K A, NEUFELD J A, BICKLE M J, et al. CO2 dissolution trapping rates in heterogeneous porous media[J]. Geophysical Research Letters, 2020, 47(12): 1029-1043.

[101] 张春会, 靳静, 黄鹂. CO2注入咸水层的动力弥散-对流-溶解计算模型[C]. .

[102] 褚召祥. 基于体积法的废弃煤矿水热型热储潜能评估[J]. 工程地质学报, 2023, 31(5): 1696–1710.

[103] LIU Y, HU T, RUI Z, et al. An integrated framework for geothermal energy storage with CO2 sequestration and utilization[J]. Engineering, 2023, 30: 121–130.

中图分类号:

 TD711;X701.7    

开放日期:

 2024-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式