论文中文题名: | 防黄剂HN-150粉尘爆炸特性及惰化抑爆实验研究 |
姓名: | |
学号: | 18320214003 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085224 |
学科名称: | 工学 - 工程 - 安全工程 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 工业火灾与爆炸防控 |
第一导师姓名: | |
第一导师单位: | |
第二导师姓名: | |
论文提交日期: | 2022-06-22 |
论文答辩日期: | 2022-05-30 |
论文外文题名: | Experimental Study on Dust Explosion Characteristics and Inerting Explosion Suppression of Yellow Inhibitor HN-150 |
论文中文关键词: | |
论文外文关键词: | Yellow inhibitor HN-150 ; Minimum Ignition Temperature ; Maximum Explosion Pressure ; Burning and Explosion Characteristics ; Explosion Suppression ; Inertion |
论文中文摘要: |
可燃性粉尘爆炸威力大、破坏性强,过程难以控制,对粉尘加工型企业的安全生产以及人民的生命财产安全都造成了极大的威胁。因此,可燃粉尘爆炸事故的防治工作一直被安全工作者所重视,在粉尘爆炸的防控工作从未停止。防黄剂HN-150粉尘在生产加工过程中包括了反应合成、离心分离、真空干燥、筛分粉碎、成品包装等工艺流程,这些过程中形成的可燃性粉尘云都有发生燃烧爆炸的可能性,但是目前国内对防黄剂粉尘燃烧爆炸的特性研究还相对较少,在防黄剂粉尘防爆控制方面缺少理论支撑。 本文首先进行了防黄剂的热解性能分析;然后利用Godbert-Greenwald(G-G)加热炉,实验测试了防黄剂粉尘样品的爆炸极限参数,分析了粉尘云质量浓度、粉尘粒径和喷尘压力三种因素对粉尘云最低着火温度的影响;最后利用20L爆炸球实验系统进行了防黄剂粉尘爆炸压力特性实验以及K2CO3、NH4H2PO4和NaHCO3三种抑爆材料的抑爆实验,并探究了惰性气体和惰性材料协同抑爆的效果。实验结果表明: (1)四种升温速率下的防黄剂粉尘热解都存在4个明显的失重阶段,后两阶段的失重率相比于前两阶段较大,且随着坩埚温度的升高,失重阶段发生前后相差的温度值越小,表明热解反应随着温度的升高失重阶段逐渐连续;随着升温速率的升高,曲线的失重速率峰值越大,曲线外推起始温度越小,最大失重率Vmax的绝对值越大,对应升温速率下的热解越完全。升温速率为15K/min和20K/min的DSC曲线在一开始出现放热峰的原因是随着升温速率增大,热解反应初始阶段出现了气体吸附现象。质荷比越小,离子流强度曲线的峰值越大,第一失重阶段结束时气体产物的产率达到最大,在第三失重阶段结束时气体产物的产率再次达到峰值。防黄剂粉尘在升温速率为10K/min下的热解过程中析出了CH4、CO、CH2O、N2O、CO2、NO2、C2H7N和H2O等气体产物。 (2)防黄剂粉尘云的最低着火温度随着粉尘浓度的增大呈现出先降低的趋势,当继续增大到某一浓度时,其最低着火温度不再降低,并稳定在270℃,60目粒径范围内防黄剂颗粒的着火敏感浓度为2096g/m3,160目和200目粒径范围内的防黄剂粉尘的着火敏感浓度为1198g/m3。防黄剂粉尘浓度较小时,其最低着火温度较高,当粉尘浓度低于150 g/m3时,不论喷尘压力多大,防黄剂粉尘都不会着火。防黄剂粉尘的最低着火温度随着喷尘压力的增大,出现了三种不同的现象,第一种是粒径为60目和160目防黄剂粉尘浓度为299g/m3时,粉尘最低着火温度呈现出随喷尘压力增大而升高的明显趋势,但是粒径为200目时则出现了先降低后升高的趋势;第二种为粉尘浓度继续增大时,防黄剂粉尘最低着火温度则随着喷尘压力的增大呈现出先升高再逐渐平稳的趋势;第三种现象是当粉尘浓度再继续增大时,防黄剂粉尘最低着火温度不会随着喷尘压力的增大而出现变化;防黄剂粉尘的粒径越小,粉尘云最低着火温度值越低,越容易着火,越危险。 (3)在初始点火能量为2kJ,点火延迟时间为 60 ms的条件下,粒径为200目的防黄剂粉尘云爆炸下限为70~80 g/m3;随着防黄剂粉尘云浓度的增加,粉尘云最大爆炸压力先增大后减小,当防黄剂粉尘质量浓度达到 350 g/m3时,其最大爆炸压力可达到0.850 MPa,当粉尘浓度为300g/m3时,防黄剂粉尘的爆炸指数Kst最大,Kmax达到43.11MPa·m/s,其爆炸烈度等级为st3等级,爆炸特征为严重。 (4)K2CO3、NH4H2PO4和NaHCO3三种抑爆材料均能有效地抑制防黄剂粉尘的爆炸,其抑爆效果: NaHCO3 >NH4H2PO4>K2CO3。K2CO3、NH4H2PO4和NaHCO3能完全抑爆时的添加比例分别为70%、60%和50%。采取氮气+粉尘协同抑爆要比单独抑爆方式效果更加显著,在工业生产过程中宜采取此种抑爆方式。 本文所得数据和结论能为预防防黄剂粉尘燃爆提供一定的理论指导,对防黄剂生产加工企业的安全生产具有重要参考意义。 |
论文外文摘要: |
The explosive power of combustible dust is large and destructive, and the process is difficult to control, which poses a great threat to the safe production of dust processing enterprises and the safety of people's life and property. Therefore, the prevention and control work of combustible dust explosion accidents has been paid attention to by safety workers, and the prevention and control work of dust explosion has never stopped. Yellow inhibitor HN-150 dust in the process of production and processing including reaction synthesis, centrifugal separation, vacuum drying, crushing, sieving, finished product packaging process, the combustible dust cloud formed in the process, there is the possibility of burning explosion, but the current domestic research on yellow remover dust combustion characteristics of the explosion is still relatively small.There is lack of theoretical support in explosion-proof control of yellow inhibitor dust. In this paper, the physical and chemical properties of yellow inhibitor dust were analyzed, including particle size analysis and pyrolysis performance analysis.Then, using Godbert-Greenwald (G-G) heating furnace, the combustion characteristics of yellow inhibitor dust samples were tested. The influence of dust cloud mass concentration, dust particle size and dust spraying pressure on the lowest ignition temperature of dust cloud was analyzed, and the combustion characteristics of yellow inhibitor dust cloud were revealed. Finally, 20L explosive ball experiment system was used to test the explosive characteristics of yellow inhibitor dust and K2CO3, NH4H2PO4 and NaHCO3, and explore the synergistic explosive suppression effect of inert gas and inert material, revealing the explosive characteristics and inert explosive suppression effect of yellow inhibitor dust. The experimental results show that: (1) There are four obvious weight loss stages in the pyrolysis of yellow agent dust at the four heating rates. The weight loss rate of the latter two stages is larger than that of the first two stages, and with the increase of crucible temperature, the temperature difference before and after the weight loss stage is smaller, indicating that the weight loss stage of pyrolysis reaction is gradually continuous with the increase of temperature. As the heating rate increases, the peak weight loss rate of the curve increases, the initial extrapolation temperature of the curve decreases, the absolute value of the maximum weight loss rate Vmax increases, and the pyrolysis is more complete at the heating rate. The reason why exothermic peaks appeared at the beginning of DSC curves with the heating rate of 15K/min and 20K/min was that gas adsorption appeared at the initial stage of pyrolysis reaction with the increase of the heating rate. The smaller the mass charge ratio is, the larger the peak value of ion flow intensity curve is, and the gas product yield reaches the maximum at the end of the first weight loss stage, and again reaches the peak at the end of the third weight loss stage. CH4, CO, CH2O, N2O, CO2, NO2, C2H7N and H2O were precipitated during the pyrolysis process at a temperature rise rate of 10K/min. (2) The minimum ignition temperature of yellow agent dust cloud decreases with the increase of yellow inhibitor dust concentration. When the dust concentration continues to increase to a certain concentration, the minimum ignition temperature of yellow inhibitor dust cloud no longer decreases, and is stable at 270℃. The flame sensitive concentration of yellow inhibitor particles in the range of 60 mesh particle size is 2096g/m3. The ignition sensitive concentration of yellow inhibitor dust in the range of 160 mesh and 200 mesh particle size is 1198g/m3. When the dust concentration is small, the lowest ignition temperature is higher. When the dust concentration is lower than 150 g/m3, no matter how big the dust pressure is, the yellow agent dust will not ignite. Yellow remover the minimum ignition temperature of dust, with the increase of dust injection pressure in the three different kinds of phenomena, the first is a diameter of 60 mesh and 160 mesh yellow inhibitor dust when the concentration of 299 g/m3, minimum ignition temperature of dust presents obvious trend of increased with increment of dust spray pressure, but size is 200 mesh, appeared to reduce after rising trend; The second is that when the dust concentration continues to increase, the minimum ignition temperature of yellow inhibitor dust shows a trend of first increasing and then gradually stable with the increase of dust spraying pressure; The third phenomenon is that when the dust concentration continues to increase, the minimum ignition temperature of yellow inhibitor dust will not change with the increase of dust spraying pressure; The smaller the particle size of yellow inhibitor dust is, the lower the minimum ignition temperature of dust cloud is, the easier it is to catch fire and the more dangerous it is. (3) Under the conditions of initial ignition energy of 2kJ and ignition delay time of 60 ms, the lower limit of dust cloud explosion of yellow inhibitor with particle size of 200 mesh is: The maximum explosive pressure of dust cloud increases first and then decreases with the increase of dust cloud concentration of yellow agent from 70 to 80 g/m3. When the mass concentration of yellow agent dust reaches the most dangerous degree of 350 g/m3, the maximum explosive pressure can reach 0.850 MPa. When the dust concentration is 300g/m3, The explosive index (Kst) of yellow inhibitor dust was the largest, and Kmax reached 43.11MPa·m/s. The explosive intensity grade was ST3, and the explosive characteristic was serious. The lowest oxygen levels are 15 per cent, below which the explosion will not occur. (4) K2CO3, NH4H2PO4 and NaHCO3 can effectively suppress the explosion of yellow inhibitor dust, and the explosive suppression effect is NaHCO3 > NH4H2PO4 > K2CO3. When K2CO3, NH4H2PO4 and NaHCO3 can completely inhibit detonation, the addition proportion of K2CO3, NH4H2PO4 and NaHCO3 are 70%, 60% and 50%, respectively.The effect of nitrogen + dust coordinated explosion suppression is more significant than that of single explosion suppression, and this kind of explosion suppression method should be adopted in industrial production process. The data and conclusions obtained in this paper can provide some theoretical guidance for the prevention of yellow inhibitor dust explosion, and have important reference significance for the safety production of yellow inhibitor production and processing enterprises. |
参考文献: |
[1]毕明树, 杨国刚. 气体和粉尘爆炸防治工程学[M]. 化学工业出版社, 2012. [2]万杭炜, 赵江平. 基于响应面法的木粉尘最大爆炸压力试验研究——以桑木粉尘为例[J]. 中国安全生产科学技术, 2017, 13(6):6. [3]潘旭海. 燃烧爆炸理论及应用[M]. 化学工业出版社, 2015. [6]邓煦帆. 粉尘爆炸危险性分级研究[J]. 防爆电机, 1992 (1): 14-21. [7]刘贞堂, 周西方, 林松,等. 我国工业粉尘爆炸事故统计及趋势分析[J]. 消防科学与技术, 2020, 39(6):4. [8]范江锋. 浅析粉尘爆炸的原因及防范标准[J]. 现代职业安全, 2014(10):3. [9]多英全, 刘垚楠, 胡馨升. 2009~2013年我国粉尘爆炸事故统计分析研究[J]. 中国安全生产科学技术, 2015, 11(2):5. [11] 袁帅, 王庆慧, 王丹枫, 等. 粉尘爆炸防护措施的研究进展[J]. 爆破器材, 2017, 46(4): 13-20. [12]袁帅, 王庆慧. 工业可燃性粉尘爆炸研究进展[J]. 粉末冶金工业, 2017, 27(4):7. [13]韩波, 李刚, 马赫,等. 机械加工伴生粉尘爆炸危险性分析[J]. 中国安全科学学报, 2018, 28(9):5. [14]胡东涛, 陈曦. 工业粉尘惰化抑爆技术研究现状分析[J]. 工业安全与环保, 2016, 42(12):5. [15]GB/T 16429-1996,粉尘云最低着火温度测定方法[S]. [16]赵红宇. 技术报告IEC1241—2—2(1993-08)可燃性粉尘环境用电气设备──第2部分:试验方法 第2章:粉尘层电阻率测定方法[J]. 电气防爆, 1999. [24]李刚, 刘晓燕, 钟圣俊,等. 粮食伴生粉尘最低着火温度的实验研究[J]. 东北大学学报:自然科学版, 2005, 26(2):3. [26] 吴洁红. 固体 (粉状) 乳化炸药粉尘最低着火温度实验研究[J]. 煤矿爆破, 1997 (1): 5-8. [27] 张茂增, 马尚权, 东辉, 等. 煤尘着火温度与其粒径的关系研究[J]. 煤炭工程, 2010 (1): 83-85. [29]高聪, 李化, 苏丹,等. 密闭空间煤粉的爆炸特性[J]. 爆炸与冲击, 2010, 30(2):5. [33] 潘峰, 马超, 曹卫国, 等. 玉米淀粉粉尘爆炸危险性研究[J]. 中国安全科学学报, 2011, 21(7): 46-51. [34] 曹卫国, 潘峰, 徐森, 等. 小麦淀粉粉尘爆炸特性参数的研究[J]. 安全与环境学报, 2012, 12(2): 213-216. [35] 曹杭, 程道来, 张志凯, 等. 铝镁合金粉尘安全特性实验研究[J]. 消防科学与技术, 2015, 34(10): 1324-1332. [36] 张小良, 叶圣军, 沈倩. 抛光铝合金粉尘爆炸参数及防爆研究[J]. 工业安全与环保, 2015 (12): 9-11. [37] 李新光, 董洪光, 赫冀成. 粉尘云最小点火能测试方法的比较与分析[J]. 东北大学学报: 自然科学版, 2004, 25(1): 44-47. [38]靳鑫. 氧浓度对粉尘点燃特性的影响[D]. 硕士学位论文]. 沈阳: 东北大学, 2012. [39] 李好, 张锬, 杜兵, 等. 充氮环境下淀粉爆炸特性的实验研究[J]. 消防科学与技术, 2016, 35(2): 166-170. [41] 张金锋, 刘鑫. 氮气惰化抑制 7-氨基头孢烷酸粉尘爆炸试验研究[J]. 安全与环境学报, 2016, 16(3): 42-45. [42] 马冉. LDPE 粉尘爆炸特性及惰化研究[D]. 北京石油化工学院, 2018. [43] 魏吴晋. 铝纳米粉尘爆炸及其抑制技术研究[D]. 徐州: 中国矿业大学, 2010. [44] 江子旭. 二氧化碳抑制粉尘爆炸及泄放特性实验研究[D]. 大连理工大学, 2020. [45] 孙中心, 张毅, 赵旭,等. 一种氮气循环超高分子量聚乙烯蒸汽管回转干燥方法: CN, CN1515393 A[P]. [47] Glarner.Mindestzundenergie-Eingluss der Temperatur[M],VDI—Berichte,1984,494:109.118. [48]任一丹, 刘龙, 袁旌杰,等. 粉尘爆炸中惰性介质抑制机理及协同作用[J]. 消防科学与技术, 2015, 34(2):5. [52]陈金健. 煤尘云最低着火温度及抑制技术研究[D]. 中北大学, 2016. [53]甘媛, 蒯念生, 刘龙,等. 碳酸钙对粉尘爆炸抑制效力的实验研究[J]. 消防科学与技术, 2014, 33(2):4. [54]李凯. 彩跑粉燃爆特性及抑爆实验研究[D]. 西安科技大学, 2017. [57] 谭迎新, 王志杰, 高云, 等. 固体惰性介质对煤粉爆炸压力的影响研究[J]. 中国安全科学学报, 2007, 17(12): 76-79. [58]余明高, 朱新娜, 裴蓓,等. 二氧化碳-超细水雾抑制甲烷爆炸实验研究[J]. 煤炭学报, 2015(12):6. [59]裴蓓, 余明高, 陈立伟,等. CO_2-双流体细水雾抑制管道甲烷爆炸实验[J]. 化工学报, 2016, 67(7):8. [60]余明高, 杨勇, 裴蓓,等. N2双流体细水雾抑制管道瓦斯爆炸实验研究[J]. 爆炸与冲击, 2017, 37(2):7. [61]PEI Bei, WEI Shuangming, YU Minggao,等. 气液两相介质抑制管道甲烷爆炸协同增效作用[J]. 煤炭学报, 2018, 043(011):3130-3136. [63]裴蓓, 韦双明, 陈立伟,等. CO_2-超细水雾对CH_4/Air初期爆炸特性的影响[J]. 爆炸与冲击, 2019, 39(02):169-178. [64] Skaggs R R . ASSESSMENT OF THE FIRE SUPPRESSION MECHANICS FOR HFC-227ea COMBINED WITH NaHCO3. [65]王瑶. 气固复配灭火剂对瓦斯爆炸引燃初期火焰发展的影响[D]. 西安科技大学, 2017. [66]计承杰. C3HF7和NaHC03复配抑制CH4爆炸的实验研究[D]. 西安科技大学. [67]田志辉. 气—固混合抑制剂对矿井瓦斯的抑爆实验研究[D]. 西安科技大学, 2013. [68]张洪铭. 管道内淀粉粉尘爆燃火焰传播行为及惰化抑制特性研究[D]. 武汉理工大学. [69]王峰, 刘继鸣. LS230激光粒度分析仪的特点及其在耐火材料微粉测定中的应用[C]// 2007年全国粉体工业技术大会. VIP, 2007:22-25. [70]W.B.巴尔特克内西特. 爆炸及其安全措施[M]. 江苏科学技术出版社, 1985. [71]胡双启. 燃烧与爆炸[M]. 北京理工大学出版社, 2015. [74] GB/T 16425−1996. 粉尘云爆炸下限浓度测定方法[S]. 北京: 中国标准出版社, 1996. [75] 伍毅, 袁旌杰, 蒯念生, 等. 碳酸盐对密闭空间粉尘爆炸压力影响的试验研究[J]. 中国安全科学学报, 2010, 20(10): 92-96. [76]刘晓晨. B粉尘爆炸特性及抑爆试验研究[D]. 上海应用技术大学, 2019. [77]ONORM EN 26184 Teil.1-1991,爆炸防护系统.第1部分:空气中易燃粉尘的爆炸指数的测定(ISO 6184-1-1985)[S]. [78]李培煊. 超细粉体抑制矿井多元可燃性气体爆炸的实验研究. 西安科技大学, 2011. [79]MT/T 837-1999,煤尘爆炸极限氧含量测定方法[S]. [80]蔡周全, 张引合. 干粉灭火剂粒度对抑爆性能的影响[J]. 矿业安全与环保, 2001, 28(4): 14-16. [81]杨杰. 气溶胶灭火剂的灭火机理及影响因素[J]. 江南大学学报: 自然科学版, 2003, 2(3): 303-308. |
中图分类号: | X932 |
开放日期: | 2022-06-22 |