- 无标题文档
查看论文信息

论文中文题名:

 超前疏水条件下深埋富水基岩工作面采动应力演化规律研究    

姓名:

 张锡琛    

学号:

 21203226060    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 能源学院    

专业:

 资源与环境    

研究方向:

 矿山压力与岩层控制    

第一导师姓名:

 高喜才    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-25    

论文答辩日期:

 2024-06-05    

论文外文题名:

 Study on mining stress evolution law of deep buried with working face water-rich bedrock under advanced drainage condition    

论文中文关键词:

 深部开采 ; 富水工作面 ; 顶板疏水 ; 采动应力场 ; 应力叠加    

论文外文关键词:

 Deep mining ; Water-rich working face ; Roof hydrophobic ; Mining stress field ; Stress superposition    

论文中文摘要:

陕蒙接壤地区赋存侏罗系砂岩含水层具有渗透系数大、富水性强、孔隙水压大等典型水文地质特征,深埋厚煤层开采过程中采动应力场与能量集聚释放规律变化显著,易诱发动力灾害,给深埋富水工作面安全生产带来较大难题。本文以陕蒙接壤地区巴彦高勒煤矿3-1煤层开采为研究背景,通过现场实测、理论分析、物理模拟与数值仿真相结合方法,研究了超前疏水条件下煤层顶板静态应力演化规律,分析了深埋大采高工作面关键层破断动载响应特征,揭示了超前疏水条件下大采高工作面采动应力场叠加效应, 主要研究结果如下:

(1)巴彦高勒煤矿3-1煤层平均埋深660m,距离煤层顶板46m的中粒砂岩为主关键层,3-1煤层开采直接充水含水层为延安组顶部及直罗组中下部中粗砂岩孔隙裂隙含水层组,砂岩孔隙水压大,富水性较强,为工作面超前疏放水的重点含水层。受含水层内部富水性不均影响,各钻孔总疏放量存在明显差异,基于钻孔涌水量及地下水动力学参数,计算得出顶板含水层疏水影响范围。

(2)根据基岩含水层疏放及承载性能弱化原理,建立了顶板疏水应力转移、传递力学模型,给出了超前疏水条件下煤层顶板应力分布函数。顶板承压含水层疏放程度、厚度、岩层强度与煤层顶板应力集中程度呈正相关,承压含水层赋存高度与煤层顶板应力集中程度呈负相关,且承压含水层疏放程度影响作用最为明显。

(3)采用物理相似材料模拟实验方法,研究了深埋厚煤层大采高工作面覆岩破坏与采动应力演化规律,工作面基本顶初次来压步距为96m,周期来压步距平均为29.8m,在第六次周期来压时(236m)关键层结构失稳破断,造成工作面剧烈的矿压显现,工作面支架工作阻力达到最大,动载系数1.63。当关键层破断时内部积聚的弹性能将瞬时释放,事件能量和频次占总比的18.7%和22.3%,微震事件具有“高能量多频次”特征。

(4)工作面顶板超前疏水完成后,疏水区两侧岩层集中应力向下方煤层顶板传递,超前疏水条件下大采高工作面走向应力为煤岩层自重应力、疏水转移应力及采动支承压力的叠加。结合关键层理论,建立非充分采动阶段工作面走向支承压力估算模型,给出了应力叠加极值时工作面前方煤体应力的分布函数。随工作面回采,超前支承压力前移与疏水转移应力叠加增强,煤层顶板应力分布形态呈现由“双峰”到“单峰”再到“双峰”的演化规律。

(5)深埋富水工作面含水层疏水区岩层承载性能弱化使得其覆岩载荷向两侧传递,当工作面回采至增压区时,支承压力与疏水转移应力叠加先耦合增强后减弱,当采动疏水应力叠加形成高静载,与关键层破断形成的动载扰动叠加达到临界时,易诱发复合动力灾害。提出了顶板承压含水层调控、疏水应力集中区卸压及覆岩坚硬顶板弱化的“降静弱动”分源一体化协同防治措施,为深埋富水大采高工作面的安全开采提供一定指导。

论文外文摘要:

The Jurassic sandstone aquifer in the border area of Shaanxi and Inner Mongolia has typical hydrogeological characteristics such as large permeability coefficient, strong water abundance and large pore water pressure. During the mining process of deep buried thick coal seam, the mining stress field and energy concentration and release law change significantly, which is easy to induce dynamic disasters and bring great difficulties to the safe production of deep buried water-rich working face. In this paper, the mining of 3-1 coal seam in Bayangaole Coal Mine in the border area of Shaanxi and Inner Mongolia is taken as the research background. Through the combination of field measurement, theoretical analysis, physical simulation and numerical simulation, the static stress evolution law of coal seam roof under the condition of advanced drainage is studied. The dynamic load response characteristics of key strata in deep and large mining height working face are analyzed, and the superposition effect of mining stress field in large mining height working face under the condition of advanced drainage is revealed. The main research results are as follows :

(1) The average buried depth of 3-1 coal seam in Bayangaole Coal Mine is 660 m, and the medium-grained sandstone is the main key stratum 46 m away from the roof of the coal seam. The direct water-filled aquifer of 3-1 coal seam mining is the top of Yan 'an Formation and the middle and lower part of Zhiluo Formation. The medium-coarse sandstone pore fissure aquifer group has large pore water pressure and strong water-richness, which is the key aquifer for advanced water drainage in the working face. Due to the uneven water-richness inside the aquifer, there are obvious differences in the total drainage volume of each borehole. Based on the borehole water inflow and groundwater dynamic parameters, the hydrophobic influence range of the roof aquifer is calculated.

 (2) According to the principle of bedrock aquifer drainage and bearing capacity weakening, the mechanical model of roof drainage stress transfer and transfer is established, and the stress distribution function of coal seam roof under the condition of advanced drainage is given. The drainage degree, thickness and rock strength of roof confined aquifer are positively correlated with the stress concentration degree of coal seam roof. The occurrence height of confined aquifer is negatively correlated with the stress concentration degree of coal seam roof, and the drainage degree of confined aquifer has the most obvious influence.

(3) The physical similar material simulation experiment method is used to study the overburden failure and mining stress evolution law of large mining height working face in deep buried thick coal seam. The first weighting step of the main roof of the working face is 96 m, and the average periodic weighting step is 29.8 m. During the sixth periodic weighting ( 236 m ), the key stratum structure is unstable and broken, resulting in severe mine pressure on the working face. The working resistance of the working face support reaches the maximum, and the dynamic load coefficient is 1.63. When the key layer is broken, the elastic energy accumulated inside will be released instantaneously. The energy and frequency of the event account for 18.7 % and 22.3 % of the total ratio, and the microseismic event has the characteristics of ' high energy and multi frequency '.

(4) After the advance drainage of the working face roof is completed, the concentrated stress of the rock strata on both sides of the drainage area is transmitted to the lower coal seam roof. Under the condition of advance drainage, the strike stress of the large mining height working face is the superposition of the self-weight stress of the coal rock strata, the drainage transfer stress and the mining abutment pressure. Combined with the key stratum theory, the estimation model of abutment pressure along the strike of working face in the stage of insufficient mining is established, and the distribution function of coal body stress in front of working face when the stress superposition extremum is given. With the mining of the working face, the superposition of the advance abutment pressure and the hydrophobic transfer stress is enhanced, and the stress distribution pattern of the coal seam roof presents the evolution law from ' double peak ' to ' single peak ' and then to ' double peak '.

(5) The weakening of the bearing capacity of the strata in the aquifer hydrophobic area of the deep-buried water-rich working face makes the overburden load transfer to both sides. When the working face is mined to the supercharged area, the superposition of the abutment pressure and the hydrophobic transfer stress first increases and then decreases. When the superposition of the mining-induced hydrophobic stress forms a high static load, and the superposition of the dynamic load disturbance formed by the fracture of the key stratum reaches a critical value, it is easy to induce a composite dynamic disaster. The integrated prevention and control measures of " static reduction and weak movement " are put forward, which include the regulation of roof confined aquifer, the pressure relief of hydrophobic stress concentration area and the weakening of hard roof of overburden rock, so as to provide some guidance for the safe mining of deep buried water-rich large mining height working face.

参考文献:

[1]齐庆新, 李一哲, 赵善坤, 等. 我国煤矿冲击地压发展70年: 理论与技术体系的建立与思考[J]. 煤炭科学技术, 2019, 47(09):1-40.

[2]潘俊锋, 夏永学, 王书文, 等. 我国深部冲击地压防控工程技术难题及发展方向[J]. 煤炭学报, 2024, 49(03): 1291-1302.

[3]Wei P, Yun L, Chuang Z, et al. Coal Burst Prevention Technology and Engineering Practice in Ordos Deep Mining Area of China[J]. Sustainability, 2022, 15(1): 159-159.

[4]解嘉豪, 韩刚, 吕玉磊, 等. 蒙陕地区工作面冲击危险的增量叠加法评价[J]. 煤炭科学技术, 2020, 48(S1): 59-65.

[5]陈卫军. 鄂尔多斯西部煤矿冲击地压治理技术研究[J]. 煤炭科学技术, 2018, 46(10): 99-104.

[6]吴永辉. 呼吉尔特矿区深部侏罗系煤田矿井首采工作面涌水量预计[J]. 建井技术, 2019, 40(03): 14-18.

[7]梁向阳, 杨建, 曹志国, 等. 呼吉尔特矿区矿井涌水特征及其沉积控制[J]. 煤田地质与勘探, 2020, 48(01): 138-144.

[8]虎维岳, 姬亚东, 黄欢, 等. 煤层顶板承压含水层涌水模式与疏放水钻孔优化设计[J]. 煤田地质与勘探, 2021, 49(05): 139-146.

[9]范立民, 马雄德, 蒋泽泉, 等. 保水采煤研究30年回顾与展望[J]. 煤炭科学技术, 2019, 47(07): 1-30.

[10]舒凑先, 姜福兴, 魏全德, 等. 疏水诱发深井巷道冲击地压机理及其防治[J]. 采矿与安全工程学报, 2018, 35(04): 780-786.

[11]Xie J, Xu J, Wang F. Mining-induced stress distribution of the working face in a kilometer-deep coal mine-a case study in Tangshan coal mine[J]. Journal of Geophysics and Engineering, 2018, 15(5): 2060-2070.

[12]刘杰, 王恩元, 赵恩来, 等. 深部工作面采动应力场分布变化规律实测研究[J]. 采矿与安全工程学报, 2014, 31(01): 60-65.

[13]刘金海, 姜福兴, 朱斯陶, 等. 长壁采场动、静支承压力演化规律及应用研究[J]. 岩石力学与工程学报, 2015, 34(09): 1815-1827.

[14]郑建伟, 鞠文君, 赵曦, 等. 采场全生命周期及其应力的时空演化特征分析[J]. 煤炭学报, 2019, 44(04): 995-1002.

[15]吕有厂, 何志强, 王英伟, 等. 超千米深部矿井采动应力显现规律[J]. 煤炭学报, 2019, 44(05): 1326-1336.

[16]Zhang P, Sun B. Distribution characteristics of the advance abutment pressure in a deep stope[J]. Journal of Geophysics and Engineering, 2020, 17(4): 686-699.

[17]金珠鹏, 秦涛, 张俊文, 等. 深部大采高工作面支承压力分布特征及影响因素分析[J] .煤炭科学技术, 2018, 46(S1): 97-99+134.

[18]郭依宝, 周宏伟, 荣腾龙, 等. 采动应力路径下深部煤体扰动特征[J]. 煤炭学报, 2018, 43(11): 3072-3079.

[19]谢和平. “深部岩体力学与开采理论”研究构想与预期成果展望[J]. 工程科学与技术, 2017, 49(02): 1-16.

[20]于斌, 刘长友, 杨敬轩, 等. 坚硬厚层顶板的破断失稳及其控制研究[J]. 中国矿业大学学报, 2013, 42(03): 342-348.

[21]钱鸣高, 许家林. 煤炭开采与岩层运动[J]. 煤炭学报, 2019, 44(04): 973-984.

[22]徐学锋, 窦林名, 曹安业, 等. 覆岩结构对冲击矿压的影响及其微震监测[J]. 采矿与安全工程学报, 2011, 28(01): 11-15.

[23]蒋金泉, 张培鹏, 秦广鹏, 等. 一侧采空高位硬厚关键层破断规律与微震能量分布[J]. 采矿与安全工程学报, 2015, 32(04): 523-529.

[24] 崔峰, 杨彦斌, 来兴平, 等. 基于微震监测关键层破断诱发冲击地压的物理相似材料模拟实验研究[J]. 岩石力学与工程学报, 2019, 38(04): 803-814.

[25]崔栋歌, 朱川曲, 李青锋, 等. 基于微震与电磁辐射耦合的主关键层破断及断裂跨距差异性分析[J]. 采矿与安全工程学报, 2021, 38(06): 1152-1157.

[26]杨俊哲, 郑凯歌, 王振荣, 等. 坚硬顶板动力灾害超前弱化治理技术[J]. 煤炭学报, 2020, 45(10): 3371-3379.

[27]朱广安. 深地超应力作用效应及孤岛工作面整体冲击失稳机理研究[D]. 中国矿业大学, 2017.

[28]施龙青, 翟培合, 魏久传, 等. 顶板突水对冲击地压的影响[J]. 煤炭学报, 2009, 34(1): 44-49.

[29]史先锋. 复杂条件下特厚煤层动力灾害防治研究[D]. 北京: 北京科技大学, 2017.

[30]舒凑先. 陕蒙接壤矿区深部富水工作面冲击地压机理与防治研究[D]. 北京: 北京科技大学, 2019.

[31]李东. 深井厚表土承压含水顶板工作面致灾机理及防治技术研究[D]. 北京: 北京科技大学, 2019.

[32]李东, 姜福兴, 王存文, 等. 深井突水诱发静压冲击机制研究[J]. 岩石力学与工程学报, 2018, 37(S2): 4038-4046.

[33]王博, 姜福兴, 朱斯陶, 等. 深井工作面顶板疏水区高强度开采诱冲机制及防治[J]. 煤炭学报, 2020, 45(09): 3054-3064.

[34]王博. 陕蒙深部矿区典型动力灾害发生机理及防治研究[D]. 北京科技大学, 2021.

[35]王博, 朱斯陶, 魏全德, 等. 顶板疏水快速回采工作面冲击地压机理及防治措施[J]. 煤矿安全, 2020, 51(07): 205-209.

[36]王岗. 富水矿井顶板疏水条件下冲击地压研究[D]. 辽宁工程技术大学, 2021.

[37]李峰辉. 顶板承压水疏放诱发沿空巷道冲击地压机理[D]. 安徽理工大学, 2023.

[38]窦林名, 周坤友, 曹安业, 等. 深部巨厚承压含水层采动疏水诱冲机理[J]. 煤炭学报, 2024, 49(01): 351-366.

[39]Dou LM, Chen TJ, Gong SY, et al. Rockburst hazard determination by using computed tomography technology in deep workface[J]. Safety Science, 2012, 50(4): 736-740.

[40]Li Z, Dou LM ,Wang G, et al. Risk evaluation of rock burst through theory of static and dynamic stresses superposition[J]. Journal of Central South University, 2015, 22(2): 676-683.

[41] He H, Dou LM, Gong SY, et al. Microseismic and electromagnetic coupling method for coal bump risk assessment based on dynamic static energy principles[J]. Safety Science, 2019, 114(4): 30-39.

[42] Li ZL, Dou LM, Cai W, et al .Investigation and analysis of the rock burst mechanism inducedwithin fault-pillars[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 70(9): 192-200.

[43]钱鸣高, 石平五, 许家林.矿山压力与岩层控制[M]. 徐州: 中国矿业大学出版社, 2010.

[44]赵春虎, 董书宁, 王皓, 等. 采煤工作面顶板含水层井下疏水钻孔涌水规律数值分析[J]. 煤炭学报, 2020, 45(S1): 405-414.

[45]郭进伟, 邬春生, 牟义, 等. 大井法矿井涌水量预测在铁矿资源开采中的应用[J]. 矿业安全与环保, 2010, 37(S1): 25-26+28+8.

[46]范苑. 国投大同塔山煤矿近距离特厚煤层的开采方法研究[D]. 中国矿业大学(北京), 2014.

[47]魏全德. 巨厚砾岩下特厚煤层冲击地压发生机理及防治研究[D]. 北京科技大学, 2015.

[48]姜福兴, 刘懿, 张益超, 等. 采场覆岩的“载荷三带”结构模型及其在防冲领域的应用[J]. 岩石力学与工程学报, 2016, 35(12): 2398-2408.

[49]Zhao J Z J .Influence of pore structures on the mechanical behavior of low-permeability sandstones: numerical reconstruction and analysis[J]. International Journal of Coal Science Technology, 2014, 1(3): 329-337.

[50]Sun Q ,Zhang Y .Combined effects of salt, cyclic wetting and drying cycles on the physical and mechanical properties of sandstone[J]. Engineering Geology, 2018, 24870-79.

[51]夏冬, 袁雪涛. 浸水时间对饱水岩石抗剪强度参数影响的试验研究[J]. 矿业研究与开发, 2015, 35(12): 65-69.

[52]夏冬, 杨天鸿, 徐涛, 等.浸水时间对饱水岩石损伤破坏过程中声发射特征影响的试验[J]. 煤炭学报, 2015, 40(S2): 337-345.

[53]赵延林, 谭涛, 张春阳, 等. 水-力耦合作用下砂岩力学特性与能量演化及强度准则适用性分析[J]. 煤炭学报, 2023, 48(09): 3323-3335.

[54]来兴平, 贾冲, 崔峰, 等. 急倾斜巨厚煤层开采深度影响的覆岩能量演化规律研究[J]. 岩石力学与工程学报, 2023, 42(02): 261-274.

[55]Hui X, Xing L, Pengfei S, et al. Energy dissimilation characteristics and shock mechanism of coal-rock mass induced in steeply-inclined mining: comparison based on physical simulation and numerical calculation[J]. Acta Geotechnica, 2022, 18(2): 843-864.

[56]王辉. 巴彦高勒煤矿311101工作面矿压规律研究[J]. 煤炭科技, 2023, 44(01): 41-45.

[57]王路军, 周宏伟, 荣腾龙, 等. 深部煤体采动应力场演化规律及扰动特征研究[J]. 岩石力学与工程学报, 2019, 38(S1): 2944-2954.

[58]庞义辉, 王国法, 李冰冰, 等. 深部采场覆岩应力路径效应与失稳过程分析[J]. 岩石力学与工程学报, 2020, 39(04): 682-694.

[59]谢和平, 鞠杨, 黎立云, 等. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报, 2005, (17): 3003-3010.

中图分类号:

 TD323    

开放日期:

 2024-06-25    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式