- 无标题文档
查看论文信息

题名:

 近水体浅埋煤层开采诱发工作面突水机理及防治技术研究    

作者:

 陈盼    

学号:

 16104302001    

保密级别:

 保密(3年后开放)    

语种:

 chi    

学科代码:

 081401    

学科:

 工学 - 土木工程 - 岩土工程    

学生类型:

 博士    

学位:

 工学博士    

学位年度:

 2024    

学校:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 土木工程    

研究方向:

 矿井地质保障与灾害防治    

导师姓名:

 谷拴成    

导师单位:

 西安科技大学    

提交日期:

 2024-07-04    

答辩日期:

 2024-06-06    

外文题名:

 Research on the mechanism and prevention technology of water inrush in the working face induced by shallow coal seam mining near water bodies    

关键词:

 浅埋煤层 ; 近水体开采 ; 采动裂隙 ; 隔水煤岩体 ; 地质缺陷 ; 工程应用    

外文关键词:

 shallow coal seam ; mining near water bodies ; mining-induced fractures ; water-resisting coal and rock mass ; geological defects ; engineering applications    

摘要:

浅埋煤层工作面开采形成的采动裂隙可直接贯通至地表,很容易沟通地表水体,造成工作面突水溃砂,严重威胁矿井安全生产,同时,还可能导致地表水资源损失和区域生态环境恶化等一系列问题。近水体工作面突水机理及防治技术研究是解决浅埋煤层矿区水资源保护与煤炭安全开采之间矛盾的关键。本文以水体周边工作面隔水煤岩体为研究对象,综合运用理论分析、现场实测和工程应用验证相结合的研究方法,针对工作面侧向采动裂隙边界预测、积水边界探查和合理隔水煤岩体宽度确定等科学问题和技术难题展开研究。主要研究内容和研究成果如下:

(1)分析了水体周边浅埋煤层工作面突水的基本形式,结果表明,近水体浅埋煤层开采诱发工作面突水主要有采动裂隙沟通水体、水压作用下隔水煤岩体破坏失稳和隔水煤岩体中地质缺陷导水三种形式;以水体与工作面沟通形式为分类标准,将近水体浅埋煤层工作面突水分为采动裂隙型、隔水煤岩体失稳型和地质缺陷型三大类;提出预测采动裂隙发育边界、查明积水边界、确定合理隔水煤岩体宽度以及分析地质缺陷导水特征是研究工作面突水机理的关键科学和技术问题。

(2)根据覆岩采动裂隙及渗透性演化规律,将浅埋煤层工作面覆岩采动裂隙场分为煤壁极限平衡区(区域1)、基岩垮落裂隙区(区域2)、基岩变形裂隙区(区域3)、基岩破断裂隙区(区域4)、松散层裂隙发育区(区域5)和松散层裂隙闭合区(区域6)共6个区。提出浅埋煤层工作面覆岩侧向采动裂隙边界是区域1、区域3和区域5的外边界,并以此为依据,确定了近水体浅埋煤层隔水煤岩体靠工作面侧的边界。

(3)分别建立了开采扰动作用下侧向煤层极限屈服宽度计算模型、基岩破坏模型和松散层拉裂滑移模型;推导了工作面侧向煤层、开采侧基岩层、停采侧基岩层和松散层采动裂隙场侧向发育宽度的理论计算公式;提出了浅埋煤层工作面覆岩采动裂隙场空间形态的定量表征方法,分析了覆岩采动裂隙场空间形态发育特征。结果表明,浅埋煤层工作面覆岩采动裂隙场是以采场为中心,向上逐层扩散,最终在地表开放的漏斗形,侧向边界在煤层为极限平衡区外边界,基岩层为超前拉裂隙边界,松散层为“拉裂-剪切”破坏边界。

(4)针对浅埋煤层矿区常见的积水火烧区、积水小窑采空区等地下不规则水体边界确定难度大,现有勘探方法存在探查盲区的问题,提出在物探和垂直钻探基础上,采用定向长钻孔对地下积水边界进行连续探查,形成了一套基于物探、垂直钻探和定向钻探的地下不规则积水区综合勘探方法,有效提高了对地下积水区边界的控制精度,并以此为依据,确定了近水体浅埋煤层工作面隔水煤岩体靠水体侧的边界。

(5)在准确划定工作面侧向采动裂隙发育边界和水体侧积水边界的基础上,结合近水体浅埋煤层隔水煤岩体受力特征,建立了隔水煤岩体力学分析模型;先将隔水煤岩体视为刚体,进行了局部和整体抗滑移和抗倾覆失稳验算,再将隔水煤岩体视为岩土体,进行了强度验算,以不发生滑移、倾覆以及强度破坏为前提,推导了隔水煤岩体临界宽度表达式。

(6)分析了隔水煤岩体中断层、烧变岩和基岩风化带导水机理;建立了考虑地质缺陷的隔水煤岩体力学模型,推导了隔水煤岩体中存在断层、烧变岩和基岩风化带条件下临界宽度表达式;提出了注浆帷幕和定向钻分段前进式注浆等有针对性的水害防治方法。

(7)研究成果在张家峁煤矿和霍洛湾煤矿近水体浅埋煤层工作面防治水中进行了应用,计算了工作面采动裂隙场侧向发育边界、探查了边界煤柱完整性、确定了合理隔水煤岩体宽度,提出了针对性的侧向水害防治技术,并通过现场实测对理论分析成果进行了验证。

外文摘要:

The mining induced fractures formed by shallow coal seam mining can directly penetrate to the surface, making it easy to communicate with surface water bodies, causing water inrush and sand collapse at the working face, seriously threatening mine safety production. At the same time, it may also lead to a series of problems such as loss of surface water resources and deterioration of regional ecological environment. The research on the mechanism and prevention technology of water inrush in the near water working face is the key to solving the contradiction between water resource protection and coal safety mining in shallow coal seam mining areas. This thesis takes the water-resistant coal rock mass around the water body as the research object, and comprehensively applies a research method combining theoretical analysis, on-site measurement, and engineering application verification to study scientific and technical problems such as predicting the lateral mining fracture boundary of the working face, exploring the water accumulation boundary, and determining the reasonable width of the water-resistant coal rock mass. The main research results are as follows:

(1) The basic forms of water inrush in shallow coal seam working faces around water bodies were analyzed, and the results showed that the water inrush induced by shallow coal seam mining near water bodies mainly includes three forms: mining induced fractures communicating with water bodies, damage and instability of water resistant coal rock masses under water pressure, and geological defects conducting water in water resistant coal rock masses; Based on the communication form between water bodies and working faces, the water inrush in shallow coal seam working faces near water bodies is classified into three categories: mining induced fracture type, water resistant coal rock mass instability type, and geological defect type; The key scientific and technical issues in studying the mechanism of water inrush in working faces include predicting the development boundary of mining induced fractures, identifying the boundary of water accumulation, determining the reasonable width of water blocking coal rock mass, and analyzing the water conducting characteristics of geological defects.

(2) According to the evolution law of overlying rock mining fractures and permeability, the overlying rock mining fracture field of shallow coal seam working face is divided into six zones: coal wall limit equilibrium zone (Zone 1), bedrock collapse fracture zone (Zone 2), bedrock deformation fracture zone (Zone 3), bedrock fracture fracture zone (Zone 4), loose layer fracture development zone (Zone 5), and loose layer fracture closure zone (Zone 6). It is proposed that the lateral mining fracture boundary of the overlying rock in the shallow coal seam working face is the outer boundary of regions 1, 3, and 5, and based on this, the boundary of the water resistant coal rock mass in the shallow coal seam near the working face is determined.

(3) We have established models for calculating the ultimate yield width of the lateral coal seam for mining disturbance, models for bedrock failure, and models for loose layer tension and slip; The theoretical calculation formulas for the lateral development width of mining induced fractures in the lateral coal seam of the working face, the mining side bedrock, the stopping mining side bedrock, and the loose layer were derived; A quantitative characterization method for the spatial morphology of the overlying rock mining induced fracture field in shallow coal seam working faces was proposed, and the development characteristics of the spatial morphology of the overlying rock mining induced fracture field were analyzed. The results show that the mining induced fracture field in the overlying strata of shallow coal seam working face is a funnel-shaped shape centered on the mining area, spreading layer by layer upwards, and finally opening on the surface. The lateral boundary is the outer boundary of the limit equilibrium zone in the coal seam, the bedrock layer is the advanced tensile fracture boundary, and the loose layer is the "tensile shear" failure boundary.

(4) In response to the difficulty in determining the boundaries of underground irregular water bodies such as waterlogging and burning areas, as well as waterlogging and small kiln goaf areas commonly found in shallow coal seam mining areas, existing exploration methods have the problem of blind spots in exploration. Based on geophysical exploration and vertical drilling, it is proposed to use directional long boreholes to continuously explore the boundaries of underground irregular water bodies, forming a comprehensive exploration method for underground irregular water bodies based on geophysical exploration, vertical drilling, and directional drilling. This effectively improves the control accuracy of the boundaries of underground water bodies, and based on this, the boundary of the water resistant coal rock mass near the water body side of the shallow coal seam working face near the water body is determined.

(5) On the basis of accurately defining the development boundary of lateral mining fractures in the working face and the boundary of water accumulation on the water body side, combined with the stress characteristics of the water resistant coal rock mass in shallow buried coal seams near the water body, a mechanical analysis model of the water resistant coal rock mass was established; Firstly, the water-resistant coal rock mass was regarded as a rigid body, and local and overall anti slip and anti overturning instability calculations were carried out. Then, the water-resistant coal rock mass was regarded as a rock and soil mass, and strength calculations were conducted. Based on the premise of no slip, overturning, and strength failure, the critical width expression of the water-resistant coal rock mass was derived.

(6) Analyzed the water conducting mechanism of the fractured layer, burnt rock, and bedrock weathering zone in the water resistant coal rock mass; A mechanical model of water resistant coal rock mass considering geological defects was established, and the expression for the critical width under the conditions of faults, burnt rocks, and bedrock weathering zones in the water resistant coal rock mass was derived; Targeted water hazard prevention and control methods such as grouting curtain and directional drilling segmented forward grouting have been proposed.

(7) The research results have been applied in the water prevention and control of shallow buried coal seams near the water body in Zhangjiamao Coal Mine and Huoluowan Coal Mine. The lateral development boundary of the mining induced fracture field in the working face has been calculated, the integrity of the boundary coal pillar has been explored, the reasonable width of the water-resistant coal rock mass has been determined, and targeted lateral water hazard prevention and control technologies have been proposed. The theoretical analysis results have been verified through on-site measurement.

参考文献:

[1]发挥煤炭兜底保障作用 夯实能源安全根基——政府工作报告中与煤炭相关内容[J].中国煤炭工业,2024(04):6-7.

[2]谢和平,刘虹,吴刚.经济对煤炭的依赖与煤炭对经济的贡献分析[J].中国矿业大学学报(社会科学版),2012,14(03):1-6.

[3]武强.我国矿井水防控与资源化利用的研究进展、问题和展望[J].煤炭学报,2014,39(05):795-805.

[4]董书宁,王皓,周振方.我国煤矿水害防治工作现状及发展趋势[J].劳动保护,2020(08):58-60.

[5]虎维岳,田干.我国煤矿水害类型及其防治对策[J].煤炭科学技术,2010,38(01):92-96.

[6]袁亮,姜耀东,王凯,等.我国关闭/废弃矿井资源精准开发利用的科学思考[J].煤炭学报,2018,43(01):14-20.

[7]范立民.生态脆弱区烧变岩研究现状及方向[J].西北地质,2010,43(03):57-65.

[8]侯恩科,车晓阳,冯洁,等.榆神府矿区含水层富水特征及保水采煤途径[J].煤炭学报,2019,44(03):813-820.

[9]范立民,仵拨云,向茂西,等.我国西部保水采煤区受保护烧变岩含水层研究[J].煤炭科学技术,2016,44(08):1-6.

[10]范立民.神府煤田烧变岩区地下水资源概况及开发建议[J].中国地质,1996,(04):20-3.

[11]范立民.神府矿区活鸡兔井田烧变岩地下水资源初步评价[J].陕西煤炭技术,1996,(01):14-16.

[12] Karmis M, Triplett T, Haycocks C, et al. Mining Subsidence And Its Prediction In The Appalachian Coalfield[J]. u. s. symposium on rock mechanics, 1983.

[13] Hasenfus G J, Johnson K L, Su D W H. A hydrogeomechanical study of overburden aquifer response to longwall mining[C]//Proceedings of 7th international conference on gro und control in mining, Morgantown, WV.1988.

[14] Bai M, Elsworth D. Some aspects of mining under aquifers in China.Mining Sci[J]. Tech. 1990, 10(1): 81-91.

[15] Palchik V. Influence of physical characteristics of weak rock mass on height of caved zone over abandoned subsurface coal mines[J]. Environmental Geology, 2002, 42(1): 92-101.

[16] L Holla L, Buizen M. Stata movement due to shallow longwall mining and the effect on ground permeability[J]. Aus IMM Bullefin and Proceeding, 1990, 295(5).

[17] Valko P, Economides M J. Propagation of hydraulically induced fractures-a continuum

damage mechanics approach[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 31(3): 221-229.

[18]Holla L, Buizen M .Strata movement due to shallow longwall mining and the effect on ground permeability[J]. 1990.

[19] Singh R P, Yadav R N .Subsidence due to coal mining in India[J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1996, 33(7):A331.

[20] Singh R, Singh T N, Dhar B B .Coal pillar loading in shallow mining conditions[J]. 1996, 33(8):757-768.

[21] Luo Y. An improved influence function method for predicting subsidence caused by longwall mining operations in inclined coal seams[J]. International Journal of Coal Science & Technology,2015,2(3):163-169.

[22]秦巴列维奇.矿井支护[M].北京:煤炭工业出版社,1953.

[23]侯忠杰,石建新,金立斋.神府浅埋深煤层工作面矿山压力分析[J].陕西煤炭技术,1992,(02):29-32.

[24]石平五,侯忠杰.神府浅埋煤层顶板破断运动规律[J].西安矿业学院学报,1996,(03):7+9-11+19.

[25]柴敬.浅埋煤层开采的大比例立体模拟研究[J].煤炭学报,1998(04):57-61.

[26] QIAN Minggao. A study of the behaviour of overlying strata in longwall mining and its application to strata control[C]//Proceedings of the Symposium on Strata Mechanics, Elsevier Scientific Publishing Company, 1982: 13-17.

[27]钱鸣高,许家林,王家臣,等.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2021.

[28]钱鸣高,许家林.岩采动裂隙分布的“O”形圈特征研究[J].煤炭学报,1998,10(5):20-23.

[29]黄庆享.浅埋煤层的矿压特征与浅埋煤层定义[J].岩石力学与工程学报,2002(08):1174-1177.

[30]黄庆享.浅埋煤层长壁开采顶板结构及岩层控制研究[M].徐州:中国矿业大学出版社,2000.

[31]黄庆享.厚沙土层下采场顶板关键层上的载荷分布[J].中国矿业大学学报,2005(03):289-293.

[32]黄庆享.浅埋采场初次来压顶板砂土层载荷传递研究[J].岩土力学,2005(06):881-883.

[33]余学义,黄森林.浅埋煤层覆岩切落裂缝破坏及控制方法分析[J].煤田地质与勘探,2006,(02):18-21.

[34]宋振骐,王崇革.浅埋煤层开采三维相似材料模拟实验研究.岩石力学与工程学报,2004,7:23(增2):4926-4929.

[35]许家林,钱鸣高,金宏伟.岩层移动离层演化规律及其应用研究[J].岩土工程学报,2004,(05):632-636.

[36]朱卫兵,许家林,赖文奇,等.覆岩离层分区隔离注浆充填减沉技术的理论研究[J].煤炭学报,2007,(05):458-462.

[37]黄炳香,刘长友,许家林.采动覆岩破断裂隙的贯通度研究[J].中国矿业大学学报,2010,39(01):45-49.

[38]宋颜金,程国强,郭惟嘉.采动覆岩裂隙分布及其空隙率特征[J].岩土力学,2011,32(02):533-536.

[39]黄庆享,祈万涛,杨春林.采场老顶初次破断机理与破断形态分析[J].西安矿业学院学报,1999,(03):193-197.

[40]黄庆享.浅埋煤层长壁开采顶板结构及岩层控制研究[M].徐州:中国矿业大学出版社,2000.

[41]顾伟,谭志祥,邓喀中.基于双重介质力学耦合相关的沉陷模型研究[J].采矿与安全工程学报,2013,(04):589-594.

[42]左建平,孙运江,文金浩,等.岩层移动理论与力学模型及其展望[J].煤炭科学技术,2018,(01):1-11+87.

[43]左建平,孙运江,王金涛,等.充分采动覆岩“类双曲线”破坏移动机理及模拟分析[J].采矿与安全工程学报,2018,(01):71-77.

[44] SUN Yunjiang, ZUO Jianping, KARAKUS Murat, et al. A novel method for predicting movement and damage of overburden caused by shallow coal mining[J]. Rock Mechanics and Rock Engineering, 2020(53):1545-1563.

[45] SUN Yunjiang, ZUO Jianping, KARAKUS Murat, et al. Investigation of movement and damage of integral overburden during shallow coal seam mining[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 117:63-75.

[46]左建平,李颖,李宏杰,等.采动岩层全空间“类双曲面”立体移动模型[J].矿业科学学报,2023,8(01):1-14.

[47] Meng ZP, Shi XC, Li GQ. Deformation, failure and permeability of coal-bearing strata during longwall mining[J]. Engineering Geology. 2016, 208: 69-80.

[48]范钢伟,张东升,马立强.神东矿区浅埋煤层开采覆岩移动与裂隙分布特征[J].中国矿业大学学报,2011,40(02):196-201.

[49] Gao FQ, Doug S, Kang HP. Simulation of roof shear failure in coal mine roadways using an innovative UDEC Trigon approach[J]. Computer and Geotechnics. 2014, 61: 33-41.

[50] Kang HP, Lou JF, Gao FQ, Yang JH, Li JZ. A physical and numerical investigation of sudden massive roof collapse during longwall coal retreat mining[J]. International Journal of Coal Geology. 2018, 188: 25-26.

[51]史博文,白建平,郝春生,等.采动覆岩裂隙动态演化规律的三维模拟[J].煤矿安全,2019,50(07):259-262.

[52]吴群英,郭重威,翟鸿良,等.重复采动覆岩裂隙率空间分布相似模拟研究——以陕北矿区为例[J].煤炭科学技术,2022,50(01):105-111.

[53]王婉洁,高富强.工作面覆岩采动裂隙演化规律物理及数值模拟研究[J].采矿与岩层控制工程学报,2023,5(02):17-26.

[54]杨泽斌,李浩,马立强,等.河下浅埋厚煤层采动覆岩裂隙-涌水量时空演化的FDEM-CFD耦合分析[J].煤炭科学技术,2024,4(05):1-11.

[55]张玉军,张华兴,陈佩佩.覆岩及采动岩体裂隙场分布特征的可视化探测[J].煤炭学报,2008(11):1216-1219.

[56]张玉军,李凤明.高强度综放开采采动覆岩破坏高度及裂隙发育演化监测分析[J].岩石力学与工程学报,2011,30(S1):2994-3001.

[57]李凤琴,郭兵兵.基于微地震监测的导水裂隙带三维空间分布[J].煤,2010,19(09):61-62.

[58]高明忠,金文城,郑长江等.采动裂隙网络实时演化及连通性特征[J].煤炭学报,2012,37(09):1535-1540.

[59]李江华,王东昊,黎灵,等.不同覆岩类型高强度采动裂隙发育特征对比研究[J].煤炭科学技术,2021,49(10):9-15.

[60]李树刚.综放开采围岩活动及瓦斯运移[M].徐州:中国矿业大学出版社,2000.

[61]涂敏,刘泽功.煤体采动顶板裂隙发育研究与应用[J].煤炭科学技术,2002,30(7):54–56.

[62]齐庆新,李宏艳,刘洪永,等.采动应力裂隙场时空演化与瓦斯流动场耦合效应[M] .徐州:中国煤炭出版社,2003.

[63]袁亮,郭华,沈宝堂等.低透气性煤层群煤与瓦斯共采中的高位环形裂隙体[J].煤炭学报,2011,36(03):357-365.

[64]尹光志,李星,韩佩博,等.三维采动应力条件下覆岩裂隙演化规律试验研究[J].煤炭学报,2016,41(02):406-413.

[65]胡国忠,李康,许家林,等.覆岩采动裂隙空间形态反演方法及在瓦斯抽采中的应用[J].煤炭学报,2023,48(02):750-762.

[66]范立民,寇贵德,蒋泽泉,等.浅埋煤层开采过程中地下水流场变化规律[J].陕西煤炭,2003(01):26-28.

[67]孙亚军,徐智敏,董青红.小浪底水库下采煤导水裂隙发育监测与模拟研究[J].岩石力学与工程学报,2009,28(02):238-245.

[68]黄庆享,蔚保宁,张文忠.浅埋煤层黏土隔水层下行裂隙弥合研究[J].采矿与安全工程学报,2010,27(01):35-39.

[69]许家林,朱卫兵,王晓振.基于关键层位置的导水裂隙带高度预计方法[J].煤炭学报,2012,37(05):762-769.

[70]曹志国,鞠金峰,许家林.采动覆岩导水裂隙主通道分布模型及其水流动特性[J].煤炭学报,2019,44(12):3719-3728.

[71]王双明,魏江波,宋世杰,等.黄河流域陕北煤炭开采区厚砂岩对覆岩采动裂隙发育的影响及采煤保水建议[J].煤田地质与勘探,2022,50(12):1-11.

[72]张村,任赵鹏,韩鹏华,等.西部矿区厚基岩特大采高工作面导水裂隙带发育特征[J]. 矿业科学学报,2022,7(03):333-343.

[73]郭小铭,刘英锋,谷占兴.彬长矿区煤层开采导水裂隙带高度探测及计算[J]. 采矿与岩层控制工程学报,2023,5(05):91-100.

[74]鞠金峰,马祥,赵富强,等.东胜煤田导水裂隙发育及其分区特征研究[J].煤炭科学技术,2022,50(02):202-212.

[75]来兴平,张旭东,单鹏飞,等.厚松散层下三软煤层开采覆岩导水裂隙发育规律[J]. 岩石力学与工程学报,2021,40(09):1739-1750.

[76]岳宁,李申龙,王怀顺,等.侏罗系特厚煤层综放开采顶板导水裂隙带发育特征研究[J]. 煤炭工程,2023,55(01):59-64.

[77]李怀展,孙兢超,郭广礼,等.巨厚弱胶结覆岩导水裂隙带演化特征及发育高度预测方法[J]. 煤炭科学技术:1-13.

[78]蔚保宁,黄庆享.浅埋煤层综采面覆岩破坏规律的钻探实测研究[J].西安科技大学学报,2022,42(01):33-39.

[79]刘国建,杨富强,高学丰,等.浅埋薄基岩采场覆岩破断特征及其导水裂隙带发育规律研究[J].煤炭工程,2023,55(08):108-113.

[80]魏世荣,赵延林,戚春前,等.多煤层开采导水裂隙带发育与覆岩破坏高度规律[J].湖南科技大学学报(自然科学版),2022,37(02):18-26.

[81]李星亮,黄庆享.水体下特厚煤层综放开采导水裂隙带高度发育特征研究[J].采矿与安全工程学报,2022,39(01):54-61.

[82]李博,吴煌,李腾.基于加权的综采导水裂隙带高度多元非线性回归预测方法研究[J].采矿与安全工程学报,2022,39(03):536-545.

[83] Feng D, Hou E, Wang S, et al. Research on 3D Development Characteristics of Water Conducting Fractured Zone Based on Field Measurement[J]. Frontiers in Earth Science, 2022, 10: 808931.

[84] Gao X, Liu S, Ma T, et al. A Prediction Method for Height of Water Flowing Fractured Zone Based on Sparrow Search Algorithm–Elman Neural Network in Northwest Mining Area[J]. Applied Sciences, 2023, 13(2): 1162.

[85] Yang Z, Mine M. Study on height development of water-conduction fissure zone in shallow coal seam in mountainous area[J]. Coal Mine Modernization, 2019(04): 154-156+160.

[86] Mingjiao L, Xueyang S, Yuanjie X, et al. The development mining-induced surface cracks in shallow coal seam through double-gully terrain: a case study in a coal mine[J]. Bulletin of Engineering Geology and the Environment, 2022, 81(9).

[87] He J, Li W, Fan K, et al. A method for predicting the water-flowing fractured zone height based on an improved key stratum theory[J]. International Journal of Mining Science and Technology, 2023, 33(1): 61-71.

[88]梁润所,张立平,张金泉.阳泉三矿K8101回采工作面突水机理浅析[J].煤炭技术,2002(11):30-32.

[89]徐光,许家林,吕维赟,等.采空区顶板导水裂隙侧向边界预测及应用研究[J].岩土工程学报,2010,32(05):724-730.

[90]余伊河,马立强,张东升,等.长壁工作面采动覆岩层理开裂机理及侧向裂隙发育规律[J].煤炭学报,2023,48(S2):527-541.

[91] Yihe Yu, Liqiang Ma, Dongsheng Zhang. Characteristics of Roof Ground Subsidence While Applying a Continuous Excavation Continuous Backfill Method in Longwall Mining[J]. Energies, 2020, 13: 95.

[92] Yujun Xu, Liqiang Ma, Yihe Yu. Water Preservation and Conservation Above Coal Mines Using an Innovative Approach: A Case Study[J]. Energies, 2020, 13(11): 2818.

[93]石守桥,吴复柱,边凯.弱胶结覆岩导水裂隙带高度预测及三维空间发育特征[J].采矿与安全工程学报,2022,39(06):1154-1160.

[94]张金才,王建学.岩体应力与渗流的耦合及其工程应用[J].岩石力学与工程学报,2006(10):1981-1989.

[95]白国良.基于FLAC3D的采动岩体等效连续介质流固耦合模型及应用[J].采矿与安全工程学报,2010,27(01):106-110.

[96]李涛,李文平,常金源,等.陕北浅埋煤层开采隔水土层渗透性变化特征[J].采矿与安全工程学报,2011,28(01):127-131+137.

[97]牛多龙,杨科,华心祝,等.采动岩体应变-渗流耦合效应与致灾机理分析[J].安徽理工大学学报(自然科学版),2013,33(03):45-51.

[98]徐智敏,孙亚军,高尚,等.干旱矿区采动顶板导水裂隙的演化规律及保水采煤意义[J].煤炭学报,2019,44(03):767-776.

[99]徐智敏,孙亚军,董青红,等.隔水层采动破坏裂隙的闭合机理研究及工程应用[J].采矿与安全工程学报,2012,29(05):613-618.

[100]谢和平,张泽天,高峰,等.不同开采方式下煤岩应力场-裂隙场-渗流场行为研究[J].煤炭学报,2016,41(10):2405-2417.

[101]薛熠.采动影响下损伤破裂煤岩体渗透性演化规律研究[D].徐州:中国矿业大学,2017.

[102]张东明,齐消寒,宋润权,等.采动裂隙煤岩体应力与瓦斯流动的耦合机理[J].煤炭学报,2015,40(04):774-780.

[103]孟召平,张娟,师修昌,等.煤矿采空区岩体渗透性计算模型及其数值模拟分析[J].煤炭学报,2016,41(08):1997-2005.

[104]谢和平,高峰,周宏伟,等.煤与瓦斯共采中煤层增透率理论与模型研究[J].煤炭学报,2013,38(07):1101-1108.

[105]程香港,乔伟,李路,等.煤层覆岩采动裂隙应力-渗流耦合模型及涌水量预测[J].煤炭学报,2020,45(08):2890-2900.

[106]张礼,齐庆新,张勇,等.采动覆岩裂隙场三维形态特征及其渗透特性研究[J].采矿与安全工程学报,2021,38(04):695-705.

[107]赵永,杨天鸿,王述红,等.基于微震反演裂隙的采动岩体损伤分析方法及其工程应用[J].岩土工程学报,2022,44(02):305-314.

[108]花育才,孟红星,孙耀峰.磁法和瞬变电磁法探测煤层火烧区边界及富水性[J].中国煤炭地质,2012,24(08):80-84.

[109]靳玉强,杨建飞,王迎,等.煤层火烧区边界“两探”措施的探索及应用[J].煤炭科学技术,2020,48(S2):24-28.

[110]闫顺尚,王玲,董方营,等.基于电-磁法联合勘探的火烧区范围及富水性的预测[J].煤田地质与勘探,2022,50(02):132-139.

[111]苗彦平,杨磊,党冰,等.基于NEMV技术对红柳林煤矿煤层火烧边界的确定[J].陕西煤炭,2023,42(06):131-135.

[112]马国庆,马生玮,李丽丽,等.磁异常及其磁梯度数据自结构约束反演方法及在煤田火烧区勘查的应用[J].地球物理学进展,2024,39(03):1-17.

[113]杜仲华,陈朋磊.槽波在采空区边界探测的数值模拟研究[J].中州煤炭,2016,(12):172-175.

[114]韦乖强,赵慧.矿井瞬变电磁法在老窑采空区边界探测中的应用[J].中国煤炭地质,2021,33(05):72-75.

[115]李东林,赵慧.物探-钻探协同超前探测采空区边界的应用研究[J].山东煤炭科技,2023,41(05):161-163+166.

[116]王安,符超,李果,等.地震属性定位采空区边界的对比研究[J].煤炭技术,2023,42(10):31-35.

[117]李子豪.长距离定向钻探技术在探查小煤矿边界及老空水中的应用[J].煤炭工程,2015,47(05):36-38.

[118]张立辉,李伟,范文胜.补连塔煤矿隐蔽致灾因素定向钻孔探查及防治技术[J].煤炭科学技术,2018,46(04):46-51+57.

[119]刘银波.地面定向分支孔探查小煤矿采空区技术研究与应用[J].煤炭与化工,2018,41(12):55-58.

[120]田干,南生辉,林旭东,等.基于定向水平钻陷落柱综合探查与阻水塞立体建造技术[J].煤田地质与勘探,2021,49(02):168-175.

[121]田干.大型导水陷落柱发育特征综合探查技术研究[J].煤炭工程,2021,53(06):63-67.

[122]方俊.基于井下定向钻孔的矿井地质异常体探查方法与应用[J].煤田地质与勘探,2021,49(04):269-277.

[123]杨春林,武书泉.老采空区积水立体综合集成探放水技术[J].煤矿开采,2010,15(02):90-94.

[124]张瑞娅,肖武,史亚立,等.考虑原始地形的采煤沉陷积水范围确定方法[J].中国矿业,2016,25(06):143-147.

[125]石瑜,刘文明.三维地震勘探技术在小窑采空区探测中的应用[J].工程地球物理学报,2018,15(05):573-579.

[126] Chen Pei-Pei, Liu Hong-Quan, Zhang Gang-Yan. Determination of waterproof rock pillar height with the top coal caving under sea[J]. Journal of the China Coal Society, 2009, 34(7): 875-880.

[127] Peng Wen-Qing, Wang Wei-Jun, Li Qing-Feng. Reasonable width of waterproof coal

pillar under the condition of different fault dip angles[J]. Journal of Mining and Safety Engineering, 2009, 26(2): 179-186.

[128] T Rangasamy. A R Leach. JJ van Vuuren. Current practice and guidelines for the safe design of water barrier pillars[M]. Safe in Mines Research Advisory. Committee COL702, August 2001.

[129]王旭春, 黄福昌, 张怀新. A·H·威尔逊煤柱设计公式探讨及改进[J]. 煤炭学报, 2002, 27(6): 604-608.

[130]煤炭工业部基本建设司组织编译.国际采矿和地下工程治水会议论文集[M]. 北京:

煤炭工业出版社, 1983, 173-188.

[131] WEI G. Study on the width of the non-elastic zone in inclined coal pillar for strip mining [J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 72: 304-310.

[132]师维刚,张嘉凡,张慧梅,等.防水隔离煤柱结构分区及合理宽度确定[J].岩石力学与工程学报,2017,(05):1227-1237.

[133]张村,韩鹏华,王方田,等.采动水浸作用下矿井地下水库残留煤柱稳定性[J].中国矿业大学学报,2021,50(2):220-227+247.

[134] Yao Q, Tang C, Xia Z, et al. Mechanisms of failure in coal samples from underground water reservoir[J]. Engineering Geology, 2020, 267: 105494.

[135]王方田,梁宁宁,李岗,等.复杂应力环境煤柱坝体损伤破坏规律研究[J].采矿与安全工程学报,2019,36(6):1145-1152.

[136]方志远,鞠金峰,曹志国,等.基于正交异性板模型的煤矿地下水库人工坝体结构优化[J].煤炭学报,2020,45(4):1375-1384.

[137]陈苏社.神东矿区井下采空区水库水资源循环利用关键技术研究[D].西安:西安科技大学,2016.

[138]陈宁.动静载作用下地下水库煤柱坝体损伤特征研究[D].徐州:中国矿业大学,2020.

[139] Perera M S A, Ranjith P G, Peter M. Effects of saturation medium and pressure on strength parameters of Latrobe Valley brown coal: Carbon dioxide, water and nitrogen saturations[J]. Energy, 2011, 36(12): 6941-6947.

[140] Zdemir E, Sarici D E. Combined Effect of Loading Rate and Water Content on Mechanical Behavior of Natural Stones[J]. Journal of Mining Science, 2018, 54(6):931-937. [141] Eunhye K, Michael A S, Davi B M D O, et al. Correlations between the physical and mechanical properties of sandstones with changes of water content and loading rates[J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 100:255-262.

[142] Das A J, Mandal P K, Paul P S, et al. Generalised Analytical Models for the Strength of the Inclined as well as the Flat Coal Pillars using Rock Mass Failure Criterion[J]. Rock Mechanics and Rock Engineering, 2019,52(10):3921-3946.

[143]煤炭工业部.矿井水文地质规程(试行)[M].北京:煤炭工业出版社,1984.

[144]杨志斌.斯列萨列夫公式在矿井水害防治中的应用分析[J].煤矿安全,2016,47(09):190-193.

[145]刘斌.大倾角特厚煤层防水隔离煤柱留设探讨[J].煤炭工程师,1998,5:37-39.

[146]刘长武,丁开旭.论井下隔水煤柱承压破坏的临界尺寸[J].煤炭学报,2001,26(6):632-636.

[147]刘洋,柴学周,李竞生.相邻工作面防水煤岩柱优化研究[J].煤炭学报,2009,34(02):239-242.

[148]王睿,孟召平,谢晓彤,等.巨厚松散层下防水煤柱合理留设及其数值模拟[J].煤田地质与勘探,2011,39(01):31-35.

[149]孟召平,高延法,卢爱红,等.第四系松散含水层下煤层开采突水危险性及防水煤柱确定方法[J].采矿与安全工程学报,2013,30(01):23-29.

[150] Liu S F, Wan Z J, Zhang Y, et al. Research on evaluation and control technology of coal pillar stability based on the fracture digitization method[J]. Measurement, 2020,158.

[151]何团,毛德兵,黄志增,等.特厚煤层区段防水煤柱稳定性评价及保护技术研究[J].岩土力学,2017,38(04):1148-1153.

[152]黎良杰,钱鸣高,李树刚.断层突水机理分析[J].煤炭学报,1996(02):119-123.

[153]师本强,侯忠杰.覆岩中断层活化突水的力学分析及其应用[J].岩土力学,2011,32(10):3053-3057.

[154]LIANCHONG L, TIANHONG Y, ZHENGZHAO L, et al. Numerical investigation of groundwater outbursts near faults in underground coal mines[J]. International Journal of Coal Geology, 2011, 85(3): 276-288.

[155]蒋金泉,武泉林,曲华.硬厚岩层下逆断层采动应力演化与断层活化特征[J].煤炭学报,2015,40(02):267-277.

[156]朱广安,窦林名,刘阳,等.采动影响下断层滑移失稳的动力学分析及数值模拟[J].中国矿业大学学报,2016,45(01):27-33.

[157]DU Y, LIU W, MENG X, et al. Effect of Crack Propagation on Mining-Induced Delayer Water Inrush Hazard of Hidden Fault[J]. Geofluids, 2021, 2021: 6557578.

[158]施龙青,曲有刚,徐望国.采场底板断层突水判别方法[J].矿山压力与顶板管理,2000(02):49-51+89.

[159]卜万奎,茅献彪.断层倾角对断层活化及底板突水的影响研究[J].岩石力学与工程学报,2009,28(02):386-394.

[160]李青锋,王卫军,朱川曲,等.基于隔水关键层原理的断层突水机理分析[J].采矿与安全工程学报,2009,26(01):87-90.

[161]李利平,李术才,石少帅,等.基于应力-渗流-损伤耦合效应的断层活化突水机制研究[J].岩石力学与工程学报,2011,30(S1):3295-3304.

[162]陈忠辉,胡正平,李辉,等.煤矿隐伏断层突水的断裂力学模型及力学判据[J].中国矿业大学学报,2011,40(05):673-677.

[163]冯本超,洪允和.正断层上盘防水煤柱合理宽度的研究[J].中国矿业大学学报,1993(03):120-125.

[164]白峰青,姜兴阁,蒋勤明.断层防水煤柱设计的可靠度方法[J].辽宁工程技术大学学报(自然科学版),2000(04):356-359.

[165]施龙青,韩进,刘同彬,等.采场底板断层防水煤柱留设研究[J].岩石力学与工程学报,2005(S2):5585-5590.

[166]卢兴利,尤春安,孙锋,等.断层保护煤柱合理留设的数值模拟分析[J].岩土力学,2006,27(S1):239-242.

[167]彭文庆,王卫军,李青锋.不同断层倾角条件下防水煤柱合理宽度的研究[J].采矿与安全工程学报,2009,26(02):179-182+186.

[168]刘洋,伍永平,王永胜.断层上盘防水煤柱合理宽度研究[J].西安科技大学学报,2010,30(05):523-530.

[169]董永,孟祥瑞,高召宁.断层影响下防水煤柱留设合理宽度研究[J].煤炭科学技术,2014,42(S1):241-243.

[170]代进,蒋金泉.上下盘开采顺序对断层煤柱采动应力的影响[J].采矿与安全工程学报,2016,33(01):35-41.

[171]牛建国.神府矿区活鸡兔矿井烧变岩水文地质特征[J].煤田地质与勘探,2001(01):37-39.

[172]范立民.陕北地区采煤造成的地下水渗漏及其防治对策分析[J].矿业安全与环保,2007(05):62-64.

[173]杜中宁,党学亚,卢娜.陕北能源化工基地烧变岩的分布特征及水文地质意义[J].地质通报,2008(08):1168-1172.

[174]韩冬梅,曹国亮,宋献方.新疆大南湖煤田烧变岩水文地质参数研究[J].工程勘察,2015,43(11):32-38.

[175]侯恩科,童仁剑,冯洁,等.烧变岩富水特征与采动水量损失预计[J].煤炭学报,2017,42(01):175-182.

[176]贺卫中.神府矿区活鸡兔矿井烧变岩水害防治工程研究[J].中国煤田地质,2002(02):44-45.

[177]王宏科,白有社.注浆技术在治理烧变岩区煤层涌水中的应用[J].中国煤炭地质,2009,21(08):39-41+76.

[178]谷拴成,苏培莉,王建文,等.烧变岩体特性及其注浆扩散行为研究[J].岩土力学,2009,30(S2):60-63.

[179]花育才,孟红星,孙耀峰.磁法和瞬变电磁法探测煤层火烧区边界及富水性[J].中国煤炭地质,2012,24(08):80-84.

[180]汝亮,钟伟杰,朱裕振,等.利用瞬变电磁技术评价火烧区烧变岩的富水性[J].华北地震科学,2013,31(04):37-40.

[181]张刚艳.磁法和瞬变电磁法探测煤矿充水火烧区[J].煤矿开采,2015,20(04):23-24+110.

[182]张春锋,付钟,张德孝,等.将军戈壁二号露天煤矿采场北帮烧变岩水治理方案[J].露天采矿技术,2016,31(05):4-7.

[183]董书宁,杨志斌,姬中奎,等.神府矿区大型水库旁烧变岩水保水开采技术研究[J].煤炭学报,2019,44(03):709-717.

[184]侯恩科,樊江伟,高利军,等.地面核磁共振技术在隐伏火烧区富水性探测中的应用[J].煤田地质与勘探,2021,49(05):230-237.

[185]李文平,叶贵钧,张莱,等.陕北榆神府矿区保水采煤工程地质条件研究[J].煤炭学报,2000(05):449-454.

[186]叶贵钧,张莱,李文平,等.陕北榆神府矿区煤炭资源开发主要水工环问题及防治对策[J].工程地质学报,2000(04):446-455.

[187]董青红,满海英,郭典伟.厚松散层下近风化带保水采煤的GIS研究[J].中国矿业大学学报,2004(02):66-68.

[188] Worthington S R H, Davies G J, Alexander E C. Enhancement of bedrock permeability by weathering[J]. Earth Science Reviews, 2016, 160:188-202.

[189]许延春,马子民,李小二,等.基岩风化带性质对顶板突水溃砂的影响研究——以赵固一矿为例[J].煤炭科学技术,2023,51(07):64-71.

[190]王海,董书宁,孙亚军,等.我国大水矿山侧向帷幕截水技术及水资源保护效果研究[J].煤炭科学技术,2023,51(07):207-223

[191]杨柱,叶强,李阳明,等.复杂大水矿山近矿体帷幕注浆技术优化及应用[J].矿业研究与开发,2023,43(11):157-162.

[192]何全松,侯克鹏,者亚雷,等.露天矿帷幕注浆多参数现场试验及堵水效果分析[J].采矿技术,2023,23(06):125-128.

[193]张敦喜,杨张杰,王庆牛,等.采煤工作面断层超前治理技术研究[J].煤炭科学技术,2021,49(03):30-36.

[194]刘逸文,周俊,张文宇,等.浅谈高压旋喷桩止水帷幕在地下水丰富情况下的应用[J].四川建筑,2023,43(04):159-160.

[195]雍毅.联合注浆技术在隧道下穿动水砂层施工中的应用[J].施工技术(中英文),2023,52(09):78-82.

[196]蔡德庆.灌注桩和高压旋喷桩组合止水帷幕在邻江深基坑中的探究[J].建筑技术开发,2022,49(12):158-162.

[197]周仲猛.黄河特大桥水中基础桩排式连续墙施工技术[J].建设科技,2013(09):83-84.

[198]周东坡,刘金峰,李志武.桩排式围堰在卵石地质深基坑中的应用[J].城市道桥与防洪,2014(07):373-375+27-28.

[199]张雁,黄选明,彭巍,等.截水帷幕在露天煤矿截渗减排中的应用[J].煤炭学报,2020,45(05):1865-1873.

[200]朱宏军,张雁,孙浩,等.元宝山露天煤矿帷幕截水技术研究[J].煤炭工程,2022,54(09):64-69.

[201]王海,王永刚,张雁,等.生态脆弱露天矿区截水帷幕下松散层水位演化规律[J].煤田地质与勘探,2022,50(07):36-43.

[202]任艳芳.浅埋煤层长壁工作面围岩动态结构及应力特征分析[J].煤炭科学技术,2020,48(08):50-56.

[203]吴侃,周鸣,胡振琪.开采引起的地表裂缝深度和宽度预计[J].阜新矿业学院学报(自然科学版),1997(06):649-652.

[204]王文学,隋旺华,董青红.应力恢复对采动裂隙岩体渗透性演化的影响[J].煤炭学报,2014,39(06):1031-1038.

[205]潘岳,王志强,李爱武.初次断裂期间超前工作面坚硬顶板挠度、弯矩和能量变化的解析解[J].岩石力学与工程学报,2012,31(01):32-41.

[206]潘岳,顾士坦,戚云松.初次来压前受超前增压荷载作用的坚硬顶板弯矩、挠度和剪力的解析解[J].岩石力学与工程学报,2013,32(08):1544-1553.

[207]高超,徐乃忠,倪向忠,等.煤矿开采引起地表裂缝发育宽度和深度研究[J].煤炭工程,2016,48(10):81-83+87.

[208]潘家铮.潘家铮全集第Ⅲ卷-重力坝设计[M].北京:中国电力出版社,2016.

[209]高家美,顿志林.楔形体应力理论及其在工程中的应用[M].北京:煤炭工业出版社,2001.

[210]师维刚.相邻及孤岛工作面防水隔离煤柱留设理论基础研究[D].西安:西安科技大学,2017.

[211]柴建禄,姬中奎,杨帆,等.大型烧变岩帷幕预注浆工程的即时检验技术[J].煤炭工程,2019,51(05):73-77.

[212]贺雁鹏,黄庆享,王碧清,等.浅埋煤层大采高工作面顶板破断角实测研究[J].采矿与安全工程学报,2019,36(04):746-752.

[213]侯朝炯,马念杰.煤层巷道两帮煤体应力和极限平衡区的探讨[J].煤炭学报,1989(04):21-29.

[214]范金泽.霍洛湾矿浅埋煤层房柱式采空区下开采矿压显现规律研究[D].阜新:辽宁工程技术大学,2020.

中图分类号:

 TD327    

开放日期:

 2027-07-04    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式