论文中文题名: | 快速掘进工作面粉尘分布规律及综合防治技术研究 |
姓名: | |
学号: | 18220214083 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085224 |
学科名称: | 工学 - 工程 - 安全工程 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2021 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 粉尘防治 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2021-06-18 |
论文答辩日期: | 2021-06-02 |
论文外文题名: | Research on Dust Distribution Law and Comprehensive Prevention Technology of Rapid Tunneling Working Face |
论文中文关键词: | |
论文外文关键词: | Rapid tunneling ; Wall-attached air duct ; Dust control ; Numerical simulation ; Comprehensive mining face |
论文中文摘要: |
随着煤矿机械化采掘技术的研究与发展,新型掘进设备的投入使用,由综掘工作面衍生而来的快速掘进工作面出现。其掘进速度加快,会导致粉尘的产生量急剧增大,在巷道内迅速扩散,高浓度粉尘不仅威胁煤矿工人的身心安全,而且阻碍高效生产作业。因此,对快速掘进工作面高效防尘的研究意义重大。 本文通过理论分析与数值模拟相结合的方式,对快速掘进巷道长压短抽式通风除尘系统优化并在此基础上,提出多抽风筒除尘系统及附壁风筒控尘系统,讨论了螺旋出风式和径向出风式附壁风筒的结构特点和参数优化。本文基于气固两相流理论,应用ANSYS Fluent数值模拟软件对快速掘进工作面粉尘分布进行模拟,进行现场验证并得到如下结论: (1)对巷道风流进行模拟表明,在快速掘进巷道中长压短抽式通风会在掘锚机前后形成涡流区,阻碍粉尘的排除,通过合理的风筒布置及风量配比,能够降低粉尘聚集,提高除尘效率。 (2)经过数值模拟进行参数优化,得出压风筒直径1m,距迎头15m,抽风筒直径0.8m,距迎头3m且压抽风量比为1.3时,长压短抽式通风除尘系统除尘效率较高。在此基础上优化抽风筒,能够增加负压抽吸范围及强度,进一步降低粉尘浓度。 (3)附壁风筒形成的风幕可将大量粉尘控制在迎头一定范围内,改善司机作业环境,阻隔粉尘扩散的同时压缩尘源粉尘喷射空间,相比于普通长压短抽式通风,能够表现更好的控尘作用。 (4)采用控制变量法,保证长压短抽式参数不变的条件下,对螺旋出风式和径向出风式附壁风筒的出风口宽度和分风量进行参数优化。通过数值模拟结果对比,得出螺旋出风式和径向出风式附壁风筒最佳出口宽度分别为0.3m和0.05m,径轴向出风比均为1:2,经现场验证,粉尘在迎头3m范围内得到有效控制。 |
论文外文摘要: |
With the research and development of mechanized mining technology in coal mines and the use of new tunneling equipment, the rapid tunneling working face derived from the fully mechanized tunneling face appears. As the tunneling speed of the rapid tunneling working face is accelerating, the amount of dust generated has increased sharply, and it is severely spread in the roadway. The high concentration of dust not only threatens the health of mine workers, but also hinders safe and efficient production operations. Therefore, it is of great significance to study the high-efficiency dust-proof of the fast tunneling face. Based on the optimization of the long-pressure and short-extraction ventilation dust removal system in the rapid tunneling working face by the method of combining theoretical analysis and numerical simulation, this paper proposes a multi-negative pressure air duct dust removal system and a wall-attached air duct dust control system, and discussed the structural characteristics and parameter optimization of the spiral-outlet type wall-attached air duct and radial-outlet type wall-attached air duct. Based on the theory of gas-solid two-phase flow, this paper uses ANSYS Fluent numerical simulation software to simulate the dust distribution of rapid tunneling working face. Perform on-site verification and get the following conclusions: (1) The simulation of the air flow in the roadway shows, the long-pressure and short-extraction ventilation in the rapid tunneling roadway will form a vortex zone before and after the windlass, which hinders the removal of dust. Through reasonable air duct layout and air volume ratio, dust accumulation can be reduced and dust removal efficiency can be improved. (2) After parameter optimization through numerical simulation, it is concluded that when the diameter of the positive-pressure air duct is 1m, the distance from the working face is 15m, the diameter of the negative-pressure air duct is 0.8m, the distance from the working face is 3m, and the pressure-extraction ratio is 1.3, the dust removal efficiency of the long-pressure and short-extraction ventilation and dust removal system is higher. On this basis, optimizing the suction tube can increase the range and intensity of negative-pressure air duct, and further reduce the dust concentration. (3) The air curtain formed by the wall-attached air duct can control a large amount of dust in a certain range working face, improve the driver's working environment, block the spread of dust, and compress the dust source dust injection space. Compared with ordinary long-pressure and short-extraction ventilation, the wall-attached air duct can show better dust control effect. (4) Using the controlled variable method to ensure that the parameters of the long-pressure and short-extraction type remain unchanged, the width of the outlet opening and the air distribution volume of the spiral-outlet type wall-attached air duct and radial-outlet type wall-attached air duct are optimized. Through the comparison of numerical simulation results, it is concluded that the best outlet widths of the spiral-outlet type wall-attached air duct and radial-outlet type wall-attached air duct respectively are 0.3m and 0.05m, and the radial-to-axial air outlet ratio is 1:2. According to field verification, the dust is effectively controlled within 3m working face. |
参考文献: |
[1] 国家统计局.中华人民共和国2020年国民经济和社会发展统计公报[N].人民日报,2021-03-01(10). [2] 李洪言,赵朔,林傲丹,等.2019年全球能源供需分析—基于《BP世界能源统计年鉴(2020)》[J].天然气与石油,2020,38(6):122-130. [3] 杨仁树.我国煤矿岩巷安全高效掘进技术现状与展望[J].煤炭科学技术,2013,41(9):18-23. [4] 李联.我国煤矿岩巷安全高效掘进技术现状与展望[J].科学技术创新,2018(17):46-47. [5] 熊权湘,曾叶欣,张卓慧,等.煤矿高效掘进技术发展初探[J].煤矿机械,2016,37(11):3-4. [6] 黄宜生,胡胜勇,邵和,等.综掘工作面分级除尘系统及其应用[J].中国安全科学学报,2019,29(9):150-154. [7] 王渊.浅谈煤矿尘肺病预防及粉尘危害防治[J].科技风,2018(26):151-152. [8] 王杰,郑林江.煤矿粉尘职业危害监测技术及其发展趋势[J].煤炭科学技术,2017,45(11):119-125. [9] 郭海军,董华东.长压短抽除尘系统在快速掘进工作面的应用[J].煤矿安全,2016,47(4):158-160+164. [10] 郭永文.神东矿区掘进巷道长压短抽通风除尘技术[J].煤矿安全,2017,48(S1):15-19. [12] 朱思.矿尘的防治与预防职业病[J].山东煤炭科技,2016(11):62-63+67. [13] 张建功.我国煤矿井下粉尘防治现状与对策分析[J].江西煤炭科技,2015(3):74-75. [14] 侯佃平.寸草塔煤矿粉尘防治技术与管理[J].煤炭工程,2017,49(S2):94-96. [15] 程蒙蒙,王珂.煤矿采掘工作面粉尘防治技术及其发展趋势研究[J].山东工业技术,2018(11):86. [17] 张军.煤矿井下呼吸性粉尘的现状与治理[J].资源节约与环保,2019(10):92-93. [18] 赵卫强,句海洋,陈磊.采煤机截割粉尘扩散运移规律研究[J].煤炭工程,2017,49(11):109-111+115. [21] 龚剑.高海拔矿山掘进面粉尘运移规律及通风除尘系统优化[D].北京科技大学,2016. [32] 陈举师,蒋仲安,张义坤.破碎硐室粉尘质量浓度分布规律的实验研究[J].东北大学学报(自然科学版),2015,36(7):1051-1055. [33] 聂百胜,李祥春,杨涛,等.工作面采煤期间PM2.5粉尘的分布规律[J].煤炭学报,2013,38(1):33-37. [34] 蒋仲安,王露露,张中意.掘进巷道中长压短抽条件下附壁风筒的实验研究[J].现代矿业,2015,31(3):129-133. [35] 王明,蒋仲安,田冬梅,等.岩巷综掘面混合式通风除尘数值模拟研究[J].华北科技学院学报,2019,16(5):11-17. [36] 邹常富,刘勇,马威,等.综掘工作面粉尘的产生及运移规律研究[J].矿业安全与环保,2014,41(6):26-28. [37] 谭聪,蒋仲安,王明,等.综放工作面多尘源粉尘扩散规律的相似实验[J].煤炭学报,2015,40(1):122-127. [38] 王洪胜,谭聪,蒋仲安,等.综放面多尘源粉尘分布规律数值模拟及实测[J].哈尔滨工业大学学报,2015,47(8):106-112. [43] 沈斌,云昊,刘新蕾.全断面高效快速掘进工作面粉尘分布规律数值模拟[J].黑龙江科技大学学报,2016,26(4):368-372. [44] 肖峻峰,许峰,樊世星,等.大断面综掘巷道长压短抽条件下粉尘运移模拟[J].中国安全科学学报,2017,27(2):127-132. [45] 秦跃平,姜振军,张苗苗,等.综掘面粉尘运移规律模拟及实测对比[J].辽宁工程技术大学学报(自然科学版),2014,33(3):289-293. [46] 李雨成,李智,高伦.基于风流及粉尘分布规律的机掘工作面风筒布置[J].煤炭学报,2014,39(S1):130-135. [47] 李泳俊,王鹏飞,舒威,等.综掘面长压短抽通风合理压抽比仿真及研究[J].采矿技术,2019,19(2):93-100. [48] 蒋仲安,闫鹏,陈举师,等.岩巷掘进巷道长压短抽通风系统参数优化[J].煤炭科学技术,2015,43(1):54-58. [49] 王梅.纵轴式掘进机喷雾系统研究[J].煤炭与化工,2017,40(8):57-59+63. [50] 詹召伟,沈建波,蔡可强.不同条件下煤层注水效果数值模拟分析[J].煤炭技术,2018,37(11):224-226. [51] 彭亚,蒋仲安,付恩琦,等.综采工作面煤层注水防尘优化及效果研究[J].煤炭科学技术,2018,46(1):224-230. [52] 程卫民,杨俊磊,周刚.基于高压气幕技术的综掘面封闭式除尘系统参数优化设计[J].煤矿安全,2013,44(7):14-17. [53] 裴治巧,苏举端.岩巷综掘粉尘防治技术的应用[J].江西煤炭科技,2014(1):49-51. [54] 张强,韩东,张旭,等.掘进机负压降尘装置设计及性能分析[J].煤炭科学技术,2018,46(12):1-7. [55] 马中飞,赵威振,靳鹏岗.降尘泡沫剂配方优选及其在岩巷综掘面的应用[J].中国粉体技术,2017,23(1):32-35. [56] 李绿山.浅谈有效磁化水技术在煤矿井下综合防尘等方面的应用[J].化学工程与装备,2017(11):284-286. [57] 聂百胜,丁翠,李祥春等.磁场对矿井水表面张力影响规律的实验研究[J].中国矿业大学学报,2013,42(1):19-23. [58] 刘志超,马赛,宋稳亚.磁化水喷雾除尘效率研究[J].矿业安全与环保,2016,43(2):19-21. [59] 王怀增,李修磊,丁仰卫.煤矿井下活性磁化水降尘技术应用研究[J].煤矿机械,2018,39(8):132-134. [60] 孙建华,李珺,曲征,等.超声波雾化降煤尘性能研究[J].安全与环境学报,2016,16(6):84-88. [61] 刘伟,徐东耀,陈佐会,等.超声波雾化脱硫除尘一体化废气净化技术的研发与应用[J],环境工程,2018,36(5):94-99. [62] 张江石,刘金锋,李晓曦,等.掘进工作面高效复合式湿式除尘器[J].煤矿安全,2017,48(11):126-129. [64] 代江娇,黄家海,赵斌等.大断面模拟掘进巷道通风除尘系统数值分析[J].煤矿安全,2016,47(11):193-196. [65] 蒋仲安,闫鹏,陈举师,等.岩巷掘进巷道长压短抽通风系统参数优化[J].煤炭科学技术,2015,43(1):54-58. [66] 聂文,马骁,程卫民,等.通风条件影响长压短抽掘进面粉尘扩散的仿真实验[J].中南大学学报(自然科学版),2015,46(9):3346-3353. [67] 程卫民,王昊,孙彪,等.综掘面径向分风与压风配比对风幕阻尘的影响[J].中国矿业大学学报,2017,46(5):1014-1023. [69] 曹丽琴.煤矿防尘降尘技术与安全生产管理[J].内蒙古煤炭经济,2017(19):86-87. [70] 孔鹏.矿井粉尘现状及综合防治技术[J].西部探矿工程,2020,32(8):105-106. [71] 郭明明.煤矿粉尘标型特征研究[D].河南理工大学,2017. [72] 张锐.突出煤层掘进工作面煤尘润湿特性及防尘技术研究[D].中国矿业大学,2019. [73] 莫金明.综掘面风筒出风口参数变化对粉尘场影响研究[D].西安科技大学,2018. [74] 朱小雨.煤矿长距离掘进工作面通风技术研究[J].江西化工,2020(2):329-330. [77] 孙亮.基于机器学习的代数湍流模型建模[D].南京航空航天大学,2019. [78] 王宇航,赵劲彪,辛亮.不同湍流模型在三维后台阶数值模拟中的对比[J].西安航空学院学报,2019,37(1):27-31. |
中图分类号: | TD714 |
开放日期: | 2021-06-18 |