论文中文题名: | 富油煤热解过程孔隙结构及热解动力学参数研究 |
姓名: | |
学号: | 21209226075 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085700 |
学科名称: | 工学-资源与环境 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2024 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 非常规油气资源开发利用 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2024-06-14 |
论文答辩日期: | 2024-06-06 |
论文外文题名: | Study on the pore structure and pyrolysis kinetic parameters in the pyrolysis process of tar-rich coal |
论文中文关键词: | |
论文外文关键词: | Tar-rich coal ; Thermogravimetric analysis ; Pore structure analysis ; Fractal dimension ; Pyrolysis kinetic parametersl |
论文中文摘要: |
富油煤,一种集煤、油、气属性于一体的特殊煤炭资源,热解后的焦油产率一般在7%~12%。通过对富油煤进行高温热解,可以提炼出与原油性质相似的煤焦油。随着人们对清洁能源需求的不断增长,高效清洁利用富油煤变得至关重要,深入研究富油煤热解过程中孔隙结构演化规律和热解动力学参数的关联具有重要的实际意义。与传统煤热解一样,富油煤在高温热解过程中,其结构、成分和性质均会发生改变,进而影响热解反应速率和焦油产率。运用不同的试验方法对富油煤热解过程的热解特性和孔隙结构进行分析,不仅有助于我们深入理解富油煤热解机理,而且可以为提高其热解效率和焦油产率提供理论依据。 本论文在总结陕北侏罗系煤田小保当井田富油煤基础性质的基础上,分别以N2和CO2作为热解气,设定升温速率为10、20、30、40和50 ℃/min对富油煤样品进行热重分析,以探究不同热解气氛和不同升温速率下富油煤的热解失重规律。其次,对N2热解气氛下升温速率为10℃/min,热解温度为室温、200、300、400、500和600℃时的6组富油煤样品展开孔隙结构分析。通过不同的孔隙测定手段全面分析富油煤热解过程中孔隙变化规律。最后,基于热重数据和压汞试验数据,深入探讨在不同热解阶段下富油煤样品的孔隙演化规律,运用热解动力学方法Coats-Redfern法详细计算不同温度段的热解动力学参数,进一步分析孔隙结构与热解动力学参数之间相关性。论文主要研究成果如下: (1)对富油煤进行热重实验,结果表明:在N2气氛下,富油煤热解第一阶段(室温~400℃)主要为干燥脱气的过程,该过程失重率为7.1%~9.6%;第二阶段(400℃~650℃)是主要热解阶段,最大失重速率可达到-0.25%·℃-1;第三阶段(650℃~800℃)失重逐渐缓慢,失重速率下降,烃类物质逐渐分解,热解过程基本结束。 (2)对比N2和CO2热解气氛下热重规律得出:升温速率增加,传热滞后现象明显,微商热重曲线向高温区移动;主要热解阶段N2 气氛下失重率大于CO2气氛下失重率,N2气氛下活化能值低于CO2气氛下的活化能值。可见,在N2气氛下对富油煤进行热解反应更容易发生。 (3)对不同温度下富油煤热解样品分析结果显示:室温~300℃热解温度范围内煤样结构致密,孔隙以微孔为主,无明显裂隙发育。升温至400℃热解会发育出少量小规模的裂隙,之后中孔大孔大量发育,成为主要孔隙特征。结合FHH和Menger模型计算分形维数得出,随着热解温度的升高,孔隙由微小孔逐渐发育为中大孔。在600℃之后,由于部分孔隙的坍塌与连通,孔隙空间结构变得更加连通、简单。 (4)基于热重数据和压汞试验所得数据分析不同热解阶段下孔隙演化规律,结果表明:富油煤的孔隙演化与其热解阶段的反应进程具有较强的关联性。在热解动力学参数方面,富油煤热解第一,第二阶段孔隙结构受热由微小孔发育为中大孔,化学键断裂,热解产物不断生成,热解动力学参数值升高。在热解第三阶段,随着热解反应的结束,孔隙结构形状、大小和分布趋于稳定,热解动力学参数降低。 |
论文外文摘要: |
Tar-rich coal,tar-rich coal, a special coal resource that combines the properties of coal, oil and gas, has a tar yield from pyrolysis that generally ranges from 7% to 12%. Through high temperature pyrolysis of tar-rich coal, coal tar, which is similar in nature to crude oil, can be extracted. With the growing demand for clean energy, the efficient and clean utilization of tar-rich coal becomes crucial, and it is of great significance to study the pore structure evolution law and pyrolysis kinetic parameters in the pyrolysis process of tar-rich coal. Like the traditional coal pyrolysis, the structure, composition and properties of tar-rich coal will be changed during the high temperature pyrolysis process, which will affect the reaction rate of coal pyrolysis and tar yield. Using different experimental methods to analyze the pyrolysis characteristics and pore structure of tar-rich coal pyrolysis process not only helps us to deeply understand the mechanism of tar-rich coal pyrolysis, but also can provide theoretical basis for improving its pyrolysis efficiency and tar yield. In this thesis, on the basis of summarizing the basic properties of tar-rich coal in Xiaobaodang well field of Jurassic coalfield in northern Shaanxi, CO2 and N2 were used as pyrolysis atmospheres, and the heating rate was set at 10, 20, 30, 40, and 50 ℃/min for thermogravimetric analysis of tar-rich coal samples, in order to investigate the pyrolysis weight loss pattern of tar-rich coal under different pyrolysis atmospheres and different heating rates. Secondly, six groups of coal samples were further analyzed for their pore structure under N2 pyrolysis atmosphere with a heating rate of 10 ℃/min and pyrolysis temperatures of room temperature, 200, 300, 400, 500 and 600 ℃. The change rule of pore structure during the pyrolysis of tar-rich coal was comprehensively analyzed by different pore measurement methods. Finally, based on the thermogravimetric experiments, the pore evolution laws of tar-rich coal samples in different pyrolysis stages were deeply explored, and the pyrolysis kinetic parameters at different temperatures were calculated in detail by using the Coats-Redfern method, so as to further analyze the correlation between the pore structure and the pyrolysis kinetic parameters. The main research findings of the paper are as follows: (1)The thermogravimetric experiment on tar-rich coal revealed that under N2 atmosphere, the first stage of tar-rich coal pyrolysis (room temperature to 400℃) is mainly a process of drying and water loss, with a weight loss rate ranging from 7.1% to 9.6%. The second stage (400℃ ~ 650℃) is the main pyrolysis stage, with a maximum weight loss rate of up to -0.25% per degree Celsius. During the third stage (650℃ ~ 800℃), the weight loss gradually slows down, the weight loss rate decreases, hydrocarbons gradually decompose, and the pyrolysis process basically ends. (2)Comparing the thermogravimetric patterns under N2 and CO2 atmospheres, it is found that as the heating rate increases, the heat transfer lag phenomenon becomes more pronounced, and the derivative thermogravimetric curve shifts towards higher temperatures. During the main pyrolysis stage, the weight loss rate under N2 atmosphere is greater than that under CO2 atmosphere, and the activation energy value under N2 atmosphere is lower than that under CO2 atmosphere. Therefore, it is evident that pyrolysis of tar-rich coal is more likely to occur under N2 atmosphere. (3)Analysis of tar-rich coal pyrolysis samples at different temperatures showed that within the pyrolysis temperature range of room temperature to 300℃, the coal sample structure is dense, with micropores as the main pores and no obvious fissure development. As the temperature rises to 400℃, a small number of small-scale fissures will develop, followed by a large number of mesopores and macropores, becoming the main pore characteristics. Combining the fractal dimension calculations using the FHH and Menger models, it is found that as the pyrolysis temperature increases, the pores gradually develop from micropores to mesopores and macropores. After 600℃, due to the collapse and interconnection of some pores, the pore space structure becomes more connected and simple. (4)Based on thermogravimetric data and mercury intrusion test results, the pore evolution patterns at different pyrolysis stages were analyzed. The results indicate that the pore evolution of tar-rich coal has a strong correlation with the reaction progress of its pyrolysis stages. In terms of pyrolysis kinetic parameters, during the first and second stages of tar-rich coal pyrolysis, the pore structure develops from micropores to mesopores and macropores due to heating, chemical bonds break, and pyrolysis products continuously generate, leading to an increase in pyrolysis kinetic parameter values. In the third stage of pyrolysis, as the pyrolysis reaction ends, the shape, size, and distribution of the pore structure tend to be stable, and the pyrolysis kinetic parameters decrease. |
参考文献: |
[1]涂云川, 魏子栋. “双碳”愿景下的能源技术变革 [J]. 科技导报, 2023, 41(19): 142-148. [2]王国法, 任世华, 庞义辉, 等. 煤炭工业“十三五”发展成效与“双碳”目标实施路径 [J]. 煤炭科学技术, 2021, 49(09): 1-8. [3]李振. 煤岩干法分选——西部富油煤分质加工的创新驱动技术 [J]. 技术与创新管理, 2021, 42(02): 237. [4]郭威, 刘召, 孙友宏, 等. 富油煤原位热解开发地下体系封闭方法探讨 [J]. 煤田地质与勘探, 2023, 51(01): 107-114. [5]王苗, 王长安, 宁星, 等. 富油煤原位热解技术研究现状及进展 [J]. 煤炭学报, 2023, 1-15. [6]董光顺, 朱超凡, 厉家宗, 等. 黄陵矿区富油煤对流加热原位转化开发效果数值模拟 [J]. 煤田地质与勘探, 2023, 51(04): 57-67. [7]樊花, 刘振虎, 牛鸿权, 等. 煤热解技术及其运行影响因素分析 [J]. 煤化工, 2022, 50(06): 151-154. [8]谢启源, 陈丹丹, 丁延伟. 热重分析技术及其在高分子表征中的应用 [J]. 高分子学报, 2022, 53(02): 193-210. [23]孙友宏, 郭威, 邓孙华. 油页岩地下原位转化与钻采技术现状及发展趋势 [J]. 钻探工程, 2021, 48(01): 57-67. [28]刘剑, 王继仁, 孙宝铮. 煤的活化能理论研究 [J]. 煤炭学报, 1999, 24(03): 94-98. [34]蔺亚兵, 贾雪梅, 马东民. 基于液氮吸附法对煤的孔隙特征研究与应用 [J]. 煤炭科学技术, 2016, 44(03): 135-140. [35]任会康, 王安民, 李昌峰, 等. 基于核磁共振技术的低阶煤储层孔隙特征研究 [J]. 煤炭科学技术, 2017, 45(04): 143-148. [36]赵健光, 王猛, 马如英, 等. 基于压汞法对黔西青龙矿构造煤孔隙结构特征的研究 [J]. 煤炭科学技术, 2022, 50(10): 159-168. [37]赵兴龙, 汤达祯, 许浩, 等. 煤变质作用对煤储层孔隙系统发育的影响 [J]. 煤炭学报, 2010, 35(09): 1506-1511. [38]谢松彬, 姚艳斌, 陈基瑜, 等. 煤储层微小孔孔隙结构的低场核磁共振研究 [J]. 煤炭学报, 2015, 40(1): 170-176. [39]杨明, 刘亚鹏. 高阶煤孔隙特征的低场核磁共振实验研究 [J]. 中国安全生产科学技术, 2016, 12(11): 63-69. [42]杨甫, 贺丹, 马东民, 等. 低阶煤储层微观孔隙结构多尺度联合表征 [J]. 岩性油气藏, 2020, 32(03): 14-23. [43]刘美乐. 小保当井田煤层开采对潜水流场的影响评价 [D]. 西安: 西安科技大学, 2016. [44]师庆民, 耿旭虎, 王双明, 等. 基于煤体真密度和自然伽马响应规律的富油煤判识 [J]. 煤田地质与勘探, 2024, 1-11. [45]王永志. 冻融诱发砂岩-混凝土界面损伤脱粘细观机制及力学模型研究 [D]. 西安: 西安科技大学, 2020. [46]张憧. 低渗透煤层孔隙结构的分形特征及力学性质研究 [D]. 西安: 西安科技大学, 2015. [50]李彦举. 基于恒速压汞的孔隙结构特征研究 [D]. 北京: 中国地质大学(北京), 2014. [70]高浩. 陕北富油煤热解提油基础特性及煤焦油净化机理研究 [D]. 西安: 西安科技大学, 2021. [73]段伦博, 赵长遂, 周骛, 等. CO2气氛对烟煤热解过程的影响 [J]. 中国电机工程学报, 2010, 30(02): 62-66. [75]师庆民, 米奕臣, 王双明, 等. 富油煤热解流体滞留特征及其机制 [J]. 煤炭学报, 2022, 47(03): 1329-1337. [77]康志华, 王智荣, 白云冈, 等. 煤焦油基变压器油产品特性 [J]. 山东化工, 2023, 52(20): 198-201. [79]李改改, 姜鹏飞, 黄佳齐, 等. 富油煤热解过程动力学参数变化规律研究 [J]. 煤炭技术, 2023, 42(10): 52-56. [80]王小华, 赵洪宇, 宋强, 等. 不同载气气氛下煤样热解特性及其动力学参数研究 [J]. 煤炭工程, 2019, 51(01): 115-119. [81]刘彦飞, 汤达祯, 许浩, 等. 基于核磁共振的煤岩孔裂隙应力变形特征 [J]. 煤炭学报, 2015, 40(06): 1415-1421. [86]许涛, 陈杰, 伍永平, 等. 富油煤地下热解过程中纳米孔隙结构特性演化规律 [J]. 煤炭学报, 2024, 1-11. [87]王双明, 孙强, 胡鑫, 等. 不同气氛下富油煤受热裂隙演化及热解动力学参数变化 [J]. 煤炭科学技术, 2024, 52(01): 15-24. [88]解凤霞, 张欣欣, 张丹. 用热分析技术研究煤的热解特性 [J]. 应用化工, 2012, 41(03): 430-437. [89]耿济世, 王双明, 孙强, 等. 富油煤热解特性及其孔裂隙结构演化规律 [J]. 煤田地质与勘探, 2024, 1-9. [90]靳其龙, 张宇, 郝继宗, 等. 热解温度对依兰煤热解特性的影响分析 [J]. 节能技术, 2013, 31(01): 42-45. |
中图分类号: | TQ530.2 |
开放日期: | 2024-06-17 |