- 无标题文档
查看论文信息

论文中文题名:

 HY公司拉线库存预警机制构建    

姓名:

 袁浪    

学号:

 22302219041    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 125100    

学科名称:

 管理学 - 工商管理    

学生类型:

 硕士    

学位级别:

 工商管理硕士    

学位年度:

 2025    

培养单位:

 西安科技大学    

院系:

 管理学院    

专业:

 工商管理    

研究方向:

 运作与供应链管理    

第一导师姓名:

 陈铁华    

第一导师单位:

 西安科技大学    

论文提交日期:

 2025-06-01    

论文答辩日期:

 2025-05-30    

论文外文题名:

 Construction of Early Warning Mechanism for Line Inventory at HY Company    

论文中文关键词:

 库存管理 ; 预警机制 ; 分类管理 ; ERP系统 ; VMI模式    

论文外文关键词:

 Inventory management ; Early warning mechanisms ; Classified management ; ERP system ; VMI mode    

论文中文摘要:

HY公司在实际库存管理过程中面临较为突出的缺料与呆料问题。一方面,关键物料缺料频发,导致生产线中断、交付延迟,影响客户满意度与订单履约;另一方面,大量物料长期未使用形成呆滞库存,占用仓储空间与资金资源,降低库存周转率。现有库存管理体系响应滞后、分类粗放,缺乏针对性的预警机制与动态管理工具,难以适应市场波动和供应链变化的需求,库存效率亟待提升。 为解决上述问题,研究基于实地访谈与业务数据,系统分析了HY公司库存管理现状,识别出需求预测失准、生产计划频繁变更、供应链联动滞后等核心成因,并以此为基础构建了缺料与呆料双预警机制。缺料预警机制中,采用基于“物料价值-周转率”的二维ABC分类模型,实现库存精细化管理;引入VMI模式优化补货响应路径,并结合指数平滑法提升需求预测的时效性和准确性。呆料预警机制方面,构建以存货周转率、库存占比、入库时间等为核心的预警指标体系,并结合ERP系统实现实时监测与动态阈值调整,确保不同类别物料的精准识别和有效处置。两套机制均设计了从数据监测、风险识别、预警触发到响应闭环的全流程预警路径,形成库存动态管控能力。 本文不仅为HY公司建立库存预警机制提供了可行的理论支撑和实践路径,也为制造企业提升库存管理数字化水平与供应链协同效率提供了参考范式。在库存管理向智能化、柔性化转型的背景下,该研究对同类型企业提升库存决策科学性与资源配置效率具有一定推广价值。

论文外文摘要:

In the process of actual inventory management, HY company faces prominent problems of material shortage and stupedness. On the one hand, the frequent shortage of key materials leads to the interruption of production line and delivery delay, which affects customer satisfaction and order fulfillment. On the other hand, a large number of materials are not used for a long time to form inert inventory, which takes up storage space and capital resources and reduces inventory turnover. The existing inventory management system has lagged in response, extensive classification, lack of targeted early warning mechanism and dynamic management tools, which is difficult to adapt to the needs of market fluctuations and supply chain changes, and inventory efficiency needs to be improved urgently.

In order to solve the above problems, based on field interviews and business data, the research systematically analyzed the current situation of inventory management of HY Company, identified the core causes such as inaccurate demand forecast, frequent production plan changes, and lag of supply chain linkage, and constructed the double early warning mechanism of missing materials and frozen materials on this basis. In the early warning mechanism of material shortage, a two-dimensional ABC classification model based on "material value-turnover rate" was used to realize fine inventory management. The VMI model was introduced to optimize the replying response path, and the exponential smoothing method was combined to improve the timeliness and accuracy of demand forecasting. In terms of early warning mechanism, an early warning index system with inventory turnover rate, inventory proportion and warehousing time as the core was constructed, and real-time monitoring and dynamic threshold adjustment were realized combined with the ERP system to ensure the accurate identification and effective disposal of different types of materials. Both mechanisms are designed with a full-process early-warning path from data monitoring, risk identification, early-warning trigger to closed-loop response, forming a dynamic inventory control capability.

This study not only provides a feasible theoretical support and practical path for HY company to establish an inventory early warning mechanism, but also provides a reference paradigm for manufacturing enterprises to improve the digital level of inventory management and supply chain synergy efficiency. Under the background of the transformation of inventory management to intelligent and flexible, this study has certain promotion value for similar enterprises to improve the scientific inventory decision-making and resource allocation efficiency.

参考文献:

[1]贾品荣,杨雨萌.新质生产力视角下高精尖产业发展:分析框架与竞合趋势(2024)[J].经济研究参考,2024,(02):5-26.

[2]万胤岳.工业4.0背景下企业智能制造发展探析[J].中小企业管理与科技(下旬刊),2021(09):47-49.

[3]陈龙,刘刚,戚聿东,等.人工智能技术革命:演进、影响和应对[J].国际经济评论,2024,(03):9-51+4.

[4]郭琳. FATY汽车零部件公司物料管理方案优化研究[D].吉林大学,2023.

[5]卢海清.浅析供应链库存管理的问题与对策[J].中国市场,2015(50):24-25.

[6]Altman, E. I. Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy[J]. The Journal of Finance, 1968, 23(4): 589-609.

[7]Ohlson, J. A. Financial Ratios and the Probabilistic Prediction of Bankruptcy[J]. Journal of Accounting Research, 1980, 18(1): 109-131.

[8]Beaver, W. Financial Ratios as Predictors of Failure[J]. Journal of Accounting Research, 1966, 4: 71-111.

[9]Zavgren, C. V. Assessing the Vulnerability to Failure of American Industrial Firms: A Logistic Analysis[J]. Journal of Business Finance & Accounting, 1985, 12(1): 19-45.

[10]顾海兵. 宏观经济预警研究:理论方法历史[M]. 北京:中国社会科学出版社, 1997.

[11]佘廉. 企业预警管理丛书[M]. 北京:经济管理出版社, 1993.

[12]林士栋, 王士刚. 基于考核指标的企业预警管理理论[J]. 中国企业管理, 1996, 4: 45-50.

[13]Barlow, J. Financial Performance Indicators and Risk Management: Theoretical Foundations[J]. Risk Analysis Journal, 2019, 15(2): 45-60.

[14]王艺. 企业风险预警多阶段分析框架的构建[J]. 管理科学, 2022, 8(4): 32-40.

[15]王立波. 信息共享与透明度对企业风险预警机制的影响[J]. 管理科学, 2013, 6(4): 50-56.

[16]Henderson, K., Li, Y., & Smith, R. Real-Time Data Analytics in Risk Prediction Using Big Data Technologies[J]. International Journal of Multiphysics, 2024, 18(1): 45-60.

[17]Ghazali, M., Ali, Z., & Ahmed, T. Blockchain Technology in Enterprise Risk Prediction Systems[J]. Journal of Business Research, 2023, 35(3): 78-89.

[18]Chen, L., Xu, T., & Zhang, Y. Machine Learning for Dynamic Risk Prediction in Enterprise Management[J]. Journal of Risk Analysis, 2023, 30(3): 123-135.

[19]王晓琳, 张伟. 竞争情报风险预警研究主题与框架构建[J]. 情报工程, 2022, 6(5): 25-35.

[20]Green, A., Patel, R., & Chen, H. Using NLP for Competitive Intelligence and Risk Prediction[J]. Journal of Artificial Intelligence in Business, 2023, 10(2): 89-102.

Reyes, R., Lee, D., & Zhou, P. Big Data and AI in Enterprise Operational Risk Management[J]. Journal of Technology and Innovation, 2024, 15(2): 112-126.

[22]Kim, S., Park, Y., & Choi, M. IoT-based Real-time Operational Risk Monitoring in Manufacturing[J]. Journal of Industrial Management, 2024, 12(3): 45-56.

[23]Davis, R., & Schmidt, T. Blockchain-enabled Supply Chain Risk Management Systems[J]. Logistics and Supply Chain Journal, 2023, 18(4): 210-225.

[24]Ghasemi, A., & Ahmed, S. Multi-dimensional Dynamic Risk Assessment Model for Enterprises[J]. European Journal of Operational Research, 2023, 35(1): 65-78.

[25]Kumar, R., & Smith, T. Global Enterprise Risk Prediction Frameworks in Emerging Markets[J]. Journal of International Business Studies, 2024, 19(2): 34-47.

[26]周首华. 基于现金流量的财务危机预警模式研究[J]. 财经研究, 1996, 6(3): 50-60.

[27]张友棠. 企业现金流指标在财务危机预警中的应用[J]. 会计研究, 2015, 8: 45-53.

[28]Khan, S., Ahmed, A., & Malik, R. Dynamic Inventory Balancing and Risk Forecasting[J]. International Journal of Supply Chain Management, 2021, 10(2): 35-42.

[29]陈媛. 企业库存管理与供应链协同的研究进展[J]. 管理评论, 2020, 12(5): 70-82.

[30]俞葵. 企业供应链协同管理系统设计[J]. 管理工程学报, 2006, 5(4): 25-30.

[31]姜大光, 李华, 王明杰. 基于VMI的供应链库存管理研究[J]. 中国管理科学, 2007, 15(3): 45-52.

[32]吴俊杰, 陆玉凯, 况立江. 智能物流IT系统在供应链中的应用[J]. 中国物流学报, 2020, 9(2): 30-37.

[33]陈晓莺. 基于VMI模式的库存预警机制优化[J]. 企业管理学报, 2023, 18(1): 45-52.

[34]McCarthy, P., Taylor, D., & Jones, S. Fuzzy Logic for Inventory Optimization in Complex Markets[J]. Journal of Operations Research, 2023, 15(2): 40-56.

[35]Jones, R., & Taylor, D. Deep Learning Models for Inventory Demand Forecasting[J]. AI in Business, 2023, 12(4): 34-42.

[36]Carter, M., Schmidt, H. Blockchain and Vendor Managed Inventory in Supply Chain Transparency[J]. Logistics Today, 2023, 35(3): 18-24.

[37]Lee, J., Carter, R., & Henderson, S. IoT-Driven Inventory Management for Supply Chain Efficiency[J]. Journal of Supply Chain Management, 2024, 19(3): 50-63.

[38]Henderson, K., & Lee, S. Green Supply Chain Management and Inventory Risk Reduction[J]. Sustainability in Business, 2023, 14(6): 25-33.

[39]Anderson, J., & Carter, M. Intelligent Inventory Forecasting with AI[J]. Journal of Industrial Management, 2024, 11(1): 20-29.

[40]Zhang X, Wang Y. A dynamic perspective on inventory management optimization using big data analytics[J]. Journal of Business Logistics, 2023, 44(3): 245-258.

Smith J, Lee K. Revisiting reorder point methods in a volatile supply chain environment[J]. International Journal of Production Economics, 2022, 250: 108-119.

[42]Li H, Zhou R. Application of advanced inventory optimization techniques in the manufacturing industry[J]. Computers & Industrial Engineering, 2023, 180: 107548.

[43]Johnson P, Carter L. JIT production and its impact on inventory levels: Lessons from the automotive industry[J]. Production Planning & Control, 2024, 35(2): 89-101.

[44]Chen J, Huang T. Enhancing JIT efficiency through digital transformation[J]. Operations Research Perspectives, 2023, 10: 100241.

[45]Carter A, Schmidt D. Leveraging VMI to optimize inventory in the retail sector[J]. Supply Chain Management Review, 2023, 29(5): 12-19.

[46]Wu J, Zhao L. The role of trust in VMI implementation: Evidence from global retailers[J]. Journal of Retailing, 2023, 99(1): 33-45.

[47]Zhao Q, Lin X. Data transparency in VMI systems: A case study from electronics manufacturing[J]. Journal of Operations Management, 2023, 71: 115-125.

[48]Davis R, Sun Y. Advancing JMI for agile manufacturing: A comprehensive framework[J]. International Journal of Logistics Management, 2024, 35(1): 21-39.

[49]Carter T, Schmidt D. Deep collaboration in JMI: Best practices from the aerospace sector[J]. Logistics Research, 2023, 16(3): 71-88.

[50]Lee K, Park J. Integrating AI in JMI systems for real-time decision-making[J]. Journal of Supply Chain Management, 2023, 59(2): 29-45.

[51]McCarthy P, Liu Y. Machine learning applications in inventory forecasting: A case study[J]. Expert Systems with Applications, 2023, 212: 118619.

[52]Brown S, Taylor R. IoT-enabled inventory systems: Real-time monitoring and decision support[J]. Journal of Internet of Things, 2023, 20(4): 302-315.

[53]Green A, Black H. Artificial intelligence in dynamic inventory management: A comparative analysis[J]. Journal of Intelligent Manufacturing, 2024, 36(2): 141-157.

[54]Wang X, Zhang M. Enhancing supply chain collaboration through inventory management systems[J]. Journal of Supply Chain Innovation, 2024, 15(1): 60-77.

[55]Ghasemi A, Alavi M. Inventory control under uncertainty using fuzzy logic systems[J]. Computers & Operations Research, 2024, 150: 106783.

[56]Chen, L., Zhang, W., Li, H. Dynamic coordination in supply chain information sharing. International Journal of Supply Chain Management, 2023, 12(3): 55-67.

[57]Henderson, M. Blockchain applications in supply chain transparency. Journal of Logistics and Technology, 2024, 15(2): 87-98.

Li, X., Zhao, Y. Demand sharing systems in supply chain agility. Supply Chain Insights, 2023, 28(3): 67-75.

[59]Smith, A., Carter, J. Cost-sharing strategies for supply chain collaboration. Operations Research Letters, 2023, 51(4): 327-335.

[60]Zhao, J., Huang, R. Dynamic incentive mechanisms in adaptive supply chains. Decision Sciences Journal, 2024, 55(3): 410-426.

[61]Carri, G., Johnson, L. Trust and collaboration in supply chain relationships. European Journal of Logistics, 2023, 21(3): 243-260.

[62]Tom, D., Davis, R. Long-term partnership strategies in multinational supply chains. Global Supply Chain Review, 2022, 14(1): 58-72.

[63]Wu, T., Zhang, F. IoT-enabled logistics optimization. Journal of Industrial Engineering, 2023, 45(2): 189-204.

[64]Lee, H., Park, J. Artificial intelligence in supply chain predictions. Artificial Intelligence in Industry, 2024, 10(2): 80-95.

[65]Gao, M., Yu, Q. Deep learning applications in supply chain coordination. Computers and Industrial Engineering, 2024, 125: 107523.

[66]Ioannou, P., Christofides, N. Smart contracts for supply chain automation. Journal of Applied Automation, 2023, 32(4): 299-315.

[67]McCarthy, P., Singh, K. Flexible logistics systems in global supply chains. Logistics Technology Journal, 2023, 15(3): 54-72.

[68]Carter, S., Lee, J. Managing cross-cultural challenges in global supply chains. International Journal of Supply Chain Management, 2023, 22(2): 102-118.

[69]Singh, R., Kumar, A. Personalized coordination strategies for industry-specific supply chains. Supply Chain Research Quarterly, 2024, 19(1): 14-30.

[70]Lam, J. Enterprise Risk Management: From Incentives to Controls [M]. John Wiley & Sons, 2021.

[71]Aven, T. Risk Assessment and Risk Management: Review of Recent Advances on Their Foundation [J]. European Journal of Operational Research, 2022, 292(2): 791-803.

[72]Leveson, N. Engineering a Safer World: Systems Thinking Applied to Safety [M]. MIT Press, 2023.

[73]Kaplan, R. S., Mikes, A. Managing Risks: A New Framework [J]. Harvard Business Review, 2023, 101(1): 48-60.

[74]Monteith, M., Ho, E. Machine Learning for Dynamic Risk Prediction in Corporate Contexts [J]. Journal of Risk and Financial Management, 2024, 17(3): 113-128.

[75]Hoffmann, E., Costas, J. Data-Driven Risk Management: Emerging Trends and Technologies [J]. Journal of Business Logistics, 2023, 44(1): 23-36.

[76]Harrington, S. E., Niehaus, G. R. Risk Management and Insurance [M]. McGraw-Hill, 2022.

[77]Crockford, N. An Introduction to Risk Management [M]. Woodhead Publishing, 2023.

[78]Sarkar, S., Dehghani, M. The Role of IoT in Modern Risk Monitoring Systems [J]. IEEE Internet of Things Journal, 2024, 11(2): 1567-1578.

[79]Chen, W., Zhang, J. Real-Time Risk Monitoring and Early Warning Based on Big Data [J]. Risk Management, 2024, 26(2): 92-104.

[80]Nakamoto, S., Nakamura, R. Blockchain in Risk Management: Theoretical Framework and Case Studies [J]. International Journal of Business Research, 2023, 18(4): 67-82.

[81]Cai Y, Yu Z, Zhang W, Liu Y. FLOW: A Feedback Loop Based Framework for User-Agent Co-Evolution in Recommender Systems[J]. Proceedings of the ACM Web Conference 2024 (WWW '24), 2024: 1536–1546.

中图分类号:

 F273.4    

开放日期:

 2025-06-27    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式