- 无标题文档
查看论文信息

论文中文题名:

 基于GEE的复杂地形下太阳辐射估算及太阳能资源评估    

姓名:

 王倩茹    

学号:

 21210226061    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 测绘科学与技术学院    

专业:

 测绘工程    

研究方向:

 遥感应用    

第一导师姓名:

 张淑花    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-17    

论文答辩日期:

 2024-06-04    

论文外文题名:

 Estimation of complex terrain solar radiation and assessment of solar energy resources based on Google Earth Engine (GEE)    

论文中文关键词:

 太阳辐射估算模型 ; GEE ; ; 复杂地形 ; 太阳能资源评估    

论文外文关键词:

 Solar radiation estimation model ; GEE ; Clouds ; Complex terrain ; Solar energy resource assessment    

论文中文摘要:

太阳能被认为是最具发展前景的清洁能源之一,为缓解地球日益严重的能源短缺问题,对太阳能资源的评估和大规模利用仍迫在眉睫。山区拥有十分丰富的太阳能资源,由于其地势高、空气干洁,且不易受人为影响,十分适合太阳能资源开发。但这些地区易受地形条件限制,且辐射观测站和气象观测站稀疏,太阳能资源往往难以评估。目前,国内外地表太阳辐射的估算模型已较为成熟,但有着高精度的模型大多需要结合辐射站或气象站的记录数据(如日照时长等),在气象站较为稀缺的山区等地存在使用限制。基于此背景,本文利用国际基线地表辐射观测网络(Baseline Surface Radiation Network, BSRN)及中国气象局(China Meteorological Administration, CMA)提供的多年地面观测数据,结合多源遥感及再分析数据,在Google Earth Engine(GEE)云计算平台构建了亚热带、干旱带、温带及亚寒带普适的全天空全地形地表太阳辐射估算经验模型,综合大数据和遥感技术弥补山区等地气象站稀缺的弊端。基于所构建模型,从太阳能资源的丰富性及稳定程度评估了三个气候区站点上的太阳能资源情况。本文的主要结论如下:

(1)基于GEE平台构建了量化周围地形阻挡的算法,并结合平台MODIS、MERRA-2等大气数据集,构建了考虑地形遮蔽、大气和地表的多次反射所带来的辐射衰减的晴空地表太阳辐射估算模型。模型验证结果表明:晴空地表太阳辐射估算模型的模拟精度较高。在地形复杂区昆仑山提孜那甫河流域三个具有不同地形开阔度(Sky View Factor,SVF:KD=0.79;XHX=0.85;MMK=0.96)的气象站上,模型的均方根误差RMSE分别为1.10 MJ/m2,1.69 MJ/m2,2.49 MJ/m2;平均偏差ME(MRE)分别为0.39 MJ/m2(3.24%),0.73 MJ/m2(12.76%),1.88 MJ/m2(15.88%),由此可见,模型在视野一般开阔的地形下仍较为准确地模拟晴空总太阳辐射。

(2)以晴空总太阳辐射为基值,选择云属性(云量、云水路径、云光学厚度、云粒子有效半径)和地表温度作为太阳辐射的影响因子,构建亚热带、干旱带、温带及亚寒带气候区的全天空太阳辐射经验模型。研究利用BSRN的全球地面实测数据,在上述三类气候区分别构建全天空地表太阳辐射估算模型并验证了模型精度。结果表明,亚热带气候区Semi-Model模型在BSRN站点上表现最好,ME(MRE)和RMSE分别为-0.03 MJ/m2(10.21%)和3.31 MJ/m2;温带、亚寒带气候区模型Temp-Model次之,误差分别为0.16 MJ/m2(16.97%)和3.44 MJ/m2。干旱带气候区模型Arid-Model精度相对较差,误差分别为0.09 MJ/m2(9.48%)和4.52 MJ/m2;接着在中国区域CMA站点进一步验证模型的适用性。在亚热带站点上,模型的ME(MRE)和RMSE为0.89 MJ/m2(26.69%)和4.12 MJ/m2;干旱带模型的误差分别为-0.72 MJ/m2(18.11%)和3.94 MJ/m2;温带及亚寒带模型的误差分别为-0.62 MJ/m2(9.20%)和4.85 MJ/m2

(3)将所构建的模型与国际上被广泛使用的太阳辐射估算经验模型(Black模型)分别在BSRN和CMA站点上进行对比验证。结果表明,本文提出的经验模型精度较高,适用性较好,且在站点上总体表现优于Black模型,其中在亚热带、干旱带、温带及亚寒带气候区BSRN站点上,本模型相较于Black模型平均RMSE分别减少了0.48 MJ/m2、-0.35 MJ/m2、-0.09 MJ/m2。在三个气候区的CMA站点上,平均RMSE分别减少了1.12 MJ/m2、0.50 MJ/m2、0.22 MJ/m2

(4)基于三种太阳辐射估算经验模型从太阳能资源丰富性和稳定程度评估了三个气候区的太阳能资源。结果表明,干旱气候区的太阳能资源较其他两个气候区丰富且稳定性更强,所有站点上的年总太阳辐射量(SC)均值为6512 MJ/m2,各月平均稳定度(ST)为0.51,太阳能资源利用潜力巨大;其次是亚热带气候区,SC均值为5033 MJ/m2,平均ST为0.29;温带、亚寒带气候区的SC均值为4369 MJ/m2,平均ST为0.26。

论文外文摘要:

Solar energy is one of the most promising clean energy sources. To mitigate the growing global energy shortage, assessing and utilizing solar resources on a large scale is urgent. Mountainous regions have abundant solar resources due to their high altitude, clean air, and minimal human interference, making them ideal for solar energy development. However, these areas often face challenges due to complex terrain and sparse radiation and meteorological stations, making resource assessment difficult. Existing solar radiation estimation models, both domestic and international, are mature but often require data from radiation or meteorological stations, such as sunshine duration, which limits their use in mountainous areas with few stations. To address this, we used long-term ground observation data from the Baseline Surface Radiation Network (BSRN) and the China Meteorological Administration (CMA), along with multi-source remote sensing and reanalysis data, building three empirical models on the Google Earth Engine (GEE) cloud platform. These models could estimate surface solar radiation under various sky and terrain conditions in subtropical, arid, temperate and subarctic climates. By leveraging big data and remote sensing, it overcomes the issue of sparse meteorological stations in mountainous regions. Using the constructed model, we evaluated the solar resources at stations in three climate zones based on richness and stability of solar energy. The main conclusions of this study are as follows:

(1) Based on the GEE platform, we developed an algorithm to quantify surrounding terrain obstruction. By integrating atmospheric datasets such as MODIS and MERRA-2 available on the platform, we constructed a clear-sky surface solar radiation estimation model. This model accounts for radiation attenuation due to terrain shading, multiple reflections between the atmosphere and surface. The model validation results indicate high simulation accuracy. At three meteorological stations in the Kunlun Mountains' Tizinafu River Basin, characterized by different terrain openness (Sky View Factor, SVF: KD=0.79; XHX=0.85; MMK=0.96), the model's root mean square error (RMSE) values were 1.10 MJ/m², 1.69 MJ/m², and 2.49 MJ/m², respectively. The mean error (ME) values were 0.39 MJ/m2 (3.24%), 0.73 MJ/m2 (12.76%), and 1.88 MJ/m2 (15.88%), respectively. Thus, the model accurately simulates total clear-sky solar radiation even in moderately open terrain.

(2) Using clear-sky total solar radiation as a baseline, we selected cloud properties (cloud cover, cloud water path, cloud optical thickness, and effective radius of cloud particles) and surface temperature as factors influencing solar radiation. We then constructed empirical models for all-sky solar radiation in subtropical, arid, temperate, and subarctic climate zones. The study utilized global ground-based observation data from the Baseline Surface Radiation Network (BSRN) to develop and validate these models. The results indicate that the Semi-Model for the subtropical climate zone performed the best at BSRN sites, with ME (MRE) of -0.03 MJ/m2 (10.21%) and RMSE of 3.31 MJ/m2. The Temp-Model for the temperate and subarctic climate zones followed, with errors of 0.16 MJ/m2 (16.97%) and 3.44 MJ/m2, respectively. The Arid-Model for the arid climate zone had relatively lower accuracy, with errors of 0.09 MJ/m2 (9.48%) and 4.52 MJ/m2. The model's applicability was further validated at China Meteorological Administration (CMA) sites across subtropical, arid, temperate, and subarctic climate zones. At subtropical sites, the model's ME (MRE) and RMSE were 0.89 MJ/m2 (26.69%) and 4.12 MJ/m2, respectively. For the arid zone model, the errors were -0.72 MJ/m2 (18.11%) and 3.94 MJ/m2. For the temperate and subarctic zone models, the errors were -0.62 MJ/m2 (9.20%) and 4.85 MJ/m2, respectively.

(3) This study further compares our model with the widely used international empirical model for estimating solar radiation (the Black model) at BSRN and CMA sites. The results demonstrate that the empirical model proposed in this paper has higher accuracy and better applicability, generally outperforming the Black model at the stations. Specifically, compared to the Black model, at BSRN sites in the subtropical, arid, temperate and subarctic climate zones, our model reduces the average RMSE by 0.48 MJ/m2, -0.35 MJ/m2, and -0.09 MJ/m2, respectively. At the CMA stations in the three climate zones, the average RMSE is reduced by 1.12 MJ/m2, 0.50 MJ/m2, and 0.22 MJ/m2, respectively.

(4) Based on three empirical models for solar radiation estimation, the solar energy resources of three climate zones were evaluated in terms of abundance and stability. Results indicate that the solar energy resource in arid climate zones is more abundant and stable compared to the other two climate zones. The annual total solar radiation (SC) averaged 6512 MJ/m2 across all sites, with a monthly average stability (ST) of 0.51, suggesting significant potential for solar energy utilization. Subtropical climate zones exhibit the next highest solar resource potential, with an SC mean of 5033 MJ/m2 and an average ST of 0.29. Temperate and subarctic climate zones show an SC mean of 4369 MJ/m2 and an average ST of 0.26.

参考文献:

[1] 王峥, 任毅. 我国太阳能资源的利用现状与产业发展[J]. 资源与产业, 2010, 12(2): 89-92.

[2] 刘岩. 基于卫星遥感的云对新疆地面太阳辐射的影响研究[D]. 上海: 东华大学, 2015.

[3] 程松涛. 中国加速推进能源绿色转型[J].生态经济, 2021, 37(10): 9-12.

[4] 新华社, 2020. 习近平在联合国生物多样性峰会上发表重要讲话.

[5] 新华社, 2021. 习近平主持召开中央财经委员会第九次会议.

[6] 王炳忠, 张富国, 李立贤. 我国的太阳能资源及其计算[J]. 太阳能学报, 1980(1): 1-9.

[7] Zhang S H, Li X G, She J F, et al. Assimilating remote sensing data into GIS-based all sky solar radiation modeling for mountain terrain[J]. Remote Sensing of Environment, 2019, 231: 111239.

[8] 张艳, 唐世浩, 邱红等. 地球辐射收支卫星观测和气候应用[J]. 卫星应用, 2018(11): 50-54.

[9] 陈志华. 1957-2000年中国地面太阳辐射状况的研究[D]. 中国科学院研究生院(大气物理研究所), 2005.

[10] 闫云飞, 张智恩, 张力等. 太阳能利用技术及其应用[J]. 太阳能学报, 2012, 33(S1): 47-56.

[11] 李美成, 高中亮, 王龙泽等. “双碳”目标下我国太阳能利用技术的发展现状与展望[J]. 太阳能, 2021(11): 13-18.

[12] 王科, 黄晶. 国内外太阳能资源评估方法研究现状和展望[J]. 气候变化研究进展, 2023, 19(2): 160-172.

[13] 严大洲, 刘艳敏, 万烨等. 晶硅太阳能在“双碳”经济中的作用与影响[J]. 中国有色冶金, 2021, 50(5): 1-6.

[14] 申彦波. 我国太阳能资源评估方法研究进展[J]. 气象科技进展, 2017, 7(1): 77-84.

[15] Black J N. The distribution of solar radiation over the earth's surface[J]. Archiv für Meteorologie, Geophysik und Bioklimatologie, Serie B, 1956, 7: 165-189.

[16] Swartman R K, Ogunlade O. Solar radiation estimates from common parameters[J]. Solar energy, 1967, 11(3-4): 170-172.

[17] Bristow K L, Campbell G S. On the relationship between incoming solar radiation and daily maximum and minimum temperature[J]. Agricultural and forest meteorology, 1984, 31(2): 159-166.

[18] Iqbal M. An introduction to solar radiation[M]. Elsevier, 2012.

[19] Yang K, Huang G W, Tamai N. A hybrid model for estimating global solar radiation[J]. Solar energy, 2001, 70(1): 13-22.

[20] 翁笃鸣, 孙治安, 史兵. 中国坡地总辐射的计算和分析[J]. 气象科学, 1990(4): 348-357.

[21] Watson R T, Albritton D L. Climate change 2001: Synthesis report: Third assessment report of the Intergovernmental Panel on Climate Change[M]. Cambridge University Press, 2001.

[22] 田辉, 文军, 马耀明等. 复杂地形下黑河流域的太阳辐射计算[J]. 高原气象, 2007, (4): 666-676.

[23] 文小航. 中国大陆太阳辐射及其与气象要素关系的研究[D]. 兰州: 兰州大学, 2008.

[24] 沈钟平, 张华. 影响地面太阳辐射及其谱分布的因子分析[J]. 太阳能学报, 2009, 30(10): 1209-1215.

[25] 邹玲. 中国大陆地区地表太阳辐射估算及其时空变化分析[D]. 武汉: 武汉大学, 2017.

[26] Dubayah R, Rich P M. Topographic solar radiation models for GIS[J]. International journal of geographical information systems, 1995, 9(4): 405-419.

[27] Fu P, Rich P M. A geometric solar radiation model with applications in agriculture and forestry[J]. Computers and electronics in agriculture, 2002, 37(1-3): 25-35.

[28] 杨昕, 汤国安, 王雷. 基于DEM的山地总辐射模型及实现[J]. 地理与地理信息科学, 2004(5): 41-44.

[29] Xu L, Long E, Wei J, et al. A new approach to determine the optimum tilt angle and orientation of solar collectors in mountainous areas with high altitude[J]. Energy, 2021, 237: 121507.

[30] Wu G, Liu Y, Wang T. Methods and strategy for modeling daily global solar radiation with measured meteorological data-A case study in Nanchang station, China[J]. Energy conversion and management, 2007, 48(9): 2447-2452.

[31] Zhang J, Zhao L, Deng S, et al. A critical review of the models used to estimate solar radiation[J]. Renewable and Sustainable Energy Reviews, 2017, 70: 314-329.

[32] Ahamed M S, Guo H, Tanino K. Cloud cover-based models for estimation of global solar radiation: A review and case study[J]. International Journal of Green Energy, 2022, 19(2): 175-189.

[33] 孙治安, 史兵, 翁笃鸣. 中国坡地太阳直接辐射分布特征[J]. 高原气象, 1990(4): 371-381.

[34] 和清华, 谢云. 我国太阳总辐射气候学计算方法研究[J]. 自然资源学报, 2010, 25(2): 308-319.

[35] Angstrom, A. Solar and terrestrial radiation. Report to the international commission for solar research on actinometric investigations of solar and atmospheric radiation. Quarterly Journal of the Royal Meteorological Society, 1924, 50(210), 121-126.

[36] Toğrul I T, Toğrul H, Evin D. Estimation of global solar radiation under clear sky radiation in Turkey[J]. Renewable Energy, 2000, 21(2): 271-287.

[37] 孙治安, 施俊荣, 翁笃鸣. 中国太阳总辐射气候计算方法的进一步研究[J]. 南京气象学院学报, 1992, (2): 21-29.

[38] 李慧, 仝川, 陈加兵. 福建省区域尺度太阳总辐射模拟估算研究[J]. 亚热带资源与环境学报, 2007, (4): 1-8.

[39] Wang C L, Yue T X, Fan Z M. Solar radiation climatology calculation in China[J]. Journal of Resources and Ecology, 2014, 5(2): 132-138.

[40] Thornton P E, Running S W, White M A. Generating surfaces of daily meteorological variables over large regions of complex terrain[J]. Journal of hydrology, 1997, 190(3-4): 214-251.

[41] Trnka M, Žalud Z, Eitzinger J, et al. Global solar radiation in Central European lowlands estimated by various empirical formulae[J]. Agricultural and Forest Meteorology, 2005, 131(1-2): 54-76.

[42] Besharat F, Dehghan A A, Faghih A R. Empirical models for estimating global solar radiation: A review and case study[J]. Renewable and sustainable energy reviews, 2013, 21: 798-821.

[43] Prescott J A. Evaporation from water surface in relation to solar radiation. Transactions of the Royal Society of Australia, 1940, 46: 114-118.

[44] Bakirci K. Correlations for estimation of daily global solar radiation with hours of bright sunshine in Turkey. Energy, 2009, 34: 485-501.

[45] Hargreaves G H, Samani Z A. Estimating potential evapotranspiration[J]. Journal of the irrigation and Drainage Division, 1982, 108(3): 225-230.

[46] Goodin D G, Hutchinson J M S, Vanderlip R L, et al. Estimating solar irradiance for crop modeling using daily air temperature data[J]. Agronomy Journal, 1999, 91(5): 845-851.

[47] Paltridge G W, Proctor D. Monthly mean solar radiation statistics for Australia. Solar Energy, 1976, 18(3): 235-243.

[48] Sabziparvar A A. A simple formula for estimating global solar radiation in central arid deserts of Iran[J]. Renewable energy, 2008, 33(5): 1002-1010.

[49] Maghrabi A H. Parameterization of a simple model to estimate monthly global solar radiation based on meteorological variables, and evaluation of existing solar radiation models for Tabouk, Saudi Arabia[J]. Energy conversion and management, 2009, 50(11): 2754-2760.

[50] Jiang H, Dong Y, Wang J, et al. Intelligent optimization models based on hard-ridge penalty and RBF for forecasting global solar radiation[J]. Energy Conversion and Management, 2015, 95: 42-58.

[51] Jain P C. Global irradiation estimation for Italian locations[J]. Solar & wind technology, 1986, 3(4): 323-328.

[52] El-Metwally M. Sunshine and global solar radiation estimation at different sites in Egypt[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2005, 67(14): 1331-1342.

[53] Jin Z, Yezheng W, Gang Y. General formula for estimation of monthly average daily global solar radiation in China[J]. Energy Conversion and Management, 2005, 46(2): 257-268.

[54] Liu J, Linderholm H, Chen D, et al. Changes in the relationship between solar radiation and sunshine duration in large cities of China[J]. Energy, 2015, 82: 589-600.

[55] Manzano A, Martín M L, Valero F, et al. A single method to estimate the daily global solar radiation from monthly data[J]. Atmospheric Research, 2015, 166: 70-82.

[56] Chelbi M, Gagnon Y, Waewsak J. Solar radiation mapping using sunshine duration-based models and interpolation techniques: Application to Tunisia[J]. Energy Conversion and Management, 2015, 101: 203-215.

[57] Yaniktepe B, Genc Y A. Establishing new model for predicting the global solar radiation on horizontal surface[J]. International Journal of Hydrogen Energy, 2015, 40(44): 15278-15283.

[58] Supit I, Van Kappel R R. A simple method to estimate global radiation[J]. Solar energy, 1998, 63(3): 147-160.

[59] Kasten F, Czeplak G. Solar and terrestrial radiation dependent on the amount and type of cloud[J]. Solar energy, 1980, 24(2): 177-189.

[60] Davies J A, McKay D C. Estimating solar radiation from incomplete cloud data[J]. Solar Energy, 1988, 41(1): 15-18.

[61] Barker H W. Solar radiative transfer through clouds possessing isotropic variable extinction coefficient[J]. Quarterly Journal of the Royal Meteorological Society, 1992, 118(508): 1145-1162.

[62] Brinsfield R, Yaramanoglu M, Wheaton F. Ground level solar radiation prediction model including cloud cover effects[J]. Solar energy, 1984, 33(6): 493-499.

[63] Budyko M I. The effect of solar radiation variations on the climate of the Earth[J]. tellus, 1969, 21(5): 611-619.

[64] Hargreaves G H. Simplified coefficients for estimating monthly solar radiation[J]. North America and Europe, Departmental paper, Departmental of Biological and Irrigation Engineering, 1994.

[65] Chen R, Ersi K, Yang J, et al. Validation of five global radiation models with measured daily data in China[J]. Energy conversion and management, 2004, 45(11-12): 1759-1769.

[66] Donatelli M, Campbell C S. A simple model to estimate global solar radiation[C]//Proc. of the 5th ESA Congress-Nitra, The Slovak Republic. 1998: 133-134.

[67] Weiss A, Hays C J, Hu Q, et al. Incorporating bias error in calculating solar irradiance: implications for crop yield simulations[J]. Agronomy Journal, 2001, 93(6): 1321-1326.

[68] Sabbagh J A, Sayigh A A M, El-Salam E. Estimation of the total solar radiation from meteorological data[J]. Solar Energy, 1977, 19(3): 307-311.

[69] Maghrabi A H. Parameterization of a simple model to estimate monthly global solar radiation based on meteorological variables, and evaluation of existing solar radiation models for Tabouk, Saudi Arabia[J]. Energy conversion and management, 2009, 50(11): 2754-2760.

[70] Toğrul I T, Onat E. A study for estimating solar radiation in Elaziğ using geographical and meteorological data[J]. Energy Conversion and Management, 1999, 40(14): 1577-1584.

[71] Ertekin C, Yaldız O. Estimation of monthly average daily global radiation on horizontal surface for Antalya (Turkey)[J]. Renewable energy, 1999, 17(1): 95-102.

[72] Mohammadi K, Khorasanizadeh H, Shamshirband S, et al. Influence of introducing various meteorological parameters to the Angström-Prescott model for estimation of global solar radiation[J]. Environmental earth sciences, 2016, 75: 1-12.

[73] Yadav A K, Chandel S S. Solar radiation prediction using Artificial Neural Network techniques: A review[J]. Renewable and sustainable energy reviews, 2014, 33: 772-781.

[74] Kumar R, Aggarwal R K, Sharma J D. Comparison of regression and artificial neural network models for estimation of global solar radiations[J]. Renewable and Sustainable Energy Reviews, 2015, 52: 1294-1299.

[75] Qazi A, Fayaz H, Wadi A, et al. The artificial neural network for solar radiation prediction and designing solar systems: a systematic literature review[J]. Journal of cleaner production, 2015, 104: 1-12.

[76] Piri J, Kisi O. Modelling solar radiation reached to the Earth using ANFIS, NN-ARX, and empirical models (Case studies: Zahedan and Bojnurd stations)[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2015, 123: 39-47.

[77] Bellido-Jiménez J A, Gualda J E, García-Marín A P. Assessing new intra-daily temperature-based machine learning models to outperform solar radiation predictions in different conditions[J]. Applied Energy, 2021, 298: 117211.

[78] Teke A, Yıldırım H B, Çelik Ö. Evaluation and performance comparison of different models for the estimation of solar radiation[J]. Renewable and sustainable energy reviews, 2015, 50: 1097-1107.

[79] Šúri M, Hofierka J. A new GIS‐based solar radiation model and its application to photovoltaic assessments[J]. Transactions in GIS, 2004, 8(2): 175-190.

[80] Liu D L, Scott B J. Estimation of solar radiation in Australia from rainfall and temperature observations[J]. Agricultural and Forest Meteorology, 2001, 106(1): 41-59.

[81] Almorox J, Bocco M, Willington E. Estimation of daily global solar radiation from measured temperatures at Cañada de Luque, Córdoba, Argentina[J]. Renewable Energy, 2013, 60: 382-387.

[82] Zhang Q, Joe H, Yang H, et al. Development of models to estimate solar radiation for Chinese locations[J]. Journal of Asian Architecture and Building Engineering, 2003, 2(2): b35-b41.

[83] Running S W, Nemani R R, Hungerford R D. Extrapolation of synoptic meteorological data in mountainous terrain and its use for simulating forest evapotranspiration and photosynthesis[J]. Canadian Journal of Forest Research, 1987, 17(6): 472-483.

[84] Hungerford R D. MTCLIM: A mountain microclimate simulation model[M]. US Department of Agriculture, Forest Service, Intermountain Research Station, 1989.

[85] Thornton P E, Running S W. An improved algorithm for estimating incident daily solar radiation from measurements of temperature, humidity, and precipitation[J]. Agricultural and forest meteorology, 1999, 93(4): 211-228.

[86] 李海涛, 夏军, 沈文清, 等. MTCLIM模型系列研究报告(4): 辐射估算方法在我国南方亚热带山地的改进[J]. 山地学报, 2003, (5): 542-551.

[87] Azad M A K, Mallick J, Islam A R M T, et al. Estimation of solar radiation in data-scarce subtropical region using ensemble learning models based on a novel CART-based feature selection[J]. Theoretical and Applied Climatology, 2024, 155(1): 349-369.

[88] Lu X. Mountain surface processes and regulation[J]. Scientific Reports, 2021, 11(1): 5296.

[89] 孟丹, 陈正洪, 孙朋杰, 等. 复杂山区气象站潜在太阳能资源参量估算方法及应用[J]. 水电能源科学, 2022, 40(6): 211-214.

[90] 傅抱璞. 论坡地上的太阳辐射总量[J]. 南京大学学报(自然科学版), 1958(2): 47-82.

[91] 傅抱璞. 起伏地形中辐射平衡各分量的计算[J]. 气象学报, 1964(1): 62-73.

[92] 傅抱璞. 不同地形下辐射收支各分量的差异与变化[J]. 大气科学, 1998(2): 50-62.

[93] Liu B Y H, Jordan R C. The interrelationship and characteristic distribution of direct, diffuse and total solar radiation[J]. Solar energy, 1960, 4(3): 1-19.

[94] Hay J E. Calculation of monthly mean solar radiation for horizontal and inclined surfaces[J]. Solar energy, 1979, 23(4): 301-307.

[95] Klein S A, Theilacker J C. An algorithm for calculating monthly-average radiation on inclined surfaces[J]. 1981.

[96] Reindl D T, Beckman W A, Duffie J A. Evaluation of hourly tilted surface radiation models[J]. Solar energy, 1990, 45(1): 9-17.

[97] 李占清, 翁笃鸣. 丘陵山地总辐射的计算模式[J]. 气象学报, 1988(4): 461-468.

[98] 邹基玲, 侯旭宏, 季国良. 黑河地区夏末太阳辐射特征的初步分析[J]. 高原气象, 1992(4): 381-388.

[99] 贾立, 王介民. 黑河实验区地表植被指数的区域分布及季节变化[J]. 高原气象, 1999(2): 120-124+130-131.

[100] 陈斌, 张耀存, 丁裕国. 地形起伏对模式地表长波辐射计算的影响[J]. 高原气象, 2006(3): 406-412.

[101] Johnson G T, Watson I D. The determination of view-factors in urban canyons[J]. Journal of Applied Meteorology and Climatology, 1984, 23(2): 329-335.

[102] Chen L, Ng E, An X, et al. Sky view factor analysis of street canyons and its implications for daytime intra‐urban air temperature differentials in high‐rise, high‐density urban areas of Hong Kong: a GIS‐based simulation approach[J]. International Journal of Climatology, 2012, 32(1): 121-136.

[103] Gong F Y, Zeng Z C, Zhang F, et al. Mapping sky, tree, and building view factors of street canyons in a high-density urban environment[J]. Building and Environment, 2018, 134: 155-167.

[104] Zeng L, Lu J, Li W, et al. A fast approach for large-scale Sky View Factor estimation using street view images[J]. Building and Environment, 2018, 135: 74-84.

[105] 冯叶涵. 基于百度街景的SVF计算方法及其在城市热岛研究中的应用[D]. 上海:华东师范大学, 2022.

[106] Dozier J, Frew J. Rapid calculation of terrain parameters for radiation modeling from digital elevation data[J]. IEEE Transactions on geoscience and remote sensing, 1990, 28(5): 963-969.

[107] Jiao Z H, Ren H, Mu X, et al. Evaluation of four sky view factor algorithms using digital surface and elevation model data[J]. Earth and Space Science, 2019, 6(2): 222-237.

[108] 张淑花, 李新功, 李奇虎, 等. 提孜那甫河流域地表太阳辐射估算及其影响因素分析[J]. 干旱区地理, 2022, 45(3): 734-745.

[109] Zhang Y, Li X, Bai Y. An integrated approach to estimate shortwave solar radiation on clear-sky days in rugged terrain using MODIS atmospheric products[J]. Solar Energy, 2015, 113: 347-357.

[110] Gueymard C A. Temporal variability in direct and global irradiance at various time scales as affected by aerosols[J]. Solar Energy, 2012, 86(12): 3544-3553.

[111] Kumar L, Skidmore A K, Knowles E. Modelling topographic variation in solar radiation in a GIS environment[J]. International journal of geographical information science, 1997, 11(5): 475-497.

[112] Fu P, Rich P M. Design and implementation of the Solar Analyst: an ArcView extension for modeling solar radiation at landscape scales[C] //Proceedings of the nineteenth annual ESRI user conference. USA: San Diego, 1999, 1: 1-31.

[113] Li X, Cheng G, Chen X, et al. Modification of solar radiation model over rugged terrain[J]. Chinese Science Bulletin, 1999, 44: 1345-1349.

[114] Corripio J G. Vectorial algebra algorithms for calculating terrain parameters from DEMs and solar radiation modelling in mountainous terrain[J]. International Journal of Geographical Information Science, 2003, 17(1): 1-23.

[115] Hofierka J, Suri M. The solar radiation model for Open source GIS: implementation and applications[C]//Proceedings of the Open source GIS-GRASS users conference. 2002, 51-70.

[116] Wang T, Yan G, Mu X, et al. Toward operational shortwave radiation modeling and retrieval over rugged terrain[J]. Remote sensing of environment, 2018, 205: 419-433.

[117] Gorelick N, Hancher M, Dixon M, et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone[J]. Remote sensing of Environment, 2017, 202: 18-27.

[118] Kumar L, Mutanga O. Google Earth Engine applications since inception: Usage, trends, and potential[J]. Remote Sensing, 2018, 10(10): 1509.

[119] 董金玮, 李世卫, 曾也鲁, 等. 遥感云计算与科学分析-应用与实践[M]. 北京: 科学出版社, 2020.

[120] Yang Z, Li W, Chen Q, et al. A scalable cyberinfrastructure and cloud computing platform for forest aboveground biomass estimation based on the Google Earth Engine[J]. International Journal of Digital Earth, 2018.

[121] Tamiminia H, Salehi B, Mahdianpari M, et al. Google Earth Engine for geo-big data applications: A meta-analysis and systematic review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 164: 152-170.

[122] Reiche J, Lucas R, Mitchell A L, et al. Combining satellite data for better tropical forest monitoring[J]. Nature Climate Change, 2016, 6(2): 120-122.

[123] Tuckett P A, Ely J C, Sole A J, et al. Rapid accelerations of Antarctic Peninsula outlet glaciers driven by surface melt[J]. Nature Communications, 2019, 10(1): 4311.

[124] Bastin J F, Berrahmouni N, Grainger A, et al. The extent of forest in dryland biomes[J]. Science, 2017, 356(6338): 635-638.

[125] Finer M, Novoa S, Weisse M J, et al. Combating deforestation: From satellite to intervention[J]. Science, 2018, 360(6395): 1303-1305.

[126] Qin Y, Xiao X, Dong J, et al. Improved estimates of forest cover and loss in the Brazilian Amazon in 2000-2017[J]. Nature Sustainability, 2019, 2(8): 764-772.

[127] 郭永强, 王乃江, 褚晓升, 等. 基于Google Earth Engine分析黄土高原植被覆盖变化及原因[J]. 中国环境科学, 2019, 39(11): 4804-4811.

[128] Wang Y, Ziv G, Adami M, et al. Upturn in secondary forest clearing buffers primary forest loss in the Brazilian Amazon[J]. Nature Sustainability, 2020, 3(4): 290-295.

[129] Donchyts G, Baart F, Winsemius H, et al. Earth's surface water change over the past 30 years[J]. Nature Climate Change, 2016, 6(9): 810-813.

[130] Pekel J F, Cottam A, Gorelick N, et al. High-resolution mapping of global surface water and its long-term changes[J]. Nature, 2016, 540(7633): 418-422.

[131] Zou Z, Xiao X, Dong J, et al. Divergent trends of open-surface water body area in the contiguous United States from 1984 to 2016[J]. Proceedings of the National Academy of Sciences, 2018, 115(15): 3810-3815.

[132] Laskin D N, McDermid G J, Nielsen S E, et al. Advances in phenology are conserved across scale in present and future climates[J]. Nature Climate Change, 2019, 9(5): 419-425.

[133] Walter T R, Haghshenas Haghighi M, Schneider F M, et al. Complex hazard cascade culminating in the Anak Krakatau sector collapse[J]. Nature communications, 2019, 10(1): 4339.

[134] Wang X, Xiao X, Zou Z, et al. Mapping coastal wetlands of China using time series Landsat images in 2018 and Google Earth Engine[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 163: 312-326.

[135] Safanelli J L, Poppiel R R, Ruiz L F C, et al. Terrain analysis in google earth engine: A method adapted for high-performance global-scale analysis[J]. ISPRS International Journal of Geo-Information, 2020, 9(6): 400.

[136] 姚玉璧, 郑绍忠, 杨扬, 等. 中国太阳能资源评估及其利用效率研究进展与展望[J]. 太阳能学报, 2022, 43(10): 524-535.

[137] Tolabi H B, Moradi M H, Ayob S B M. A review on classification and comparison of different models in solar radiation estimation[J]. International journal of energy research, 2014, 38(6): 689-701.

[138] 刘爱君, 陈雯超, 秦鹏. 广州市太阳能资源的分析与评估[J]. 广东气象, 2014, 36(3): 59-61.

[139] 朱学玲, 李红卫. 洛阳地区太阳能资源分析与评估[J]. 气象与环境科学, 2015, 38(1): 67-72.

[140] 梁俊霞, 李旭, 朱红路, 等. 一种光伏发电的太阳能资源日变化分析方法[J]. 水电能源科学, 2015, 33(3): 205-208+201.

[141] 刘淳, 任立清, 李学军, 等. 1990-2019年中国北方沙区太阳能资源评估[J]. 高原气象, 2021, 40(5): 1213-1223.

[142] Walther A, Heidinger A K. Implementation of the daytime cloud optical and microphysical properties algorithm (DCOMP) in PATMOS-x[J]. Journal of Applied Meteorology and Climatology, 2012, 51(7): 1371-1390.

[143] Driemel A, Augustine J, Behrens K, et al. Baseline Surface Radiation Network (BSRN): structure and data description (1992-2017) [J]. Earth System Science Data, 2018, 10(3): 1491-1501.

[144] Zhang T, Stackhouse Jr P W, Cox S J, et al. The uncertainty of the BSRN monthly mean Global 1 and Global 2 fluxes due to missing hourly means with and without quality-control and an examination through validation of the NASA GEWEX SRB datasets[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 255: 107272.

[145] 唐文君. 中国区域地表太阳辐射的估算及其时空变化特征分析[D]. 北京: 中国科学院大学, 2012.

[146] Kato S, Ackerman T P, Clothiaux E E, et al. Uncertainties in modeled and measured clear‐sky surface shortwave irradiances[J]. Journal of Geophysical Research: Atmospheres, 1997, 102(D22): 25881-25898.

[147] Dutton E G, Michalsky J J, Stoffel T, et al. Measurement of broadband diffuse solar irradiance using current commercial instrumentation with a correction for thermal offset errors[J]. Journal of Atmospheric and Oceanic Technology, 2001, 18(3): 297-314.

[148] Long C N, Shi Y. An automated quality assessment and control algorithm for surface radiation measurements[J]. The Open Atmospheric Science Journal, 2008, 2(1).

[149] Wang K, Dickinson R E. Global atmospheric downward longwave radiation at the surface from ground‐based observations, satellite retrievals, and reanalyses[J]. Reviews of Geophysics, 2013, 51(2): 150-185.

[150] Roesch A, Wild M, Ohmura A, et al. Assessment of BSRN radiation records for the computation of monthly means[J]. Atmospheric Measurement Techniques Discussions, 2010, 3(5): 4423-4457.

[151] Geiger M, Diabaté L, Ménard L, et al. A web service for controlling the quality of measurements of global solar irradiation[J]. Solar energy, 2002, 73(6): 475-480.

[152] Moradi I. Quality control of global solar radiation using sunshine duration hours[J]. Energy, 2009, 34(1): 1-6.

[153] Beck H E, Zimmermann N E, McVicar T R, et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution[J]. Scientific data, 2018, 5(1): 1-12.

[154] Dozier J, Bruno J, Downey P. A faster solution to the horizon problem[J]. Computers & Geosciences, 1981, 7(2): 145-151.

[155] Lamare M, Dumont M, Picard G, et al. Simulating optical top-of-atmosphere radiance satellite images over snow-covered rugged terrain[J]. The Cryosphere, 2020, 14(11): 3995-4020.

[156] 刘兴冉, 张宏晔, 闫海明, 等. 区域复杂地形晴日太阳辐射估算研究[J]. 太阳能学报, 2022, 43(8): 174-180.

[157] Kreith F, Kreider J F. Principles of solar engineering[J]. 1978.

[158] Long C N, Ackerman T P. Identification of clear skies from broadband pyranometer measurements and calculation of downwelling shortwave cloud effects[J]. Journal of Geophysical Research: Atmospheres, 2000, 105(D12): 15609-15626.

[159] Li M, Zhong S, Luo Y, et al. A study of the change in surface parameters during the last four decades in the MuUs desert based on remote sensing data[J]. Remote Sensing, 2022, 14(16): 4025.

[160] 中国气象局, 2019. GB/T 37526-2019太阳能资源评估方法[S]. 北京: 国家市场监督管理总局、中国国家标准化管理委员会.

[161] Chiavazzo E, Morciano M, Viglino F, et al. Passive solar high-yield seawater desalination by modular and low-cost distillation[J]. Nature sustainability, 2018, 1(12): 763-772.

[162] Li Z, Xu X, Sheng X, et al. Solar-powered sustainable water production: state-of-the-art technologies for sunlight–energy–water nexus[J]. ACS nano, 2021, 15(8): 12535-12566.

[163] Abdallah S. The effect of using sun tracking systems on the voltage-current characteristics and power generation of flat plate photovoltaics[J]. Energy conversion and management, 2004, 45(11-12): 1671-1679.

中图分类号:

 P237    

开放日期:

 2025-06-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式