- 无标题文档
查看论文信息

论文中文题名:

 动静载作用下强采动围岩破坏失稳机理与稳控技术研究    

姓名:

 李伟    

学号:

 21203226043    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 能源学院    

专业:

 资源与环境    

研究方向:

 动力灾害防治理论与技术    

第一导师姓名:

 单鹏飞    

第一导师单位:

 西安科技大学    

第二导师姓名:

 王飞    

论文提交日期:

 2024-06-25    

论文答辩日期:

 2024-06-06    

论文外文题名:

 Study on failure and instability mechanism and stability control technology of strong mining surrounding rock under dynamic and static loading    

论文中文关键词:

 动静叠加 ; 动力灾害 ; 物理模拟 ; 数值计算 ; 支护优化    

论文外文关键词:

 Static and static superposition ; Dynamic disaster ; Physical modelling ; Numerical simulation ; Support optimization    

论文中文摘要:

小纪汗煤矿隶属陕北榆横高强度开采矿区,厚煤层高强度开采下,采场易发生顶板断裂等动载活动并衍发动力灾害。论文以小纪汗煤矿13218工作面动载作用下采动煤岩失稳机理及稳控技术为研究背景,采用岩石力学实验、物理相似模拟、数值模拟、现场验证等研究方法,揭示回采过程中采动煤岩变形破坏演化规律,确定动载作用下采场围岩合理支护参数并验证支护效果。论文形成以下研究成果:

明晰了采掘活动时动静载叠加作用对煤岩强度及破坏过程的影响程度,通过煤岩单轴抗压实验探究了不同动载幅值及施加次数下煤样变形破坏响应特征。结果表明:一级动载作用使煤样强度明显下降,可诱发煤样破坏且破碎体块度较大;两级动载作用后,煤样强度高于单次动载但低于单轴强度,煤样发生煤爆等剧烈破坏现象;三级动载后煤样强度增大,煤样弹性模量显著减小,塑性阶段及峰后阶段增长,破碎体块度较大,动态破坏时间持续增加。

厘清了煤层回采过程中覆岩运移演化规律,构建了多源信息融合精细化物理模拟实验平台。借助数字散斑及微震监测,揭示了动静载叠加作用下煤层回采过程中覆岩运移规律及微震能量响应特征。模型在静载作用下采空区上覆岩层运移量极小。动载作用后采空区上覆岩层位移云图反映出岩层破碎范围发展至亚关键层,动载加快岩层裂隙发育,诱发岩层发生大面积垮落,微震能量信号积聚于亚关键层;多次动载作用后,位移云图反映出覆岩破碎范围快速扩大并延伸到地表,模型整体裂隙发育明显,顶板发生了大面积垮落,岩层垮落高度快速增加,覆岩位移云图呈现多双峰结构,微震能量信号积聚在主关键层下方呈“马鞍型”显现。多次动载使模型整体发生松动破坏,覆岩处于不稳定状态,工作面持续性生产活动加剧了煤岩破坏失稳程度。

量化了工作面不同推进位置采动煤岩体应力、位移及塑性区演变机理并建立数值计算模型。模型开挖初期不会出现大面积塑性破坏区,围岩处于高应力状态,模型围岩整体稳定;动载施加后,工作面位置应力减小,缓解围岩高应力状态,塑性区进一步发育,三次动载作用后围岩应力-位移达到最大值,塑性区全域性快速发育,多次动载后围岩“应力-位移”改变量基本为零,塑性区及最大位移由采空区上覆岩层发展到地表附近,围岩受动载作用塑性区充分发育。

探明了巷道围岩破碎松动情况,对13218工作面原始支护方案分析并进行巷道支护优化设计,通过数值模拟及现场监测确定支护方案可行性,优化后的方案对于扰动发生区域也有良好的支护效果,可以将巷道围岩变形控制在一定范围内。

综上所述,针对小纪汗煤矿13218工作面回采巷道强采动煤岩稳控问题,提出了支护优化方案,对冲击危险区域进行围岩变形监测,监测结果表明支护优化方案对动载作用下现场回采巷道围岩稳定控制效果良好,有效保障了矿井安全高效生产。

论文外文摘要:

Xiao ji han Coal Mine belongs to Yuheng high strength mining area in northern Shaanxi Province. Under the high strength mining of thick coal seam, the stope is prone to dynamic load activities such as roof fracture and dynamic disaster. Based on the research background of instability mechanism and stability control technology of dynamic coal rock under dynamic load of 13218 working face of Xiao ji han Coal Mine, this paper adopts research methods such as rock mechanics experiment, physical similarity simulation, numerical simulation and field verification to reveal the evolution law of deformation and failure of dynamic coal rock during the mining process, determine the reasonable supporting parameters of surrounding rock under dynamic load and verify the supporting effect. The paper forms the following research results:

The influence degree of dynamic and dynamic loading superimposed on the strength and failure process of coal and rock during mining activities is clarified. The deformation and failure response characteristics of coal samples under different dynamic loading amplitudes and application times are explored through uniaxial compressive tests of coal and rock. The results show that the strength of the coal sample decreases obviously under the first order dynamic loading, which can induce the coal sample failure and the crushing volume is large. After the two-stage dynamic loading, the strength of coal sample is higher than that of single dynamic loading but lower than that of uniaxial loading. After third-order dynamic loading, the strength of coal sample increases, the elastic modulus of coal sample decreases significantly, the plastic stage and post-peak stage increase, the crushing mass degree is large, and the dynamic failure time continues to increase.

A refined physical simulation platform for multi-source information fusion was constructed. With the help of digital speckle and microseismic monitoring, the overburden migration and evolution of coal mining under dynamic load and the characteristics of microseismic energy response are revealed. The migration of overlying strata in the goaf under static load is very small. The displacement cloud map of overlying strata above the goaf shows that the fracture range of the strata develops to the subcritical layer, the development of rock cracks is accelerated by the dynamic load, and the large area of rock collapse is induced, and the microseismic energy signal accumulates in the subcritical layer. After multiple dynamic loading, the displacement cloud map reflects that the crushing range of overlying rock rapidly expands and extends to the surface, the overall fracture development of the model is obvious, the roof caving occurs in a large area, the collapse height of the rock strata rapidly increases, the displacement cloud map of overlying rock presents a multi-bimodal structure, and the accumulation of microseismic energy signals below the main key layer shows a "saddle shape". Multiple dynamic loads make the whole model loose and fail, the overlying rock is in an unstable state, and the continuous production activities of the working face aggravate the failure and instability of the coal rock.

The evolution mechanism of stress, displacement and plastic zone of mining rock mass at different advancing positions of working face is quantified and numerical calculation models are established. At the initial stage of excavation, there is no large area of plastic failure, the surrounding rock is in a state of high stress, and the whole surrounding rock is stable. After the application of dynamic load, the stress at the working face position decreases, alleviates the high stress state of surrounding rock, and the plastic zone further develops. After three times of dynamic load, the stress-displacement of surrounding rock reaches the maximum value, and the plastic zone develops rapidly all over the country. After multiple dynamic loads, the "stress-displacement" change of surrounding rock is basically zero. The plastic zone of surrounding rock is fully developed under dynamic load.

The original support scheme of 13218 working face was analyzed and the tunnel support optimization design was carried out. The feasibility of the support scheme was determined through numerical simulation and field monitoring. The optimized scheme also had good support effect on the disturbance area and could control the deformation of the roadway surrounding rock within a certain range.

In summary, aiming at the stability control problem of mining roadway with strong mining in 13218 working face of Xiao ji han Coal Mine, a support optimization scheme is proposed to monitor the deformation of surrounding rock in the impact danger area. The monitoring results show that the support optimization scheme has a good effect on the stability control of surrounding rock of mining roadway under the action of dynamic load, and effectively guarantees the safe and efficient production of mine.

参考文献:

[1] 谢和平,任世华,谢亚辰,等.碳中和目标下煤炭行业发展机遇[J].煤炭学报,2021,46(07):2197-2211.

[2] 谢和平,吴立新,郑德志.2025年中国能源消费及煤炭需求预测[J].煤炭学报,2019,44(07):1949-1960.

[3] 中国煤炭工业协会.2022煤炭行业发展年度报告[R].北京:中国煤炭工业协会,2022.

[4] 潘一山,宋义敏,刘军.我国煤矿冲击地压防治的格局、变局和新局[J].岩石力学与工程学报,2023,42(09):2081-2095.

[5] 国家煤矿安全监察局.2019年全国煤矿事故分析报告[R].2019.

[6] 国家煤矿安全监察局.2020年全国煤矿事故分析报告[R].2020.

[7] 窦林名,何学秋.冲击矿压防治理论与技术[M].徐州:中国矿业大学出版社,2001.

[8] 潘俊锋,齐庆新,刘少虹,等.我国煤炭深部开采冲击地压特征、类型及分源防控技术[J].煤炭学报,2020,45(1):111-121.

[9] 王恩元,冯俊军,张奇明,等.冲击地压应力波作用机理[J].煤炭学报,2020,45(01):100-110.

[10] 窦林名,赵从国,杨思光.煤矿开采冲击矿压灾害防治[M].徐州:中国矿业大学出版社,2006.

[11] Feng G L, Feng X T, Chen B R, et al. A microseismic method for dynamic warning of rock burst development processes in tunnels [J]. Rock Mechanics and Rock Engineering, 2015, 48(5): 2061−2076.

[12] Guo H S, Sun Q C, Feng G L, et al. In-situ observations of damage-fracture evolution in surrounding rock upon unloading in 2400-m-deep tunnels [J]. International Journal of Mining Science and Technology,2023, 33(4): 437−446.

[13] Xu Y H, Cai M. Influence of loading system stiffness on post-peak stress−strain curve of stable rock failures [J]. Rock Mechanics and Rock Engineering, 2017, 50(9): 2255−2275.

[14] Linkqv A M. Rock bursts and the instability of rock masses [J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1996 , 33 : 727-732.

[15] Wei X J, Wang X, Chen T. Comparison of the fold and cusp catastrophe models for tensile cracking and sliding rock burst [J]. Mathematical Problems in Engineering, 2021: 1−10.

[16] Zheng Q B, Zhao J. A review of dynamic experimental techniques and mechanical be haviour of rock materials [J]. Rock Mechanics and Rock Engineering, 2014, 47(4): 1411−1478.

[17] Liu D Q, Ling K, Li Dong, et al. Evolution of anisotropy during sandstone rockburst process under double-faces unloading [J]. Journal of Central South University, 2021 , 28(8): 2472−2484.

[18] Lyu X F, Lin X, Ou Y W, et al.Stress wave propagation attenuation law and energy dissipation characteristics of rock-barrier-coal composite specimen under dynamic load [J].Journal of Central South University,2023,30(01):276-288.

[19] 潘一山,耿琳,李忠华.煤层冲击倾向性与危险性评价指标研究[J].煤炭学报,2010,35(12):1975-1978.

[20] 齐庆新,彭永伟,李宏艳,等.煤岩冲击倾向性研究[J].岩石力学与工程学报,2011,30(S1):2736-2742.

[21] 郑建伟,鞠文君,王书文,等.冲击地压“四维”孕灾机制初步分析及探讨[J].采矿与安全工程学报,2019,36(05):977-986.

[22] 齐庆新,史元伟,刘天泉.冲击地压粘滑失稳机理的实验研究[J].煤炭学报,1997(2).

[23] 齐庆新,刘天泉,史元伟,等.冲击地压的摩擦滑动失稳机理[J].矿山压力与顶板管理,1995(Z1):174-177+200.

[24] 潘俊锋.煤矿冲击地压启动理论及其成套技术体系研究[J].煤炭学报,2019,44(01).

[25] 潘俊锋,秦子晗,王书文,等.冲击危险性分源权重综合评价方法[J].煤炭学报,2015,40(10):2327-2335.

[26] 章梦涛,徐曾和,潘一山.冲击地压和突出的统一失稳理论[J].煤炭学报,1991(4):48-53.

[27] 尹光志,李星,鲁俊,等.深部开采动静载荷作用下复合动力灾害致灾机理研究[J].煤炭学报,2017,42(09):2316-2326.

[28] 潘俊锋,刘少虹,杨磊,等.动静载作用下煤的动力学特性试验研究[J].中国矿业大学学报,2018,47(01):206-212.

[29] 卢志国,鞠文君,王浩,等.硬煤冲击倾向各向异性特征及破坏模式试验研究[J].岩石力学与工程学报,2019,38(04):757-768.

[30] 潘一山,代连朋.煤矿冲击地压发生理论公式[J].煤炭学报,2021,46(03):789-799.

[31] Gong F Q, Luo Y, Si. Experimental modelling on rockburst in deep hard rock circular tunnels [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(7): 1634-1648.

[32] Dou L, He X, Hu H, et al. Spatial structure evolution of overlying strata and inducing mechanism of rockburst in coal mine [J]. Transactions of Nonferrous Metals Society of China, 2014, 24(4): 1255-1261.

[33] 朱志洁,李瑞琪,汤国水,等.含裂隙煤体能量耗散特征与冲击倾向性研究[J].煤炭科学技术,2023,51(05):32-44.

[34] 胡国忠,王春博,许家林,等.微波辐射降低硬煤冲击倾向性试验研究[J].煤炭学报,2021,46(02):450-465.

[35] 单鹏飞,高健铭,来兴平,等.考虑初始损伤差异性的煤样声发射率响应研究[J].采矿与安全工程学报,2023,40(04):798-808.

[36] 单鹏飞,杨攀,来兴平,等.微波–水交互作用下富油煤岩渐进性破坏规律试验[J].岩石力学与工程学报,2023,42(S2):3884-3896.

[37] 来兴平,张帅,崔峰,等.含水承载煤岩损伤演化过程能量释放规律及关键孕灾声发射信号拾取[J].岩石力学与工程学报,2020,39(03):433-444.

[38] 祝捷,张博,王全启,等.煤的孔隙结构与煤岩动力失稳特征的相关性[J].中国矿业大学学报,2018,47(01):97-103.

[39] 夏大平,郭红玉,罗源,等.碱性溶液降低煤体冲击倾向性的实验研究[J].煤炭学报,2015,40(08):1768-1773.

[40] 来兴平,任杰,单鹏飞,等.不同孔径冲击倾向性煤样破坏特征能量演化规律[J].中南大学学报(自然科学版),2021,52(08):2601-2610.

[41] 吕玉凯,蒋聪,成果,等.不同冲击倾向煤样表面温度场与变形场演化特征[J].煤炭学报,2014,39(02):273-279.

[42] 尹延春,赵同彬,李海涛,等.不同加载刚度下煤体冲击倾向性测试及评价指数分析[J].岩石力学与工程学报,2023,42(12):2982-2992.

[43] 张广辉,邓志刚,蒋军军,等.不同加载方式下强冲击倾向性煤声发射特征研究[J].采矿与安全工程学报,2020,37(05):977-982+990.

[44] 单鹏飞,张帅,来兴平,等.不同卸压措施下“双能量”指标协同预警及调控机制分析[J].岩石力学与工程学报,2021,40(S2):3261-3273.

[45] 左建平,宋洪强.煤岩组合体的能量演化规律及差能失稳模型[J].煤炭学报,2022,47(8):3037-3051.

[46] 赵毅鑫,姜耀东,张雨.冲击倾向性与煤体细观结构特征的相关规律[J].煤炭学报,2007(1):64-68.

[47] 代树红,王晓晨,潘一山,等.模量指数评价煤的冲击倾向性的实验研究[J].煤炭学报,2019,44(06):1726-1731.

[48] 李震,史文豪,高鑫,等.基于煤岩冲击与大变形特征的统一脆延性指标研究[J].煤炭科学技术,2022,50(10):19-27.

[49] 樊玉峰,肖晓春,徐军,等.煤高度对组合岩煤力学性质及冲击倾向性的影响[J].煤炭学报,2020,45(S2):649-659.

[50] 宫凤强,叶豪,罗勇.低加载率范围内煤岩组合体冲击倾向性的率效应试验研究[J].煤炭学报,2017,42(11):2852-2860.

[51] 李海涛,宋力,周宏伟,等.多加载速率影响下煤强度的非线性演化机制试验研究及应用[J].岩石力学与工程学报,2016,35(S1):2978-2989.

[52] 姜福兴,魏全德,王存文,等.巨厚砾岩与逆冲断层控制型特厚煤层冲击地压机理分析[J].煤炭学报,2014,039(7):1191-1196.

[53] 谭云亮,张明,徐强,等.坚硬顶板型冲击地压发生机理及监测预警研究[J].煤炭科学技术,2019,47(1):166-172.

[54] 王联合,曹安业,郭文豪,等.“断层-褶皱”构造区巷道冲击地压机理及失稳规律[J].采矿与安全工程学报,2023,40(1):69-81+90.

[55] 常聚才,齐潮,殷志强,等.爆破扰动高应力巷道围岩力学响应特征研究[J/OL].煤炭科学技术,1-14.

[56] 靖洪文,吴疆宇,尹乾,等.扰动下深部煤巷冲击冒顶的颗粒流数值模拟研究[J].岩石力学与工程学报,2020,39(S2):3475-3487.

[57] 朱广安,蒋启鹏,伍永平,等.应力波扰动作用下断层滑移失稳的数值反演[J].采矿与安全工程学报,2021,38(02):370-379.

[58] 于永江,刘峰,岳宏亮,等.不同倾角岩体结构面在循环动力扰动下的力学特性[J].煤炭学报,2020,45(11):3748-3758.

[59] 刘涛,杨鹏,吕文生,等.岩石在不同应力幅值下受低频循环扰动的力学特性试验[J].煤炭学报,2017,42(09):2280-2286.

[60] 杨英明,陶春梅,郭奕宏,等.动静组合加载下煤体损伤及力学特性研[J].采矿与安全工程学报,2019,3(01):198-206.

[61] Li Z, Dou L M, Wang G. Risk evaluation of rock burst through theory of static and dynamic stresses superposition [J]. Journal of Central South University, 2015, 22(2): 676-683.

[62] 蓝航,杜涛涛,彭永伟,等.浅埋深回采工作面冲击地压发生机理及防治[J].煤炭学报, 2012,37(10):1618-1623.

[63] 张修峰,陈洋.煤柱型冲击地压类型、发生机理与防治对策研究[J/OL].煤炭科学技术.2023-0017.

[64] 张翔,朱斯陶,姜福兴,等.深厚表土综放采场应力加载型冲击地压机理[J/OL].煤炭学报.2022.1712.

[65] 邢闯闯,王俊,宁建国,等.扰动下深井护巷煤柱失稳破坏机理[J].煤炭科学技术,2023,51(03):29-36.

[66] 王恩元,冯俊军,张奇明,等.冲击地压应力波作用机理[J].煤炭学报,2020,45(01).

[67] 黄万朋,高延法,王军.扰动作用下深部岩巷长期大变形机制及控制技术[J].煤炭学报,2014,39(05):822-828.

[68] 徐学锋,窦林名,刘军,等.扰动诱发底板冲击矿压演化规律研究[J].采矿与安全工程学报,2012,29(03):334-338.

[69] Wu Q, Li X, Tao M, et al. Conventional triaxial compression on hollow cylinders of sandstone with various fillings: Relationship of surrounding rock with support [J]. Journal of Central South University, 2018, 25(08):1976-1986.

[70] 马念杰,马海燕,王银伟,等.深部大变形巷道支护原理与柔性锚索支护技术[J].采矿与安全工程学报,2023,40(05):957-964.

[71] 左建平,刘海雁,徐丞谊,等.深部煤矿巷道等强支护力学理论与技术[J].中国矿业大学学报,2023,52(04):625-647.

[72] 吴拥政,付玉凯,何杰,等.深部冲击地压巷道“卸压-支护-防护”协同防控原理与技术[J].煤炭学报,2021,46(01):132-144.

[73] 康红普,姜鹏飞,黄炳香,等.煤矿千米深井巷道围岩支护-改性-卸压协同控制技术[J].煤炭学报,2020,45(03):845-864.

[74] 高明仕,杨青松,赵一超,等.高应力大变形巷道让压锚索支护技术及装置研制[J].采矿与安全工程学报,2016,33(01):7-11.

[75] 康红普,范明建,高富强,等.超千米深井巷道围岩变形特征与支护技术[J].岩石力学与工程学报,2015,34(11):2227-2241.

[76] 周志利,柏建彪,肖同强,等.大断面煤巷变形破坏规律及控制技术[J].煤炭学报,2011,36(04):556-561.

[77] 康红普,林健,吴拥政.全断面高预应力强力锚索支护技术及其在动压巷道中的应用[J].煤炭学报,2009,34(09):1153-1159.

[78] 付玉凯.高冲击韧性锚杆吸能减冲原理及应用[D].北京:煤炭科学研究总院,2015.

[79] 焦建康.扰动下巷道锚固承载结构冲击破坏机制及控制技术[D].北京:煤炭科学研究总院,2018.

[80] 焦建康,鞠文君.扰动下巷道锚固承载结构冲击破坏机制[J/OL].煤炭学报:1-12.

[81] 王方田,尚俊剑,赵宾,等.回采巷道动压区锚索强化支护机理及参数优化设计[J].中国矿业大学学报,2022,51(01):56-66.

[82] 文志杰,卢建宇,肖庆华,等.软岩回采巷道底鼓破坏机制与支护技术[J].煤炭学报,2019,44(07):1991-1999.

[83] 张勇,孙晓明,郑有雷,等.深部回采巷道防冲释能耦合支护技术及应用[J].岩石力学与工程学报,2019,38(09):1860-1869.

[84] 何江.煤矿采动对煤岩体的作用及诱冲机理研究[D].徐州:中国矿业大学出版社.

[85] 窦林名,何江,曹安业,等.煤矿冲击矿压动静载叠加原理及其防治[J].煤炭学报,2015,40(07):1469-1476.

[86] 李宁.冲击危险煤层巷道防冲锚网索结构研究[D].徐州:中国矿业大学,2015.

[87] 崔峰,杨彦斌,来兴平,等.基于微震监测关键层破断诱发冲击地压的物理相似材料模拟实验研究[J].岩石力学与工程学报,2019,38(04):803-814.

中图分类号:

 TD324    

开放日期:

 2024-06-26    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式