- 无标题文档
查看论文信息

论文中文题名:

 纳米颗粒复合表面活性剂对煤层气吸附扩散影响研究    

姓名:

 阳梦    

学号:

 20220226076    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0857    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 非常规天然气开采    

第一导师姓名:

 石钰    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-16    

论文答辩日期:

 2023-06-03    

论文外文题名:

 Investigation of the influence of nanoparticle composite surfactants on the adsorption and diffusion of coal bed methane    

论文中文关键词:

 润湿性 ; 煤层气 ; 表面活性剂 ; 纳米颗粒 ; 多组分气体 ; 吸附 ; 扩散 ; 分子模拟    

论文外文关键词:

 Wettability ; Coalbed methane ; Surfactants ; nanoparticles ; multicomponent gases ; adsorption ; diffusion ; molecular simulation    

论文中文摘要:

随着我国浅部煤炭资源日渐枯竭,煤矿开采已向深部转移,深部煤层具有低孔、低渗的特征。高效开发深部煤层气对优化我国能源结构、缓解天然气供给压力具有重要意义。水力压裂技术作为一种经典且被普遍应用的煤层增透技术一直是国内外学者关注的重点,其中压裂液对煤体的润湿性影响及压裂液作用下煤层气吸附扩散机理是利用水力压裂技术开采煤层气过程中的关键问题。本文基于巨正则系综蒙特卡洛(GCMC)和分子动力学(MD)方法,构建了固(煤)-气(煤层气)-液(表面活性剂)三相作用的体系模型,从微观角度探究了纳米颗粒分别复合阳离子表面活性剂CTAB、阴离子表面活性剂SDBS和非离子表面活性剂VAEO8对煤体润湿性及煤层气吸附扩散的影响,主要结论如下:

采用实验和分子模拟相结合的研究方法从宏观、微观两个角度对纳米颗粒复合不同种类表面活性剂对煤的润湿性进行了研究。发现三种表面活性剂中,阴离子表面活性剂SDBS可增强煤体亲水性,对煤的润湿性效果最好;阳离子表面活性剂CTAB和非离子表面活性剂VAEO8增强煤体疏水性,其中非离子表面活性剂VAEO8对煤体润湿性效果次之,阳离子表面活性剂CTAB润湿煤的效果最差。纳米颗粒和表面活性剂具有协同降低固-液界面张力的作用。

构建了固(煤)-气(CH4)-液(表面活性剂)三相作用的体系模型,从吸附构型、吸附量、相互作用能、相对浓度分布和扩散系数几方面,探讨了纳米颗粒分别复合阳离子表面活性剂CTAB、阴离子表面活性剂SDBS和非离子表面活性剂VAEO8对CH4吸附/解吸及扩散的影响规律。结果表明:表面活性剂和纳米颗粒在润湿效应及静电力作用下渗吸进入孔隙中占据煤表面CH4的吸附位点,造成煤基质处CH4相对浓度降低,孔隙中游离态CH4增多。无纳米颗粒时,阴离子表面活性剂SDBS促进CH4解吸效果最好;而阳离子表面活性剂CTAB和非离子表面活性剂VAEO8导致CH4解吸能力变弱。纳米颗粒复合表面活性剂促进CH4的解吸效果优于无纳米颗粒时相应的表面活性剂促进CH4的解吸效果。加入纳米颗粒后,煤体系中静电力及相互作用能均升高。原煤体系中CH4扩散系数>表面活性剂煤体系中CH4扩散系数>纳米颗粒复合表面活性剂煤体系中CH4扩散系数。

基于全原子的Wiser煤结构单元,耦合纳米颗粒复合表面活性剂与煤体相互作用,建立固-气-液三相作用煤层气吸附模型,通过MD和GCMC方法构建了四种煤体系(干燥煤体系、含水煤体系、表面活性剂处理煤体系和纳米颗粒复合表面活性剂处理煤体系),研究了CH4、CO2、N2单元气体及CH4/CO2/N2三元混合气体在四种煤体系中的吸附行为。从体系气体吸附分布、气体密度分布、吸附量、吸附选择性及体系能量变化等方面探讨了纳米颗粒分别复合阳离子表面活性剂CTAB、阴离子表面活性剂SDBS和非离子表面活性剂VAEO8对CH4/CO2/N2吸附的影响。结果表明:四种体系中气体密度大小均为:CO2 > CH4 > N2

论文外文摘要:

As China's shallow coal resources become increasingly depleted, coal mining has shifted to the deeper parts of the coal seams, which are characterised by low porosity and low permeability. The efficient development of deep coalbed methane is of great significance to optimise China's energy structure and relieve the pressure on natural gas supply. Hydraulic fracturing technology, as a classical and commonly applied coal seam permeability enhancement technology, has been the focus of scholars at home and abroad, among which the influence of fracturing fluid on the wettability of the coal body and the mechanism of coal bed methane adsorption and diffusion under the action of fracturing fluid are key issues in the process of coal bed methane extraction using hydraulic fracturing technology. A microscopic examination of the wettability of coal body and CBM adsorption and diffusion, with nanoparticles combined with cationic surfactant CTAB, anionic surfactant SDBS, and non-ionic surfactant VAEO8, was conducted in this work, utilizing a three-phase system model of solid (coal)-gas (CBM)-liquid (surfactant) constructed using the giant regular system synthesis Monte Carlo (GCMC) and molecular dynamics (MD) methods. The main findings are as follows:

The wettability of coal by nanoparticles compounded with different types of surfactants was investigated from both macroscopic and microscopic perspectives using a combination of experimental and molecular simulation. It was found that among the three surfactants, anionic surfactant SDBS enhanced the hydrophilicity of coal and had the best wetting effect on coal, while the cationic surfactant CTAB and the non-ionic surfactant VAEO8 enhanced the hydrophobicity of coal, in which the non-ionic surfactant VAEO8 having the second best wetting effect on coal and the cationic surfactant CTAB having the worst wetting effect on coal. Nanoparticles and surfactants had a synergistic effect in reducing the solid-liquid interfacial tension.

The effects of nanoparticles compounded with cationic surfactant CTAB, anionic surfactant SDBS and nonionic surfactant VAEO8 on CH4 adsorption/desorption and diffusion were investigated in terms of adsorption configuration, adsorption amount, interaction energy, relative concentration distribution and diffusion coefficient by constructing a system model of solid (coal)-gas (CH4)-liquid (surfactant) three-phase interaction patterns. The results showed that the surfactant and nanoparticles penetrated into the pores to occupy the adsorption sites of CH4 on the coal surface under the effect of wetting and electrostatic force, resulting in the decrease of the relative concentration of CH4 at the coal matrix and the increase of the free CH4 in the pores. In the absence of nanoparticles, anionic surfactant SDBS promoted CH4 desorption best, whereas cationic surfactant CTAB and nonionic surfactant VAEO8 led to weaker CH4 desorption. The desorption of CH4 promoted by the nanoparticle composite surfactant was better than the desorption of CH4 promoted by the corresponding surfactant in the absence of nanoparticles. The electrostatic force and interaction energy in the coal system were elevated after the addition of nanoparticles. CH4 diffusion coefficient in the raw coal system > CH4 diffusion coefficient in the surfactant coal system > CH4 diffusion coefficient in the nanoparticle composite surfactant coal system.

Based on the all-atomic Wiser coal structural unit, coupled nanoparticle composite surfactant interaction with the coal body, a solid-gas-liquid three-phase interaction coal-bed methane adsorption model was established, and four coal systems (dry coal system, aqueous coal system, surfactant-treated coal system and nanoparticle composite surfactant-treated coal system) were constructed by combined MD and GCMC methods to simulate the adsorption behavior of CH4, CO2, N2 unit gas and CH4/CO2/N2 ternary gas mixture in the four coal systems. The adsorption behavior of nanoparticles compounded with cationic surfactant CTAB, anionic surfactant SDBS and nonionic surfactant VAEO8 on CH4/CO2/N2 adsorption was investigated from the aspects of system gas adsorption distribution, gas density distribution, adsorption amount, adsorption selectivity and system energy change. The results showed that the gas density in all four systems was CO2 > CH4 > N2.

参考文献:

[1]王行军, 刘亚然,王福国, 等. 我国煤层气产业政策现状研究[J]. 中国煤炭地质, 2019, 31(12): 102-107.

[2]张道勇, 朱杰, 赵先良, 等. 全国煤层气资源动态评价与可利用性分析[J]. 煤炭学报, 2018, 43(06): 1598-1604.

[3]王行军, 刘亚然, 王福国, 等. 我国煤层气产业政策现状研究[J]. 中国煤炭地质, 2019, 31(12): 102-107.

[4]降文萍, 张培河, 李忠城, 等. 深部煤层气异常地质特征及开发技术探讨[J]. 煤炭工程, 2022, 54(06): 158-164.

[5]彭伟, 余岩, 叶丽萍, 等. 高瓦斯低透气性煤层增透防突措施探究[J]. 煤炭技术, 2011, 30(06): 244-246.

[6]黄启铭. 水基压裂液对煤层瓦斯流动的影响机理研究[D]. 中国矿业大学(北京), 2020.

[7]Jeffrey R G,Vlahovic W,Doyle R P,et al.Propped fracture geometry of three hydraulic fractures in Sydney Basin Coal Seams[C].Asia Pacific Oil & Gas Conference and Exhibition. Perth,Australia, 1998.

[8]吕华永, 良晖, 定煤预制裂隙定向水力压裂研究[J]. 矿业科学学报. 2018, (6): 553-560.

[9]马海峰, 程志恒, 张科学, 等. 千米深井高瓦斯煤层W-S-W水力压裂强化增透试验研究[J]. 煤炭学报, 2017, 42(07): 1757-1764.

[10]管保山, 刘玉婷, 刘萍,等. 煤层气压裂液研究现状与发展[J]. 煤炭科学技术, 2016, 44(5): 11-17.

[11]陈荣杰, 魏世举, 韩文学, 等. 清洁压裂液在低渗油藏压裂改造中的应用[J]. 内蒙古石油化工, 2005, 2005(10): 113-115.

[12]尹忠. 抗高温清洁压裂液的性能研究[J]. 石油采工艺, 2005, 27(2): 57-59, 86.

[13]]宋新旺, 张立娟, 曹绪龙, 等. 润湿性对油水渗流特性的影响[J]. 油田化学, 2008(4): 305-308.

[14]姚同玉, 赵福麟. 季铵盐型表面活性剂的吸附特性研究[J]. 西安石油学院学报(自然科学版), 2003(1): 2,36-38.

[15]郭军杰, 秦启荣, 程晓阳. 基于地层条件下煤层瓦斯流动模拟研究[J]. 中国安全生产科学技术(6期): 25-29.

[16]陈富勇, 琚宜文, 李小诗, 等. 构造煤中煤层气扩散-渗流特征及其机理[J]. 地学前缘, 2010(1): 7.

[17]张路锋, 周福建, 张士诚, 等. 基于压力脉冲法的储层基质压裂液伤害评价[J]. 油气地质与采收率, 2018, 25(3): 89-94.

[18]郑军. 煤层气储层敏感性实验研究[D]. 成都, 成都理工大学, 2006: 1-4.

[19]管保山, 刘玉婷, 刘萍, 等. 煤层气压裂液研究现状与发展[J]. 煤炭科学技术, 2016, 44(05): 11-17.

[20]刘明书, 唐善法, 方飞飞, 等. 粘弹性表面活性剂压裂液研究应用进展与展望[J]. 石油化工应用, 2012, 31(09) :1-4.

[21]Khair E M M, Zhang S, Mou Set al. Performance and application of new anionic D3F-AS05 viscoelastic fracturing fluid[J]. Journal of Petroleum Science and Engineering, 2011, 78(1): 131-138.

[22]林波, 刘通义, 赵众从, 等. 新型清洁压裂液的流变性实验研究[J]. 钻井液与完井液, 2011(04): 64-66.

[23]李曙光, 郭大立, 赵金洲, 等. 表面活性剂压裂液机理与携砂性能研究[J]. 西南石油大学学报(自然科学版), 2011(03):133-136.

[24]Wu W, Zhang Z. PETR 94-Study on rheology of viscoelastic surfactant fracturing fluid[J].Abstracts of Papers of the American Chemical Society, 2008:235.

[25]刘通义, 郭拥军, 罗平亚, 等. 清洁压裂液摩阻特性研究[J]. 钻采工艺, 2009(05): 85-86.

[26]焦克波. 清洁压裂液导流能力伤害对比实验研究[J]. 科学技术与工程, 2012(11): 2723-2725.

[27]崔会杰, 王国强, 冯三利, 等. 清洁压裂液在煤层气井压裂中的应用[J]. 钻井液与完井液, 2006(04): 58-61.

[28]李亭, 杨琦, 冯文光, 等. 煤层气新型清洁压裂液室内研究及现场应用[J]. 科学技术与工程, 2012(36): 9828-9832.

[29]Tianping Huang.Nanotechnology application in viscoelastic surfactant stimulation fluids.SPE2008.

[30]Alsaba M T,Dushaishi M,Abbas A K.A comprehensive review of nanoparticles applications in the oil and gas industry[J].Journal of Petroleum Exploration and Production Technology, 2020, 10(4): 1389-1399.

[31]Fakoya M F, Shah S N. Emergence of nanotechnology in the oil and gas industry:Emphasis on the application of silica nanoparticles[J].Petroleum, 2017, 3(4): 391-405.

[32]Nettesheim F, Liberatore M W,Hodgdon T K, et al. Influence of nanoparticle addition on the properties of wormlike micellar solutions[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2008, 24(15): 7718.

[33]肖博, 蒋廷学, 张正道, 等. 纳米复合纤维基表面活性剂压裂液性能评价[J]. 科学技术与工程, 2018, 18(29): 64-69

[34]翟恒来, 齐宁, 孙逊, 等. 一种新型纳米SiO2降压增注剂的制备与评价[J]. 材料导报, 2019, 33(06): 975-979.

[35]张霜霜, 东野升富, 徐灿, 等. SiO2纳米粒子型低浓度阳离子表面活性剂压裂液研究[J]. 钻采工艺, 2021, 44(2): 102-106.

[36]Mashat A, Abdel-Fattah A, Gizzato A, et al. 纳米表面活性剂驱: 一种新的以纳米颗粒为基础的EOR方法[J]. 石油科技动态, 2018, 000(012): 58-62.

[37]Zargartalebi M, Kharrat R, Barati N. Enhancement of surfactant flooding performance by the use of silica nanoparticles[J]. Fuel, 2015, 143(mar.1): 21-27.

[38]朱锴. 表面活性剂降低瓦斯涌出的实验研究[D]. 中国地质大学(北京), 2010.

[39]汪伟英, 田中兰, 杨林江, 等. 表面活性剂对煤岩润湿性及相对渗透率的影响[J]. 长江大学学报(自科版), 2015, 12(02): 79-82+7.

[40]刘良华, 李松. 表面活性剂对煤岩润湿性的影响实验研究[J]. 当代化工, 2017, 46(11): 2270-2272.

[41]张光华, 杜倩, 杜伦. Gemini表面活性剂在低阶煤表面吸附及成浆性能研究[J]. 应用化工, 2017, 46(11): 2138-2142+2145.

[42]闵凡飞, 任豹, 陈军, 等. 基于水化膜弱化促进煤泥脱水机理及试验研究[J]. 煤炭学报,2020,45(1):368-376.

[43]安文博, 王来贵. 表面活性剂作用下煤体力学特性及改性规律[J]. 煤炭学报, 2020, 45( 12) :4074-4086.

[44]陈跃, 马卓远, 马东民, 等. 不同宏观煤岩组分润湿性差异及对甲烷吸附解吸的影响[J]. 煤炭科学技术, 2021, 49( 11): 47-55.

[45]贾志刚, 董乐, 李兴, 等. C_(12)-m-C_(12)型阳离子Gemini表面活性剂在煤沥青表面的润湿性[J]. 燃料化学学报, 2015, 43(06): 649-653.

[46]Chen Y, Xu G, Huang J, et al. Characterization of coal particles wettability in surfactant solution by using four laboratory static tests[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 567: 304-312.

[47]孟筠青, 夏捃凯, 牛家兴, 等. SDBS溶液对赵庄煤表面润湿作用机理的研究[J]. 中国矿业大学学报, 2021, 50(02): 381-388.

[48]聂百胜, 何学秋, 王恩元, 等. 煤吸附水的微观机理[J]. 中国矿业大学学报, 2004(04): 17-21.

[49]胡善沛, 马椽栋, 李志昊, 等. 表面活性剂对神东低阶煤润湿改性机理研究[J]. 选煤技术, 2021(01): 56-63.

[50]陈炫来, 严国超, 阳湘琳, 等. SDS/SDBS对无烟煤润湿性影响的分子动力学模拟[J/OL]. 煤炭科学技术: 1-14[2022-04-10].

[51]刘晓阳, 张雷, 刘生玉, 等. CTAB吸附对褐煤亲水性抑制作用机理的研究[J]. 中国煤炭, 2017, 43(05): 99-104.

[52]杨蒙. 改性SiO2纳米颗粒改变岩石润湿性及提高采收率研究[D]. 中国石油大学(北京), 2019.

[53]Nasirimoghaddam S, Mohebbi A, Karimi M, et al. Assessment of pH-responsive nanoparticles performance on laboratory column flotation cell applying a real ore feed[J]. International Journal of Mining Science and Technology, 2020, 30(2): 197-205.

[54]Lai Q, Liao Y, An M, et al. The enhanced flotation of coal by nanosilica particles[J]. International Journal of Coal Preparation and Utilization, 2021, 41(5): 321-333.

[55]Kim H, You J, Gomez-Flores A, et al. Malachite flotation using carbon black nanoparticles as collectors: Negative impact of suspended nanoparticle aggregates[J]. Minerals Engineering, 2019, 137: 19-26.

[56]燕永利, 宋兆洋, 吴春生, 等. 纳米SiO2颗粒表面疏水化改性与调控[J]. 应用化工, 2020, 49(05): 1092-1095.

[57]Ranjbar M, Taher M A, Sam A. Single-step synthesis of SiO2-TiO2 hydrophobic core-shell nanocomposite by hydrothermal method[J]. Journal of Cluster Science, 2016, 27(2): 583-592.

[58]Hajati A, Shafaei S Z, Noaparast M, et al. Novel application of talc nanoparticles as collector in flotation[J]. RSC advances, 2016, 6(100): 98096-98103.

[59]何桂春, 王玉彤, 康倩. 纳米技术在微细粒矿物浮选中的应用[J]. 有色金属科学与工程, 2015, 6(02): 57-62.

[60]廖德华, 曾维平, 陈向. 聚苯乙烯纳米粒子浮选微细粒黑钨矿的试验[J]. 世界有色金属, 2020(11): 281-282.

[61]廖寅飞, 任厚瑞, 安茂燕, 等. 新型纳米粒子捕收剂强化低阶煤浮选机理[J]. 煤炭学报, 2021, 46(09): 2767-2775.

[62]水玲玲, 刘晓纯, 龚颖欣. 二氧化硅材料的表面润湿性改性研究[J]. 华南师范大学学报(自然科学版), 2018, 50(05): 39-44.

[63]Weishauptová Z, Přibyl O, Sýkorová, et al. Effect of bituminous coal properties on carbon dioxide and methane high pressure sorption[J]. Fuel, 2015, 139: 115-124.

[64]刘曰武, 苏中良, 方虹斌, 等. 煤层气的解吸/吸附机理研究综述[J]. 油气井测试, 2010(06): 37-44.

[65]秦跃平, 傅贵. 煤孔隙分形特性及其吸水性能的研究[J]. 煤炭学报, 2000(01): 57-61.

[66]胡友林, 乌效鸣. 煤层气储层水锁损害机理及防水锁剂的研究[J]. 煤炭学报, 2014(06): 1107-1111.

[67]张国华, 梁冰, 毕业武, 等. 渗透剂溶液对瓦斯解吸促进作用的实验研究[J]. 黑龙江科技学院学报, 2011(04): 261-264.

[68]You Q, Wang C, Ding Q, et al. Impact of surfactant in fracturing fluid on the adsorption–desorption processes of coalbed methane[J]. Journal of Natural Gas Science and Engineering, 2015, 26: 35-41.

[69]Marsalek R, Taraba B. Adsorption of the SDS on Coal[M]. Berlin: Springer-Verlag Berlin, 2008: 163-168.

[70]Crawford R J, Mainwaring D E. The influence of surfactant adsorption on the surface characterisation of Australian coals[J]. Fuel, 2001, 80(3): 313-320.

[71]Sokolov I, Zorn G, Nichols J M. A study of molecular adsorption of a cationic surfactant on complex surfaces with atomic force microscopy.[J]. Analyst, 2015.

[72]张鹏, 魏文珑, 李兴, 等. 4种阴离子表面活性剂在煤沥青表面的润湿规律[J]. 煤炭学报, 2014(05): 966-970.

[73]陈尚斌, 朱炎铭, 刘通义, 等. 清洁压裂液对煤层气吸附性能的影响[J]. 煤炭学报, 2009(01): 89-94.

[74]Lu Y, Yang F, Ge Z, et al. The influence of viscoelastic surfactant fracturing fluids on gas desorption in soft seams[J]. Journal of Natural Gas Science and Engineering, 2015, 27: 1649-1656.

[75]You Q, Wang C, Ding Q, et al. Impact of surfactant in fracturing fluid on the adsorption–desorption processes of coalbed methane[J]. Journal of Natural Gas Science and Engineering, 2015, 26: 35-41.

[76]Yang M, Lu Y, Ge Z, et al. Optimal selection of viscoelastic surfactant fracturing fluids based on influence on coal seam pores[J]. Advanced Powder Technology, 2020, 31(6): 2179-2190.

[77]Li X, Kang Y. Effect of fracturing fluid immersion on methane adsorption/desorption of coal[J]. Journal of Natural Gas Science and Engineering, 2016, 34: 449-457.

[78]Kang Y, Huang F, You L, et al. Impact of fracturing fluid on multi-scale mass transport in coalbed methane reservoirs[J]. International Journal of Coal Geology, 2016, 154: 123-135.

[79]陈俊杰, 任建莉, 钟英杰, 等. 分子模拟在气固吸附机理研究中的应用进展[J]. 轻工机械, 2010, 28(06): 12-16+20.

[80]阳庆元, 刘大欢, 仲崇立. 金属-有机骨架材料的计算化学研究[J]. 化工学报, 2009, 4(60): 805-819.

[81]Sun H. COMPASS: An ab initio force-field optimized for condensed phase applications-overview with details on alkane and benzene compounds[J]. Journal of Physical Chemistry B, 1998, 102(38): 7338-7364.

[82]李超飞. 屯兰2#煤与压裂液相互作用机制的实验与分子模拟[D]. 太原理工大学, 2019.

[83]赵春. 成庄区块3号煤层煤层气储层特征[J]. 煤, 2017, 26(3): 12-14+40.

[84]刘硕. 矿井喷雾降尘表面活性剂作用机理的分子模拟研究[D].太原理工大学,2021.

[85]]朱金勇, 侯淑鹏, 陈礼仪, 等. 煤层气钻探低密度钻井液物/化协同降滤失研究[J]. 煤炭科学技术,2016,44(9):122-126.

[86]杨蒙. 改性SiO2纳米颗粒改变岩石润湿性及提高采收率研究[D]. 中国石油大学(北京),2019.

[87]王大勇, 冯吉才. 杨氏方程的能量求解法及润湿角计算模型[J]. 焊接学报, 2002(06): 59-61+2-1.

[88]杨静, 谭允祯, 王振华, 等. 煤尘表面特性及润湿机理的研究[J]. 煤炭学报, 2007(07): 737-740.

[89]Yokoyama S, Bodily D M, Wiser W H. Chemical structure of heavy oil from coal hydrogenation 1. Hydrogenation with zinc chloride catalyst[J]. Fuel, 1983, 62(1):4-10.

[90]何选明. 煤化学(第2版)[M]. 北京:冶金工业出版社, 2017: 206-207.

[91]Milan R, John C C, Ondřej Š, et al. Arsenic in iron disulfides in a brown coal from the North Bohemian Basin, Czech Republic[J]. International Journal of Coal Geology, 2007, 71: 115-121.

[92]郝世雄, 王承洋, 江成发. 固定碳对煤的孔结构和甲烷吸附量的影响[J]. 煤炭学报, 2012, 37(09): 1477-1482.

[93]张开仲 .构造煤微观结构精细定量表征及瓦斯分形输运特性研究[D]. 中国矿业大学, 2020.

[94]Brunauer S, Emmett P H, Teller E. Adsorption of gases in multimolecular layers[J]. Journal of the American chemical society, 1938, 60(2): 309-319.

[95]LI Dongyong, LIU Qingfu, Weniger P, et al. High-pressure sorption isotherms and sorption kinetics of CH4 and CO2 on coals[J]. Fuel, 2010, 89(3): 569-580.

[96]李树刚, 郭豆豆, 白杨, 等. 不同质量分数SDBS对煤体润湿性影响的分子模拟[J]. 中国安全科学学报, 2020, 30(03): 21-27.

[97]Gao D M, Hong L, Wang J R, et al. Molecular simulation of gas adsorption characteristics and diffusion in micropores of lignite[J]. Fuel, 2020, 269: 117433.

[98]Hao M, Qiao Z, Zhang H, et al. Thermodynamic Analysis of CH4/CO2/N2 Adsorption on Anthracite Coal: Investigated by Molecular Simulation[J]. Energy & Fuels, 2021, 35(5): 4246-4257.

[99]Peng Q, Qiao Z, Sun S. Stability and convergence analysis of second-order schemes for a diffuse interface model with Peng-Robinson equation of state[J]. Journal of Computational Mathematics, 2017, 35(6): 737-765.

[100]杨兆中, 徐鸿涛, 付嫱, 等. 基于分子模拟的煤层CH4解吸规律研究[J]. 油气藏评价与开发, 2016, 6(5): 67-71.

[101]李武广, 杨胜来, 徐晶, 等. 考虑地层温度和压力的页岩吸附气含量计算新模型[J]. 天然气地球科学, 2012, 23(04): 791-796.

[102]Shen X Z, Yan F, Li M Q, et al. Molecular simulation of adsorption of quinolone homologues on FAU zeolite[J]. China Petroleum Processing and Petrochemical Technology, 2016, 18: 110-116.

[103]Wen Z H, Yang Y P, Wang Q, et al. Mechanism and characteristics of CH4/CO2/H2O adsorption in lignite molecules[J]. Geofluids, 2021, 8: 5535321.

[104]周军平, 鲜学福, 李晓红, 等. CO2/CH4在狭缝型孔内竞争吸附的分子模拟[J]. 煤炭学报, 2010, 35(9): 1512-1517.

[105]杨娟, 许思雨, 戴俊, 等. 活化过硫酸铵溶液对煤样氧化增透的实验研究[J]. 煤炭学报, 2020,45(04): 1488-1498.

中图分类号:

 TD712    

开放日期:

 2023-06-16    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式