- 无标题文档
查看论文信息

论文中文题名:

 曹家滩煤矿壁后注浆井筒结构稳定性分析及防控技术研究    

姓名:

 王雄    

学号:

 20204228079    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085213    

学科名称:

 工学 - 工程 - 建筑与土木工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 土木水利    

研究方向:

 防灾减灾理论与技术    

第一导师姓名:

 李金华    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-14    

论文答辩日期:

 2023-05-31    

论文外文题名:

 Structural stability analysis of Caojiatan Coal Mine wall grouting Shaft and prevention and control technology research    

论文中文关键词:

 壁后空洞 ; 壁后注浆 ; 井筒结构稳定性 ; 防治技术    

论文外文关键词:

 Void behind wall ; Grouting behind the wall ; Wellbore structural stability ; Prevention and treatment technology    

论文中文摘要:

井筒是煤矿井工开采系统的“咽喉”,井筒的安全与稳定关系着整个矿井的正常生产和安全运转。曹家滩煤矿副斜井穿越强风化松散富水砂岩地层,水文地质条件复杂,长期涌水携砂造成壁后空洞,严重威胁着井筒的安全稳定。本文以曹家滩煤矿斜井穿越松散层注浆治理段工程项目为依托,采用理论分析、数值模拟和现场监测的方法,开展了煤矿壁后注浆井筒结构稳定性分析及防控技术研究,主要结论有:

(1)结合曹家滩煤矿工程地质和水文地质资料,对斜井穿越松散砂层段注浆治理段井筒结构稳定性的影响因素进行分析,其中壁后空洞、注浆压力不当是影响井筒结构稳定性的主控因素;

(2)以结构力学为基础,分别建立了不同壁后空洞位置、壁后注浆条件下井筒结构力学模型,得到了井筒结构内力解析函数,分析了井筒结构内力分布特征,确定了壁后空洞及壁后注浆对井筒结构稳定性影响的最不利位置;

(3)基于弹性地基梁理论,根据底板自重荷载作用和底板‘结构-围岩’相对位移条件,建立了井筒结构底板下伏空洞受力模型,分析了底板内力、变形分布特征,研究了脱空区底板破坏机理;

(4)采用FLAC3D有限差分软件,分别建立了壁后空洞、壁后注浆不同工况下井筒结构数值模型,分析了不同空洞部位、多空洞组合以及壁后注浆条件下井筒结构内力,进一步研究了壁后空洞以及壁后注浆对井筒结构稳定性的影响规律;

(5)结合曹家滩煤矿井筒结构的变形破坏特征,从改善井筒结构的受力状况,提高围岩完整性和结构自承能力角度出发,提出了壁后充填、合理注浆压力控制和衬砌结构加固的联合加固控制技术,并对其防治效果进行了评价。

论文外文摘要:

The shaft is the "throat" of the coal mine's shaft mining system, and the safety and stability of the shaft is related to the normal production and safe operation of the entire mine. The Caojiatan coal mine's secondary inclined shaft crosses a strongly weathered loose water-rich sandstone stratum with complex hydrogeological conditions, and long-term water gushing and sand carrying has caused a cavity behind the wall, seriously threatening the safety and stability of the shaft. In this paper, based on the Caojiatan coal mine inclined shaft over loose layer grouting treatment section project, using theoretical analysis, numerical simulation and field monitoring methods, carried out a coal mine behind the wall grouting shaft structural stability analysis and prevention and control technology research, the main conclusions are:

(1)Combining the engineering geological and hydrogeological data of Caojiatan coal mine, the factors affecting the structural stability of the wellbore in the sloping shaft over loose sand layer section grouting treatment section were analysed, among which the back wall cavity and improper grouting pressure are the main control factors affecting the structural stability of the wellbore.

(2)Translated with www.DeepL.com/Translator (free version)Combined with the engineering and hydrogeological data of Caojiatan coal mine, the factors influencing the structural stability of the slant shaft over loose sand layer section slurry treatment section wellbore were analysed, in which the post-wall cavity and post-wall slurry injection were the main influencing factors of the structural stability of the wellbore;

(3)Based on structural mechanics, the structural mechanics models of the wellbore structure under the conditions of post-wall cavity and post-wall grouting were established respectively, the analytical functions of the internal forces of the wellbore structure were obtained, the characteristics of the distribution of the internal forces of the wellbore structure were analysed, and the most unfavourable locations of the impact of post-wall cavity and post-wall grouting on the stability of the wellbore structure were determined;

(4)The numerical models of the wellbore structure under different working conditions of post-wall cavity and post-wall grouting were established using FLAC3D finite difference software, and the internal forces of the wellbore structure under different cavity locations, multiple cavity combinations and post-wall grouting conditions were analysed to further study the influence of post-wall cavity and post-wall grouting on the stability of the wellbore structure;

(5) Combining the deformation and damage characteristics of the shaft structure of Caojiatan coal mine, the combined reinforcement control technology of behind-wall filling, reasonable grouting pressure control and lining structure reinforcement is proposed from the perspective of improving the stress condition of the shaft structure, enhancing the integrity of the surrounding rock and the self-supporting capacity of the structure, and its prevention and control effects are evaluated.

参考文献:

[1]张建强, 宁树正, 陈美英,等. 我国煤炭资源开发前景及对策[J]. 地质论评, 2020, 66(S1):143-145.

[2]祁越峰. 我国能源发展现状及未来趋势分析[J].内蒙古煤炭经济, 2019(14):1-2+11.

[3]范立民, 马雄德, 冀瑞君. 西部生态脆弱矿区保水采煤研究与实践进展[J].煤炭学报, 2015, 40(8): 1711-1717.

[4]曹树刚等. 采煤学[M]. 煤炭工业出版社, 2012.

[5]徐永圻. 煤矿开采学[M]. 煤炭工业出版社, 2012.

[6]张文泉, 卢玉华, 宫红月, 孟祥军, 官云章. 兖滕矿区立井井壁损坏的原因分析及防治方法[J]. 岩土力学, 2004(12): 1977-1980.

[7]徐海洋. 任楼煤矿副井井壁破坏机理与防治技术研究[D]. 安徽理工大学, 2017.

[8]洪开荣.我国隧道及地下工程发展现状与展望[J].隧道建设,2015,35(02):95-107.

[9]Jiao B Q, Jin X G, Xiao-Hong L I, et al. Study on stability of tunnel surrounding rock support system in karst region[J]. Chinese Journal of Geological Hazard&Control, 2004, 15(3): 78-82.

[10]郭子红,钟祖良.浅埋隧道破裂面的极限平衡分析法[J].地下空间与工程学报,2017,13(05):1228-1233.

[11]张世雄. 固体矿物资源开发工程[M]. 武汉理工大学出版社, 2013.

[12]齐琳. 公路隧道软弱围岩不同施工方法受力状态定性分析[J]. 市政技术, 2009, 27(05): 491-494+551.

[13]Owen D R J, Hinton E. Finite elements in plasticity Theory and Practice[M]. Swansea, Pine ridge Press Limited, 1980.

[14]Fairhurst C, Pei J. A comparison between the distinct element method and the finite element method for analysis of the stability of an excavation in jointed rock[J]. Tunnelling&Underground Space Technology, 1990, 5(1-2):111-117.

[15]闫振东, 杨仁树, 岳中文, 等. 渗水厚砾石层斜井围岩破坏机理模型试验[J]. 煤炭学报, 2009(12): 1599-1604.

[16]岳中文, 杨仁树, 孙中辉, 等. 富水厚砾石层斜井围岩破坏机理试验研究(Ⅱ)[J]. 煤炭学报, 2010, 35(8): 1273-1278.

[17]王卫军, 袁越, 余伟健, 等. 采动影响下底板暗斜井的破坏机理及其控制[J]. 煤炭学报, 2014, 39(8): 1463-1472.

[18]王勇. 斜井表土段冻结井壁受力规律与设计理论研究[D]. 中国矿业大学, 2016.

[19]齐春. 大埋深盾构斜井衬砌结构力学性能研究[D]. 西南交通大学, 2017.

[20]刘璐璐. 基于统一强度理论的 TBM 斜井围岩弹塑性解及试验研究[D]. 中国矿业大学(北京), 2017.

[21]张洪庆. 局部均匀压力作用下斜井井壁的受力与变形规律研究[D]. 中国矿业大学, 2015.

[22]李向阳. 斜井穿越流砂层井壁变形与承载特性研究[D]. 中国矿业大学, 2014.

[23]亓轶. 采动对新街矿区管片结构斜井稳定性影响规律及合理保护煤柱宽度的确定[D]. 北京交通大学, 2013.

[24]Yasuda N, Tsukada K, Asakura T. Elastic solutions for circular tunnel with void behind lining[J]. Tunnelling and Underground Space Technology, 2017, 70:274-285.

[25]Yang R, Xue Y. Risk Assessment of Void behind the Lining Based on Numerical Analysis and ANN[C] Geo-Risk. 2017:320-333.

[26]Brozovsky J, JaaEk M, Mynarzova L, et al. Numerical Modelling of Historical Masonry Structures[J]. Advanced Materials Research, 2014, 1020:182-187.

[27]M.A. Meguid,H. K. Dang. The effect of erosion voids on existing tunnel linings[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 2008, 24(3).

[28]陈达才. 局部空洞作用下连拱隧道衬砌裂缝仿真分析[J]. 公路交通技术, 2010(04): 109-113.

[29]周一勤, 金云雷. 公路隧道二次衬砌顶部脱空的分析及处理[J]. 华东公路, 1999(02): 40-44.

[30]应国刚, 张顶立, 陈立平, 房倩, 张成平. 荷载结构模型在拱顶空洞存在情况下的修正[J]. 土木工程学报, 2015(S1).

[31]彭念, 张永兴等. 拱顶存在空洞的隧道衬砌受力性能数值分析[J]. 地下工程及深基坑. 2010, 602-606.

[32]张旭, 张成平, 冯岗, 韩凯航. 衬砌壁后空洞影响下隧道结构裂损规律试验研究[J].岩土工程学报, 2017, 39(06): 1137-1144.

[33]彭跃, 王桂林, 张永兴, 施毅. 衬砌壁后空洞对在役隧道结构安全性影响研究[J]. 地下空间与工程学报, 2008, 4(06): 1101-1104+1137.

[34]张素磊. 隧道衬砌结构健康诊断及技术状况评定研究[D]. 北京交通大学, 2012.

[35]Wang J, Huang H, Xie X, et al. Risk Assessment of Voids behind the Lining of Mountain Tunnels[C]. Geoflorida. 2010: 2319-2328.

[36]Wang J, Huang H, Xie X, et al. Void-induced liner deformation and stress redistribution[J]. Tunnelling&Underground Space Technology Incorporating Trenchless Technology Research, 2014, 40(40): 263-276.

[37]王立川, 周东伟, 吴剑, 阳军生. 铁路隧道复合衬砌脱空的危害分析与防治[J].中国铁道科学, 2011, 32(05): 56-63.

[38]王悦汉. 巷道支架壁后充填技术[M]. 北京: 煤炭工业出版社, 1995: 10-30.

[39]陆士良, 王悦汉. 软岩巷道支架壁后充填与围岩关系的研究[J]. 岩石力学与工程学报, 1999, 18(2): 180-183.

[40]Kim C, Cho Y, Lim J, et al. Case study on the application of conventional tunneling method in backfilled ground condition[M] Underground. The Way to the Future. 2013.

[41]O.Huvaz, M.Vardar. Assessing the efficiency and applicability of contact grouting in the Istanbul Subway. Bull Eng Geol Env (2001) 60:13-17.

[42]V. A. Ashikhmen and L.E. Pronina. Investigations of the penetrability of cement grout into a voids having a small opening. Hydrotechnical Construction, Vol, 35, No.8, 2001.

[43]朱春生, 杨晓华, 来弘鹏, 朱玉萍. 公路隧道衬砌后空洞对结构安全的影响[J]. 长安大学学报(自然科学版), 2010, 30(05): 63-68.

[44]YUKINORIK, YUTAKAS, NORIYUKIO, et al. Backfill grouting model test for shield tunnel[J]. Quarterly Report of PTRI, 1998, 39(1): 35-39.

[45]EZZELDINEOY. Estimation of the surface displacement field due to construction of Cairl metro line Rl Khalafawy-St. Therese[J]. Tunnelling and Underground Space Technology, 1999,14(3): 267-279.

[46]Working Group 2, International Tunnelling Association.Guidelines for the design of shield tunnel lining[J].Tunnelling and Underground Space Technology, 2000,15(3): 303-331.

[47]邓宗伟, 冷伍明, 陈建平.盾构隧道壁后注浆作用机制的计算研究[J].塑性工程学报, 2005, 12(6): 114-117.

[48]王善新, 杨建民, 刘晓强, 贾高远, 闫晰岭, 刘鹏. 回风立井井筒破坏的修复技术研究[J]. 中国煤炭, 2012, 38(10): 56-58+64.

[49]Krishnan R, Copsey J P, Algeo R G, et al. Design of the civil works for Singapore's North East line[J]. Tunnelling and Underground Space Technology, 1999, 14(4): 433-448.

[50]Duddeck H. Application of numerical analyses for tunnelling[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1991, 15(4): 223-239.

[51]吉小明, 吕纬. 含水砂层隧道围岩失稳破坏机制及控制研究现状综述[J]. 岩土力学, 2009, 30(S2): 291-296.

[52]吕少辉. 中关铁矿软岩巷道支护技术研究[D]. 兰州大学, 2019.

[53]倪建明. 淮北矿区煤巷围岩稳定性分类与支护对策研究[D]. 中国矿业大学, 2008.

[54]曲海锋. 扁平特大断面公路隧道荷载模式及应用研究[D]. 同济大学, 2007.

[55]吕康成. 公路隧道 U 型钢可缩性支架支护探讨[J]. 广东公路交通, 1998(S1): 54-57.

[56]胡健. 秦岭终南山公路隧道大埋深段施工监控量测与数值分析[D]. 长安大学, 2008.

[57]陈峰宾. 隧道初期支护与软弱围岩作用机理及应用[D]. 北京交通大学, 2012.

[58]Kim H J, Bae G J, Kim D G. Evaluation of the performance for the reformed lattice girders [J]. 2013, 15(30).

[59]徐飞, 李术才, 石少帅等. 千枚岩隧道传统与新型支护结构现场对比试验研究[J]. 岩石力学与工程学报, 2017, 36(03):609-621.

[60]关宝树. 漫谈矿山法隧道技术第四讲-钢架[J]. 隧道建设, 2016,36(02):123-130.

[61]于富才. 隧道支护与围岩作用体系的力学特性研究[D]. 北京交通大学, 2017.

[62]邱军领, 赖金星, 刘炽, 胡昭, 谢永利. 盾构隧道壁后空洞注浆对管片受力特性的影响[J]. 解放军理工大学学报(自然科学版), 2016, 17(04): 364-37.

中图分类号:

 TD262    

开放日期:

 2023-06-14    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式