- 无标题文档
查看论文信息

题名:

 扣件螺栓维护机器人设计与动力学分析    

作者:

 黄世凯    

学号:

 20205016008    

保密级别:

 保密(4年后开放)    

语种:

 chi    

学科代码:

 0802    

学科:

 工学 - 机械工程    

学生类型:

 硕士    

学位:

 工学硕士    

学位年度:

 2023年    

学校:

 西安科技大学    

院系:

 机械工程学院    

专业:

 机械工程    

研究方向:

 机器人技术    

导师姓名:

 曹现刚    

导师单位:

 西安科技大学    

提交日期:

 2023-06-14    

答辩日期:

 2023-06-03    

外文题名:

 Design and dynamics analysis of fastener bolt maintenance robot    

关键词:

 机器人 ; 螺母拆卸 ; 机器人手 ; 力封闭 ; 模糊自适应阻抗    

外文关键词:

 robot ; Nut remover ; Robot hand ; Force closure ; Fuzzy adaptive impedance control    

摘要:

在我国铁路范围广、线路长和里程增速快的背景下,基于多人工协同的扣件螺栓养护模式已经难以满足铁路可持续发展需求,自动化扣件螺栓养护成为未来发展重要方向之一。本文针对扣件螺栓养护效率低、养护质量波动大和长期占用大量人力物力资源的问题,提出了一种扣件螺栓维护机器人,完成机器人总体方案设计,重点研究了螺母拆卸器动力学特性和面向扣件组件的机器人手抓取方法,以期为扣件螺栓养护关键技术研究提供必要基础。

根据扣件螺栓养护多工艺和多工序的特点,分析了养护工况条件,划分了扣件螺栓维护机器人功能模块,制定了多机械臂多操作协同策略,建立了扣件螺栓维护机器人三维模型,并基于静力学理论验证了扣件螺栓维护机器人关键零部件机械结构的可靠性。针对扣件组件具备装配关系约束、非规则外轮廓和狭小操作空间的问题,提出了一种用于扣件组件整体抓取的异型两指机器人手,并分析了多个指端与扣件组件接触状态对抓取结果的影响。

针对扣件螺栓维护机器人多操作器联动的复杂性、旋转机械设备多阶模态对操作器精准作业的影响以及扣件组件抓取定量评价指标难以确定的问题,基于D-H法建立扣件螺栓维护机器人的多操作器运动学模型,并对各个操作器的正、逆向运动学求解;根据螺母拆卸器三维模型,建立拆卸器机架无阻尼模态分析模型,研究了螺母拆卸器机架的谐响应特性和瞬态动力学特性,为驱动电机选型提供依据,并进一步通过瞬态动力学分析验证螺母拆卸器结构的可靠性;提出一种基于力封闭的异型两指机器人手抓取方法,研究机器人手有摩擦点接触模型中力平衡与非线性摩擦锥约束下的抓取力求解方法。

为实现扣件螺栓维护机器人自动化养护,提出了扣件螺栓维护机器人控制系统架构并完成驱动电机选型。针对扣件螺栓维护机器人基于视觉定位的多操作器控制需求,分析对比多种进程间通信方法,建立了基于共享内存的定位数据交互策略,并提出了基于状态机的单轴控制方法,为扣件螺栓维护机器人多操作器控制奠定基础。根据异型两指机器人手力封闭抓取特点和变阻抗接触特性,以主动柔顺控制策略为基础,通过仿真分析了阻抗参数对力跟踪的影响,提出了一种模糊自适应阻抗控制方法,优化了异型两指机器人手抓取过程的力跟踪性能。

为验证扣件螺栓维护机器人结构设计、维护方法和控制策略的有效性,搭建了单机械臂实验平台,包含拆卸器、异型两指机器人手和机械臂等组成,分别进行螺母拆卸实验、扣件组件抓取实验和养护效率实验。首先,进一步搭建了拆卸器扭矩测试平台,验证了不同转速下拆卸器峰值输出扭矩,通过多点曲线拟合方法对拆卸器定扭矩输出性能进行改进,实验验证了拆卸器定扭矩输出最大误差,并为螺母预紧提供理论输出范围;其次,通过扣件组件的定性抓取实验,验证了异型手指、手掌和手指开合动作对部分组件的主动包络性能,并由手指接触力监测实验对比分析了主动包络、力封闭和模糊自适应阻抗控制模式下的扣件组件整体抓取成功率。最后,基于单机械臂实验平台测试了螺母拆装和扣件组件整体抓取的效率,并以此估算了扣件螺栓维护机器人整体养护效率。

外文摘要:

Under the background of a wide range of railways, long lines and fast mileage growth, bolt maintenance mode based on multi-manual coordination has been difficult to meet the demands of sustainable development of railway, and bolt maintenance of automatic fasteners has become one of the important directions of future development. In this paper, aiming at the problems of low maintenance efficiency of fastener bolt, large fluctuation of maintenance quality and long-term occupation of a lot of human and material resources, a fastener bolt maintenance robot was proposed to complete the overall design of the robot. The dynamic characteristics of the nut disloader and the robot hand grasping method oriented to fastener components were studied in order to provide the necessary basis for the research of key technology of fastener bolt maintenance.

According to the characteristics of multi-process and multi-process of bolt maintenance for fasteners, the maintenance working conditions were analyzed, the functional modules of the fastener bolt maintenance robot were divided, the multi-arm and multi-operation cooperative strategy was developed, the three-dimensional model of the fastener bolt maintenance robot was established, and the reliability of the mechanical structure of the key parts of the fastener bolt maintenance robot was verified based on the static theory. Aiming at the problems that fastener components have assembly relation constraints, irregular contour and narrow operating space, a special two-finger robot hand was proposed for the whole grasping of fastener components, and the influence of contact state between multiple finger ends and fastener components on the grasping results was analyzed.

Aiming at the complexity of multi-operator linkage of fastener bolt maintenance robot, the influence of multi-mode of rotating machinery equipment on the precise operation of the operator and the difficulty in determining the quantitative evaluation index of grasping fastener components, a multi-operator kinematic model of the fastener bolt maintenance robot was established based on D-H method, and the forward and reverse kinematics of each

operator were solved. According to the three-dimensional model of the nut remover, the undamped modal analysis model of the nut remover frame was established, and the harmonic response characteristics and transient dynamics characteristics of the nut remover frame were studied, which provided a basis for the selection of the driving motor, and the reliability of the nut remover structure was verified by the transient dynamics analysis. In this paper, a new grasping method based on force closure for a two-fingered robot hand with a special shape is proposed. The initial grasping effort method is studied under the constraints of force balance and nonlinear friction cone in the friction point contact model of a robot hand.

In order to realize automatic maintenance of fastener bolt maintenance robot, the control system architecture of fastener bolt maintenance robot was proposed and the driving motor selection was completed. Aiming at the requirement of multi-operator control of fastener bolt maintenance robot based on visual positioning, multiple interprocess communication methods were analyzed and compared, a positioning data interaction strategy based on shared memory was established, and a single axis control method based on state was proposed, which laid the foundation for multi-operator control of fastener bolt maintenance robot. Based on the closed grasping characteristics and variable impedance grasping environment of the special-shaped two-fingered robot, the influence of impedance parameters on force tracking was analyzed by simulation based on the active compliance control strategy, and a fuzzy adaptive impedance control method was proposed to optimize the force tracking performance of the special-shaped two-fingered robot during the grasping process.

In order to verify the effectiveness of the structure design, maintenance method and control strategy of the fastener bolted maintenance robot, a single mechanical arm experiment platform was built in this paper, which consisted of the disassembly device, the special shaped two-finger robot hand and the robot arm. The nut disassembly experiment, the fastener assembly grasping experiment and the maintenance efficiency experiment were conducted respectively. Firstly, the disassembly torque test platform was further built to verify the peak output torque of the disassembly at different speeds. The constant torque output performance of the disassembly was improved by multi-point curve fitting method, and the constant torque output performance was tested experimentally to provide a theoretical output range for nut pretightening. Secondly, through qualitative grasping experiments of fastener components, the active envelope performance of some components was verified by opening and closing actions of deformed fingers, palms and fingers. The overall grasping success rate of fastener components under active envelope, force closure and fuzzy adaptive impedance control modes was compared and analyzed by finger contact force monitoring experiments. Finally, based on the experimental platform of single manipulator arm, the efficiency of nut disassembly and overall grasping of fastener assembly was tested, and the overall maintenance efficiency of the fastener bolt maintenance robot was estimated based on this.

参考文献:

[1]中国铁路总公司工作会议在京召开[J].铁道学报,2019,41(01):3-4.

[2]肖新标,金学松,温泽峰.钢轨扣件失效对列车动态脱轨的影响[J].交通运输工程学报,2006,6(1):10−15.

[3]王凯.一种无人机铁路巡线视频定位方法[J].科技和产业,2022,22(01):323-328.

[4]刘辉.大型养路机械应急救援模拟演练系统的研制[J].中国机械工程,2019,30(03):372-377.

[5]赵存,王丽娟,胡军科,等.铁路大修列车液压行走驱动系统牵引性能研究[J].铁道科学与工程学报,2018,15(03):741-747.

[6]雷张文,倪琍,李石平,等.高速铁路自轮运转快速换轨车研究[J].中国机械工程,2019,30(03):354-358.

[7]缪炳荣,张卫华,刘建新,等.工业4.0下智能铁路前沿技术问题综述[J].交通运输工程学报, 2021,21(01):115-131.

[8]高贵.CRTS双块式无砟轨道承轨台智能测量技术[J].铁道建筑,2021,61(03): 116-119+142.

[9]Alonso S R, Eva L S, José L B. Experimental Validation of Track Inspection Trolley Using a Rigorous Self-Checking Procedure[J].Journal of Surveying Engineering, 2020,146(3): 05020004.

[10]Chiaradia D, Leonardis D, Manno V, et al. A Mobile Robot for Undercarriage Inspection on Standard Railway Tracks[J],Mechanisms and Machine Science,2021,91:362-369.

[11]Guo S H, Zhang G Y, Qi C B. A Robot for Automatic Installation of Rail Fasteners[C]//2019 International Conference on Robotics, Intelligent Control and Artificial Intelligence.2019:77-82.

[12]刘传,张锐,王鹏,等.高速铁路扣件机械化拆除装备研究[J].铁道建筑,2022,62(04):45-47.

[13]薛卫东.自制多用手动扳手[J].矿山机械,2000,(10):89-90.

[14]刘焕金,王杰,黄纪刚,等.内燃螺栓扳手扭矩数字化显示设计[J].现代制造工程,2018(10):107-112.

[15]沈家骅.我国电动扳手与钢结构中高强度螺栓施拧技术的发展[J].铁道建筑,2016(07):6-8.

[16]BS-1型内燃螺栓扳手[J].国内铁道动态,1972(02):9-10.

[17]Bodine T J , Bruner D S , Paris A M . Impact wrench anvil and method of forming an impact wrench anvil: US, US7249638 B2[P].2007.

[18]He C Y, Wu T. Permanent Magnet Brushless DC motor and mechanical structure design for the Electric Impact Wrench System[J]. Energies, 2018,11(6).

[19]Fan X W, Wang X W, Xie Feng, et al. Research on control system of electric tightening wrench based on rotational speed difference method[C]//2020 International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS).2020.

[20]Wang X W, Li Y Q, Wang P G. Design of Portable CNC Torque Wrench Controller[C]// Proceedings of 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference.Chongqing:IEEE, 2018:1922-1926.

[21]Zhang S L, Tang J. System-Level Modeling and Parametric Identification of Electric Impact Wrench[J].Journal of Manufacturing Science and Engineering Transactions of the Asme,2016,138(11).

[22]崔敏其.SCARA机器人的拉格朗日动力学建模[J].机械设计与制造,2013(12):76-78.

[23]王进,王向坤,扶建辉,等.重载机器人横梁结构静动态特性分析与优化[J].浙江大学学报(工学版),2021,55(01):124-134.

[24]刘数,尚欣,高希振,等.基于ADAMS的螺栓拆卸机器人动力学分析与仿真[J].制造业自动化,2022,44(09):83-85+95.

[25]Vu V H, Liu Z H, Thomas M, et al. Modal analysis of a light-weight robot with a rotating tool installed at the end effector[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2017,231(09):1664-1676.

[26]陆锋,王振忠,黄雪鹏,等.六自由度气囊抛光机器人模态分析与中频误差抑制[J].强激光与粒子束,2022,34(11):147-156.

[27]林通,张涛,张莹,等.小型玉米脱粒机机架模态分析与优化设计[J].干旱地区农业研究,2022,40(05):277-284.

[28]毛金城,杨文玉.重载工业夹持器约束建模与承载能力分析[J].华中科技大学学报(自然科学版),2011,39(12):1-5.

[29]Li Y, Sun B, Chen TM. Design and prototyping of a novel gripper using PVC gel soft actuators[J].Japanese Journal of Applied Physics,2021,60(8).087001.

[30]Liu H, Wu K, Meusel P, et al. Multisensory five-finger dexterous hand: The DLR/HIT hand II[C]//Proceedings of IEEE/RSJ Int. Conf. on Intelligent Robots & Systems (IROS), IEEE,2008:3692-3697.

[31]Hussain I,Salvietti G,Spagnoletti G,et al. A soft supernumerary robotic finger and mobile arm support for grasping compensation and hemiparetic upper limb rehabilitation [J]. Robotics & Autonomous Systems,2017,93:1-12.

[32]Galabov V, Stoyanova Y, Slavov G. Synthesis of an adaptive gripper[J]. Applied Mathematical Modelling,2014,38(13):3175-3181.

[33]Kim S W, Koh J S, Lee J G, et al. Flytrap-inspired robot using structurally integrated actuation based on bistability and a developable surface[J]. Bioinspiration & Biomimetics,2014,9(3):036004.

[34]Zhong Z W,Yeong C K. Development of a gripper using SMA wire[J]. Sensors and Actuators a-Physical,2006,126(2):375-381.

[35]Scott P B. The ‘Omnigripper’: a form of robot universal gripper[J]. Robotica,1985,3(3):153-158.

[36]Mo A, Zhang W Z. A universal robot gripper based on concentric arrays of rotating pins[J]. Science China-Information Sciences,2019,62(5):1-3.

[37]Zhenishbek Z, Florian H, Aude B, et al. An Origami-Inspired Reconfigurable Suction Gripper for Picking Objects with Variable Shape and Size[J].IEEE Robotics and Automation Letters, 2018,3:2894-2901.

[38]Tokuji O. Computer control of multijointed finger system for precise object-handling[J]. IEEE Transactions on Systems,Man,and Cybernetics,1982,12(3):289-299.

[39]Li G, Huang H, Guo H, et al. Design, analysis and control of a novel deployable grasping manipulator. Mechanism and Machine Theory, 2019, 138: 182-204.

[40]Wei A, Jun W, Lu XY, et al. Geometric Design-based Dimensional Synthesis of a Novel Metamorphic Multi-ngered Hand with Maximal Workspace[J].Chinese Journal of Mechanical Engineering,2021,34(03):224-238.

[41]Li G, Zhang C, Zhang W, et al. Coupled and self-adaptive under-actuated finger with a novel s-coupled and secondly self-adaptive mechanism[J]. Journal of Mechanisms and Robotics,2014,6(4):041010.

[42]Dechev N, Cleghorn W L, Naumann S. Multiple finger, passive adaptive grasp prosthetic hand[J]. Mechanism and machine theory, 2001,36(10): 1157-1173.

[43]Park S Y,Lai J S,Lee W C. An easy,simple,and flexible control scheme for a three-phase grid-tie inverter system[C]//Proceedings of Energy Conversion Congress and Exposition,Atlanta:IEEE,2010:599-603.

[44]罗超,张文增,王子越,等.直线平夹自适应机器人手抓取分析与实验[J].机械工程学报,2021,57(19):61-69.

[45]Ruotolo W, Brouwer D, Cutkosky M R. From grasping to manipulation with gecko-inspired adhesives on a multifinger gripper[J].Science Robotics,2022, 6(61).

[46]张磊,孙斌,李红兵,等.一种具备多种抓取模式的三指机械手[J].现代制造工程,2019, No.471 (12):49-54.

[47]Zhang Z, Ni X Q, Gao W L, et al. Pneumatically Controlled Reconfigurable Bistable Bionic Flower for Robotic Gripper[J]. Soft Robotics,2021,9(4):657-668.

[48]Lu Q J, Baron N, Clark A B, et al. Systematic object-invariant in-hand manipulation via reconfigurable underactuation: Introducing the RUTH gripper[J].International Journal of Robotics Research,2021,40(12):1402-1418.

[49]Ilievski F,Mazzeo A D,Shepherd R F,et al. Soft robotics for chemists[J]. Angewandte Chemie,2011,123(8):1930-1935.

[50]An X, Li Z G, Fu J, et al. Variations in the Biomechanics of 16 Palmar Hand Regions Related to Tomato Picking[J]. Journal of Bionic Engineering,2022,20(1):278-290.

[51]郭钟华,李小宁,林浩鹏.基于主动包络和负压塑形的软体适形夹持器[J].机械工程学报,2019,55(12):215-221.

[52]Amend J,Brown E,RodenbergG N,et al. A positive pressure universal gripper based on the jamming of granular material[J]. IEEE Transactions on Robotics,2012,28(2):341-350.

[53]Li G T, Xu P, Qiaos L, et al. Stability analysis and optimal enveloping grasp planning of a deployable robotic hand[J]. Mechanism and Machine Theory,2021,158(2021): 104241.

[54]Liang D Y, Zhang W Z. PASA-GB Hand: a Novel Parallel and Self-adaptive Robot Hand with Gear-belt Mechanisms[J].Journal of Intelligent & Robotic Systems,2018,90(1):3-17.

[55]Liu F, Kim Y, Yee G, et al. Computation of minimum contact forces of multifingered robot hand with soft fingertips[J]. Intelligent Service Robotics,2015,8(4):225-232.

[56]Nguyen V. The synthesis of force-closure grasps[J].Laboratory Massachusetts Institute of Technology,1985,12(6):36-39.

[57]Roa M A, Suarez R. Grasp quality measures: Review and performance[J]. Autonomous Robots,2015,38(1):65-88.

[58]Salisbury J K,Roth B. Analysis multifingered hands[J].Int J of Robotics Research,1986,4(4):3-17.

[59]Helmke U, Huper K, Moore J B . Quadratically convergent algorithms for optimal dextrous hand grasping[C]// International Conference on Robotics and Automation. Institute of Electrical and Electronics Engineers (IEEE Inc), 2002.

[60]王滨,李家炜,刘宏.机器人多指手的优化抓取力计算[J].吉林大学学报(工学版),2008(01):178-182.

[61]邹俞,晁建刚,林万洪.基于力封闭的虚拟手稳定抓持力生成方法[J].计算力学学报,2019,36(04):548-554.

[62]Cheong J S, Kruger H, Van D, et al. Output-Sensitive Computation of Force-Closure Grasps of a Semi-Algebraic Object[J]. IEEE transactions on automation science and engineering: a publication of the IEEE Robotics and Automation Society,2011,8(3): 495-505.

[63]Romano J M, Hsiao K, Niemeyer G, et al. Human-Inspired Robotic Grasp Control With Tactile Sensing[J]. IEEE Transactions on Robotics,2012, 27(6):1067-1079.

[64]Ko C H, Chen J K. Grasping force based manipulation for multifingered hand-arm Robot using neural networks[J]. Numerical Algebra Control and Optimization, 2014,4(1):59-74.

[65]苏杰,张云洲,房立金,等.基于多重几何约束的未知物体抓取位姿估计[J].机器人,2020,42(02):129-138.

[66]Duan J, Gan Y, Chen M, et al. Adaptive variable impedance control for dynamic contact force tracking in uncertain environment[J]. Robotics and Autonomous Systems, 2018,102:54-65.

[67]黄婷,孙立宁,王振华,等.基于被动柔顺的机器人抛磨力/位混合控制方法[J].机器人,2017,39(06):776-785+794.

[68]Whitney D E, Rourke J M. Mechanical behavior and designequations for elastomer shear pad remote center compliances[J].Journal of Dynamic Systems, Measurement & Control, 1986,108(3): 223-232.

[69]Sun T R, Peng L, Cheng L, et al. Stability-Guaranteed Variable Impedance Control of Robots Based on Approximate Dynamic Inversion[J].IEEE Transactions on Systems Man Cybernetics-systems,2021,51(7):4193-4200.

[70]Mendes N, Neto P. Indirect adaptive fuzzy control for industrial robots: a solution for contact applications[J]. Expert Systems with Applications,2015,42(22):8929-8935

[71]Hu Q L, Xu L, Zhang A H. Adaptive backstepping trajectory tracking control of robot manipulator[J]. Journal of the Franklin Institute, 2012, 349(3): 1087-1105.

[72]臧强,田浪,胡凯,等.机器人力控制综述[J].南京信息工程大学学报(自然科学版),2022,14(06):744-754.

[73]Song L, Wang H Q, Liu P X. Adaptive fuzzy dynamic surface control of flexible-joint robot systems with input saturation[J]. CAA Journal of Automatica Sinica, 2019, 6(1): 97-107.

[74]Guo S X, Chen Q R, Xiao N, et al. A fuzzy PID control algorithm for the interventional surgical robot with guide wire feedback force[C]//2016 IEEE International Conference on Mechatronics and Automation. August 7–10, 2016, Harbin, Heilongjiang, China. IEEE, 2016: 426-430.

[75]Yuan J, Wang R, Jiang L. Research on neural network PID adaptive control with industrial welding robot in multi-degree of freedom[C]//2016 IEEE Information Technology, Networking, Electronic and Automation Control Conference. May 20–22, 2016, Chongqing, China. IEEE, 2016: 280-284.

[76]Jung S. Improvement of tracking control of a sliding mode controller for robot manipulators by a neural network[J]. International Journal of Control, Automation and Systems, 2018, 16(2): 937-943.

[77]Yoo J W, Ronzio F, Courtois T. Road noise reduction of a sport utility vehicle via panel shape and damper optimization on the floor using genetic algorithm[J]. International Journal of Automotive Technology, 2019, 20(5): 1043-1050.

[78]Zarrouk R, Bennour I E, Jemai A. A two-level particle swarm optimization algorithm for the flexible job shop scheduling problem[J]. Swarm Intelligence, 2019, 13(2): 145-168.

[79]胡河宇,曹建福,曹晔,等.建筑幕墙安装机器人的位置/力混合控制方法[J].西安交通大学学报,2022,56(01):51-60.

[80]曹学鹏,包翔宇,张弓,等.基于模糊自适应和优化阻抗的双机器人力/位主从协同控制方法[J].工程科学与技术,2020,52(04):226-234.

[81]韩静,方亮,孙甲鹏,等.基于Pro/e与ANSYS WORKBENCH的复杂装配件协同仿真及优化[J].机械设计与制造,2010(01):190-192.

[82]秦大同,谢里阳.现代机械设计手册[M].北京:化学工业出版社,2011:1-8.

[83]陈满意,朱自文,朱义虎,等.曲面抛光机器人的模糊自适应阻抗控制[J/OL].计算机集成制造系统:2023,(2):1-17.

[84]Wu Y J, Li G F, Zou Z Y, et al. Practical Fixed-Time Position Tracking Control of Permanent Magnet DC Torque Motor Systems[J].IEEE-ASME Transactions on mechatronics,2021,26(1):563-573.

中图分类号:

 TP242.3    

开放日期:

 2027-06-15    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式