论文中文题名: | 基于深度学习的驾驶人视觉感知特性研究 |
姓名: | |
学号: | 19205016001 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 0802 |
学科名称: | 工学 - 机械工程 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2023 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 交通安全 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2023-06-16 |
论文答辩日期: | 2023-06-01 |
论文外文题名: | Research on Driver Visual Perception Characteristics Based on Deep Learning |
论文中文关键词: | |
论文外文关键词: | Traffic driving scene ; Deep learning ; Visual direction estimation ; Visual perception model |
论文中文摘要: |
驾驶人的视觉感知特性是影响驾驶行为和安全的重要因素,了解驾驶人在不同道路环境下的视觉信息感知规律,对于提高驾驶人的主动安全和主观舒适度,以及设计更合理的智能辅助系统,具有重要的理论和实际意义。因此,本论文围绕驾驶人视觉感知特性展开研究,主要研究内容如下: (1)构建驾驶人视觉感知数据集。利用眼动仪、相机等设备,在不同道路环境(如城市道路、高速公路、乡村道路等)和任务场景(如直行、转弯、变道等)下,采集大量真实场景图像数据,并通过视觉方向估计技术,获取驾驶人在每一帧图像中的注视点坐标,从而得到包含多模态信息(如交通场景视频、交通要素语义标签、驾驶人注视点等)的数据集。 (2)构建基于深度学习的驾驶人视觉感知模型。基于驾驶人视觉感知数据集,设计并训练一个基于深度学习的端到端模型,该模型以交通场景视频为输入,输出一个概率分布图,表示每个像素点被注视的概率。该模型综合考虑了交通场景中各种交通要素,如车辆、行人、车道线、交通标志等以及这些要素的动态信息和时空特性对驾驶人视觉注意力的影响。 (3)驾驶人视觉感知特性实验验证及分析。利用眼动仪和相机等设备,在不同道路环境和任务场景下,对30名被试人员进行实验测试,并记录他们在每一帧图像中的真实注视点坐标。然后将真实注视点坐标与模型输出的概率分布图进行对比,计算各种评价指标(如准确率、召回率、F1值等),评估模型在不同条件下的泛化能力和预测效果。 |
论文外文摘要: |
The visual perception characteristics of drivers are important factors that affect driving behavior and safety. Understanding the visual information perception patterns of drivers in different road environments is of great theoretical and practical significance for improving their active safety and subjective comfort, as well as designing more reasonable intelligent assistance systems. Therefore, this paper focuses on the visual perception characteristics of drivers, and the main research content is as follows: Build a driver visual perception dataset. Using eye trackers, cameras and other equipment, under different road environments (such as urban roads, highways, rural roads, etc.) and task scenes (such as straight, turning, lane changing, etc.), a large number of real scene image data are collected, and the driver's gaze point coordinates in each image frame are obtained through visual direction estimation technology, Thus, a dataset containing multimodal information such as traffic scene videos, traffic element semantic labels, driver gaze points, etc. is obtained. Construct a driver visual perception model based on deep learning. Based on the driver's visual perception dataset, design and train an end-to-end model based on deep learning. The model takes traffic scene videos as input and outputs a probability distribution map that represents the probability of each pixel being watched. This model comprehensively considers various traffic elements in the traffic scene, such as vehicles, pedestrians, lane lines, traffic signs, and the impact of their dynamic information and spatiotemporal characteristics on the driver's visual attention. Experimental verification and analysis of driver visual perception characteristics. Using devices such as eye trackers and cameras, experimental tests were conducted on 30 participants in different road environments and task scenarios, and their true gaze coordinates were recorded in each frame of the image. Then compare the real fixation point coordinates with the probability distribution map output by the model, calculate various evaluation indicators (such as accuracy, recall, F1 value, etc.), and evaluate the model's generalization ability and prediction performance under different conditions. |
参考文献: |
[1]http://www.caam.org.cn/chn/7/cate_76/con_5235729.html [2]http://https-data-stats-gov-cn.proxy.www.stats.gov.cn/search.htm?s=交通事故 [3]缪小冬. 车辆行驶中的视觉显著目标检测及语义分析研究[D]. 南京:南京航空航天大学, 2014. [43]邓涛. 基于视觉注意的驾驶场景显著性检测模型研究[D]. 成都:电子科技大学, 2018. [51]Jeffrey L. Elman. Finding structure in time[J]. Cognitive science, 1990, 14(2), 179-211. |
中图分类号: | U471.3 |
开放日期: | 2023-06-19 |