- 无标题文档
查看论文信息

论文中文题名:

 两类随机粘弹性波动方程解的不变测度及爆破性    

姓名:

 胡哲    

学号:

 18201009009    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 070104    

学科名称:

 理学 - 数学 - 应用数学    

学生类型:

 硕士    

学位级别:

 理学硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 理学院    

专业:

 应用数学    

研究方向:

 偏微分方程    

第一导师姓名:

 梁飞    

第一导师单位:

  西安科技大学    

论文提交日期:

 2021-06-17    

论文答辩日期:

 2021-06-03    

论文外文题名:

 Invariant Measure and Blow-up of Solutions of Stochastic Partial Differential Equations    

论文中文关键词:

 不变测度 ; 爆破 ; Lyapunov泛函 ; Wiener过程    

论文外文关键词:

 Invariant measure ; Blow up ; Lyapunov functionals ; Wiener process    

论文中文摘要:

随机偏微分方程作为随机分析的一个分支,广泛应用于物理学、力学、光学、数学、化学、通讯等许多领域,在人口统计、经济、金融等应用方面也发挥着重要作用.本文主要通过构造Lyapunov泛函,利用比较方法和Kaplan特征值法对两类随机偏微分方程的不变测度及爆破性进行研究.主要研究内容如下:

首先考虑了一类乘法噪声驱动下具有二阶记忆项的随机粘弹性波动方程.通过Lyapunov泛函技巧,获得了方程解的弱紧致性;证明了转移半群的bw-Feller性质,从而给出了不变测度的存在性理论,并给出该定理的一个实际应用的例子.

其次讨论了一类加法噪声驱动下的四阶随机波动方程.给出了相应四阶确定性方程解的爆破;通过比较方法,获得了四阶随机波动方程的解在非期望意义下爆破概率不为零,并给出了爆破时间的上界估计.

最后研究了双乘法噪声驱动下的非局部随机抛物方程.建立了局部弱解的存在唯一性;利用Kaplan特征值法,获得了局部弱解在期望意义下的爆破,并给出了爆破时间的上界估计.相比较单乘法噪声,双乘法噪声会加快爆破发生.

论文外文摘要:

As a branch of stochastic analysis, stochastic partial differential equation is widely used in many fields, such as physics, mechanics, optics, mathematics, chemistry, communication and so on. It also plays an important role in demographic, economic, financial and other applications. This paper mainly studies the invariant measure and blow up of two kinds of stochastic partial differential equations by constructing Lyapunov functional method, comparison method and Kaplan eigenvalue method. The main research contents are as follows:

First, a class of stochastic viscoelastic wave equations with damping driven by multiplicative noise are considered. By Lyapunov functional technique, the weak compactness of the solution of the equation is obtained; The bw-Feller property of the transfer semigroup is proved, the existence theory of invariant measure is given. Finally, and an example of practical application of the theorem is given.

Second, a class of fourth-order stochastic wave equations driven by additive noise is discussed. The blow up results of the solutions for the corresponding fourth-order deterministic equations are given. By comparison method, the blow up probability which are not zero of the solutions for the fourth-order stochastic wave equations is obtained in the unexpected sense, and the upper bound estimation of the blow up time is given.

Third, a class of nonlocal stochastic parabolic equations driven by double multiplicative noise is studied. The existence and uniqueness of local weak solutions are established; Using Kaplan eigenvalue method, blow up of the local weak solutions are obtained in the expected sense, and the upper bound of blow up time is given. Compared with single multiplicative noise, double multiplicative noise can accelerate the occurrence of blowing up.

参考文献:

[1] Georgiev V, Todorova G. Existence of a solution of the wave equation with nonlinear damping and source term [J]. J. Differential Equations, 1994, 109: 295–308.

[2] Said-Houari B. Asymptotic behaviors of solutions for viscoelastic wave equation with space-time dependent damping term [J]. J. Math. Anal. Appl, 2011: 387(2): 0022-274X.

[3] Hao J.H, Lv M.X. Stability of wave equation with locally viscoelastic damping and nonlinear boundary source [J]. J. Math. Anal. Appl, 2020: 490(1): 0022-274X.

[4] Cavalcanti M, Oquendo N. Frictional versus viscoelastic damping in a semilinear wave equation [J]. SIMA J. Control Optim, 2003, 42: 1310–1324.

[5] Dafermos C.M. An abstract Volterra equation with application to linear viscoelasticity [J]. J. Differential Equations, 1970, 7: 554–589.

[6] Rivera J.E.M. Asymptotic behaviour in linear viscoelasticity [J]. Quarte. Appl. Math, 1994, 52(4): 629–648.

[7] Brzeźniak Z, OndrejátM, Seidler J. Stochastic nonlinear beam equations [J]. Probab. Theory Related Fields, 2005, 132(1): 119–149.

[8] Brzeźniak Z, Ondreját M, Seidler J. Invariant measures for stochastic nonlinear beam and wave equations [J]. J. Differential Equations, 2016, 260(5): 148-190.

[9] Barbu V, Prato G.D.The Stochastic Nonlinear Damped Wave Equation [J]. Appl. Math. Optim, 2002, 46: 2-3.

[10] Ichikawa A. Semilinear stochastic evolution equations: boundedness, stability and invariant measures [J]. Gordon and Breach Science Publishers Inc, 2007, 12(1).

[11] Chow P.L. Asymptotics of solutions to semilinear stochastic wave equations [J]. Ann. Appl. Probab, 2006, 16: 361–381.

[12] Kim J.U. Invariant measures for the stochastic von Karman plate equation [J]. SIAM J. Math. Anal, 2005, 36(5): 1689–1703 (electronic).

[13] Kim J.U. On the stochastic wave equation with nonlinear damping [J]. Appl. Math. Optim, 2008, 58(1): 29–67.

[14] Liang F, Gao H.J. Stochastic nonlinear wave equation with memory driven by ompensated Poisson random measures [J]. Math. Phys, 2014, 55.

[15] Maslowski B, Seidler J. Strong Feller solutions to SPDE’s are strong Feller in the weak topology [J], Stud. Math, 2001, 148(2): 111–129.

[16] Crauel H, Debussche A, Flandoli F. Random attractors [J]. J. Dynam. Differential Equations, 1997, 9(2): 307–341.

[17] Ichikawa A. Stability of semilinear stochastic evolution equations [J]. J. Math. Anal. Appl, 1982, 90: 12–44.

[18] Zabczyk J. On stability of infinite dimensional stochastic systems [J]. Probab. Theory, 1979, 5: 278–281.

[19] Pritchard A.J, Zabczyk J. Stability and stabilizability of infinite-dimensional systems [J]. SIAM Rev, 1981, 23(1): 25–52.

[20] Alabau F, Cannarsa P, Sforza D. Decay estimates for second order evolution equations with memory [J]. J. Funct. Anal, 2008, 254: 1342–1372.

[21] Rivera J.E.M, Salvatierra A.P, Asymptotic behavior of the energy in partially viscoelastic materials [J]. Quart. Appl. Math, 2001, 59: 557–578.

[22] Liang F, Gao H.J. Explosive solutions of stochastic viscoelastic wave equations with damping [J]. Rev. Math. Phys, 2011, 23: 883–902.

[23] Ondreját M. Uniqueness for stochastic evolution equations in Banach spaces [J]. Dissertationes Math. (Rozprawy Mat), 2004, 426: 63.

[24] Messaoudi S.A. Blow up and global existence in a nonlinear viscoelastic wave equation [J]. Math. Nachr, 2003, 260: 58-66.

[25] Komornik M, Zuazua E. A direct method for the boundary stabilization of the wave equation [J]. J. Math. Pures Appl, 1990, 60: 33-54.

[26] Wang Y.J. A global nonexistence theorem for viscoelastic equations with arbitrarily positive initial energy [J]. Appl. Math. Lett, 2009, 22: 1394-1400.

[27] Chin W. New simple proofs of the kolmogorov extension theorem and prokhorov’s theorem [J]. J. Math. Pures Appl, 2019, 60: 33–54.

[28] Robert T.G. Blow-up theorem for nonlinear wave equations [J]. Math. Z, 1973, 132(2): 183–203.

[29] Yao H.Z, Zhang J.W. Random attractors for non-autonomous stochastic wave equations with nonlinear damping and white noise [J]. Adv. Difference Equations, 2020, 2020(6): 1079-9389.

[30] Schurz H, Hazaimeh H.M. Existence, uniqueness, and stability of stochastic wave equation with cubic nonlinearities in two dimensions [J]. J. Math. Anal. Appl, 2014, 418(2): 775–795.

[31] Chow P.L. Stochastic Wave Equations with Polynomial Nonlinearity [J]. Ann. Appl. Probab, 2002, 12(1): 361–381.

[32] Chow P.L. Nonlinear stochastic wave equations: Blow-up of second moments in -norm [J]. Ann. Appl. Probab, 2009, 19(6): 2039–2046.

[33] Barbu V, Prato G.D. The stochastic nonlinear damped wave equation [J]. Appl. Math. Optim, 2002, 46: 125–141.

[34] Barbu V, Prato G.D, Tubaro L. Stochastic wave equations with dissipative damping [J]. Stochastic Process. Appl, 2007, 117: 1001–1013.

[35] Cheng S.L, Guo Y.T, Tang Y.B. Stochastic Viscoelastic WaveEquations with Nonlinear Damping and Source Terms [J]. J. Appl. Math, 2014, 2014.

[36] Kim J.U. On the stochastic wave equation with nonlinear damping [J]. Appl. Math. Optim, 2008, 58: 29–67.

[37] Milet A, Morien P.L. On a nonlinear stochastic wave equation in the plane: existence and uniqueness of the solution [J]. Ann. Appl. Probab, 2001, 11: 922–951.

[38] Bo L.J, Tang D, Wang Y.J. Explosive solutions of stochastic wave equations with damping on [J]. J. Differential Equations, 2008, 244: 170–187.

[39] Liang F. Explosive solutions of stochastic nonlinear beam equations with damping [J]. J. Math. Anal. Appl, 2014, 419(2): 849–869.

[40] Lv G.Y, Wei J.L. Blow up solutions for stochastic parabolic equations [J]. Statist. Probab. Lett, 2020, 166.

[41] Kim S, ParkJ.Y, Kang Y.H. Stochastic quasilinear viscoelastic wave equation with degenerate damping and source terms [J]. Comput. Appl. Math, 2018, 75(11).

[42] 梁飞, 乔焕. 非高斯勒维过程驱动下随机粘弹性波动方程的不变测度 [J]. 数学学报(中文版), 2018, 61(04):591-600..

[43] Giga Y, Kohn R.V. Asymptotically self-similar blow-up of semilinear heat equations [J]. Commun. Pure Appl. Anal, 1985, 38(3): 297–319.

[44] Glassey R.T. On the blowing up of solutions to the Cauchy problem for nonlinear Schrodinger equations [J]. J. Math. Phys, 1977, 18: 1794–1797.

[45] Kato T. Blow-up of solutions of some nonlinear hyperbolic equations [J]. Commun. Pure Appl. Anal, 1980, 33: 501–505.

[46] Levine H.A. Instability and nonexistence of global solutions to nonlinear wave equations of the form [J]. Trans. Amer. Mathe. Soc, 1974, 192: 1–21.

[47] Chow P.L. Explosive solutions of stochastic reaction-diffusion equations in mean -norm [J]. J. Differential Equations, 2011, 250: 2567-2580.

[48] Christian B, Sebastian B, Patrick C, Arnulf J, Ariel N. Deep learning based numerical approximation algorithms for stochastic partial differential equations and high-dimensional nonlinear filtering problems. arXiv: 2012.01194v1, 2020: 8-9.

[49] Glassey R.T. Blow-up theorems for nonlinear wave equations [J]. Math. Z, 1973, 132: 183–203.

[50] Keller J.B. On solutions of nonlinear wave equations [J]. Commun. Pure Appl. Anal, 1957, 10: 523–530.

[51] Arnaud D. Sylvaind.M, Martina H. A Regularity Result for Quasilinear Stochastic Partial Differential Equations of Parabolic Type [J]. SIAM J. Math. Anal, 2015, 47(2): 1590-1614.

[52] Lacay A.A, Tzanetis D.E. Global unbounded solutions to a parabolic equation [J]. J. Differential Equations, 1993, 101: 80-102.

[53] Mickaël D. Chekroun, Eunhee P, Roger T. The Stampacchia maximum principle for stochastic partial differential equations and applications [J]. J. Differential Equations, 2016, 260(3): 2926-2972.

[54] Li X.J, Li X.L, Lu K. Random attractors for stochastic parabolic equations with additive noise in weighted spaces [J]. Commun. Pure Appl. Anal, 2018, 17(3): 729-749.

[55] Nikos I, Kavallaris, Yan Y.B. Finite-time blow-up of a non-local stochastic parabolic problem [J]. Stochastic Process. Appl, 2020, 130(9): 5605-5635.

[56] Nikos I, Kavallaris, Takashi S. On the finite-time blow-up of a non-local parabolic equation describing chemotaxis [J]. Differ. Integral Equ. Appl, 2007, 20(3): 293-308.

[57] Barbu V, Iannelli M. Controllability of the heat equation with memory [J]. Differ. Integral Equ, 2000, 13(10-12): 1393-1412.

[58] Walsh J.B. An introduction to stochastic partial differential equations [J]. Lecture Notes in Math, 1986.

[59] Weinan E. Stochastic Hydrodynamics [J]. Curr. Dev. Math, 2000, 2000(1).

[60] Mattingly J. The stochastic Navier-Stokes: equations-energy estimates and phase space contraction [D]. Ph. D. thesis. Princeton University, 1998.

[61] Hao J, Wei H. Blow-up and global existence for solution of quasilinear viscoelastic wave equation with strong damping and source term [J]. Bound. Value Probl, 2017, 2017(1): 1-12.

[62] Friedman A. Stochastic differential equations and applications [M]. Main St. Salt Lake City: Academic Press, 1976.

[63] Temam R. Infinite-dimensional dynamical systems in mechanics and physics,editiom [M]. New York: Springer-Verlag, 1997.

[64] 匡继昌. 常用不等式(第四版) [M]. 济南: 山东科学技术出版社, 2010.

[65] Adams R.A. Sobolev spaces [M]. New York: Acadmic press, 1975.

[66] Arnold L. Stochastic differential equations theory and applications [M]. Singapore: World Scientific, 2007.

[67] 尚亚东, 游淑军. 凸函数及其在不等式证明中的应用 [J]. 广州大学学报(自然科学版), 2005.

[68] Bonder J.F, Groisman P. Time-space white noise eliminates global solutions in reaction diffusion equations [J]. Physica D: Nonlinear Phenomena, 2009, 238: 209-215.

[69] Dozzi M, López-Mimbela J.A. Finite-time blowup and existence of global positive solutions of a semi-linear SPDE [J]. Stochastic Process. Appl, 2010, 120: 767-776.

[70] Lv G, Duan J. Impacts of noise on a class of partial differential equations [J]. J. Differential Equations, 2015, 258(6): 2196-2220.

中图分类号:

 O175.2    

开放日期:

 2021-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式