论文中文题名: |
电弧炉炼钢过程中持久性有机污染物的排放特征研究
|
姓名: |
申佳
|
学号: |
18209215074
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
085229
|
学科名称: |
工学 - 工程 - 环境工程
|
学生类型: |
硕士
|
学位级别: |
工程硕士
|
学位年度: |
2021
|
培养单位: |
西安科技大学
|
院系: |
地质与环境学院
|
专业: |
环境工程
|
研究方向: |
环境分析与评价
|
第一导师姓名: |
赵晓光
|
第一导师单位: |
西安科技大学
|
第二导师姓名: |
刘国瑞
|
论文提交日期: |
2021-06-16
|
论文答辩日期: |
2021-06-04
|
论文外文题名: |
Persistent Organic Pollutants Emission from Electric Arc Furnaces Steelmaking.
|
论文中文关键词: |
电弧炉炼钢 ; 预热阶段 ; 多氯联苯(PCBs) ; 多氯萘(PCNs) ; 氯代和溴代多环芳烃(Cl/Br-PAHs) ; 排放因子
|
论文外文关键词: |
Electric arc furnace steelmaking ; Preheating stage ; PCBs ; PCNs ; Cl/Bl-PAHs ; emission factor
|
论文中文摘要: |
︿
~持久性有机污染物(Persistent Organic Pollutants, POPs)所造成的环境污染已成为全球重大环境问题,源头减少POPs排放是控制POPs环境污染的根本所在。电弧炉炼钢等冶金过程是POPs的重要排放源,电弧炉炼钢行业近些年使用了废钢预热装置,在废钢入炉前对废钢进行预热,减少入炉后的升温时间,从而降低能耗,提高生产效率。预热阶段的温度、原料等反应条件适宜POPs的生成,因此电弧炉炼钢的预热阶段可能是电弧炉炼钢过程中POPs排放的重要工艺段。通过采集三个典型电弧炉冶炼厂预热阶段和冶炼阶段排放的烟道气和飞灰样品,分析了样品中多氯联苯(Polychlorinated Biphenyls, PCBs)、多氯萘(Polychlorinated Naphthalenes, PCNs)以及氯代和溴代多环芳烃(Chlorinated and Brominated Polycyclic Aromatic Hydrocarbons, Cl/Br-PAHs)的排放水平和特征,提出电弧炉炼钢预热过程中POPs形成的关键影响因素,为电弧炉炼钢过程中POPs的减排提供理论依据。获得的主要研究结果如下:
1. 阐明典型电弧炉炼钢企业预热阶段和冶炼阶段排放的典型POPs-PCBs的浓度水平和特征。典型电弧炉炼钢厂预热阶段烟气中类二噁英PCBs(dioxin-like PCBs, dl-PCBs)的浓度范围是0.67~81.66 ng Nm-3,指示性PCBs的浓度范围是2.08~107.7 ng Nm-3,预热阶段和冶炼阶段飞灰中dl-PCBs的浓度范围分别是18.4~1588和46.1~650.4 pg g-1,指示性PCBs的浓度范围是36.6~1475和212.8~636.9 pg g-1,结果表明电弧炉炼钢预热阶段是PCBs的重要生成工艺段。不同电弧炉炼钢厂的PCBs同类物分布特征具有相似性,以低氯代同类物为主,推断逐级氯化是电弧炉炼钢过程中PCBs生成的重要途径。
2. 阐明典型电弧炉炼钢企业预热阶段和冶炼阶段排放的新POPs-PCNs的浓度水平和特征。电弧炉炼钢预热阶段烟气中PCNs的浓度是92.44~3473 ng Nm-3,预热过程和冶炼过程的飞灰中PCNs的排放水平分别为1.05~15.18 ng g-1和3.44~6.32 ng g-1,表明预热阶段是PCNs的重要生成阶段,PCNs的57种同类物中,2-MoCN和1-MoCN的浓度较高,PCNs同系物浓度水平表现为随着氯取代数目的增加而减少。此外,飞灰中PCNs和PCBs同系物浓度具有良好的线性关系(R=0.93),推断在电弧炉炼钢过程中PCBs和PCNs具有相似的生成机制。
3. 识别电弧炉炼钢是Cl/Br-PAHs的潜在重要排放源,阐明典型电弧炉炼钢企业预热过程和冶炼过程排放的新POPs-Cl/Br-PAHs的浓度水平和特征。典型电弧炉炼钢过程的预热阶段烟气中Cl-PAHs和Br-PAHs排放浓度范围分别是48.65~3164和2.93~258 ng Nm-3;飞灰中Cl-PAHs和Br-PAHs的浓度最高达到69.1和10.05 ng g-1。电弧炉炼钢过程中Cl/Br-PAHs的同类物分布特征与其它热过程中存在不一致性,烟气中Cl-PAHs同类物中贡献最高的是9-ClPhe/2-ClPhe,而垃圾焚烧过程的烟气中1-ClPyr占比最高,达到50%。飞灰中1-ClPyr是占比最高的Cl-PAHs,而再生铜冶炼厂的飞灰中,9-ClPhe/2-ClPhe是主要同类物。
﹀
|
论文外文摘要: |
︿
~Environmental pollution caused by persistent organic pollutants (POPs) has become a major global environmental problem, and reducing POPs emissions from the source is the fundamental point of controlling POPs environmental pollution. Metallurgical processes such as electric arc furnace (EAF) steelmaking are important emission sources of POPs. In recent years, scrap preheating device has been used in EAF steelmaking industry to preheat scrap steel before it is put into furnace, so as to reduce the heating time after it is put into furnace, thus reducing energy consumption and improving production efficiency. The reaction conditions such as temperature and raw materials in the preheating stage are suitable for the generation of POPs. Therefore, the preheating stage of EAF steelmaking may be an important process section for POPs emission in the EAF steelmaking. The emission levels and characteristics of polychlorinated biphenyls (PCBs), polychlorinated naphthalenes (PCNs), chlorinated and brominated polycyclic aromatic hydrocarbons (Cl/Br-PAHs) were analyzed by collecting flue gas and fly ash samples from three typical EAF smelters during the preheating and smelting stages. The key influencing factors of POPs formation during the preheating process of EAF steelmaking are put forward. It provides a theoretical basis for the reduction of POPs in the EAF steelmaking. The main results are as follows:
1. The concentration level and characteristics of typical POPs-PCBs during preheating and smelting process of typical EAF steelmaking industry are expounded. The concentration range of dioxin-like PCBs (dl-PCBs) in the flue gas during the preheating phase from EAF steelmaking plant is 0.67~81.66 ng Nm-3, and the concentration range of indicative PCBs is 2.08~107.7 ng Nm-3. The concentrations of dl-PCBs in fly ash during preheating and smelting stages are 18.4~1588 and 46.1~650.4 pg g-1, respectively. The concentrations of indicative PCBs are 36.6~1475 and 212.8~636.9 pg g-1. The results show that the preheating stage of EAF steelmaking is an important stage for PCBs generation. The distribution characteristics of PCBs congeners in different EAF steelmaking plants are similar, and the low-chlorinated congeners are the main ones. It is concluded that chlorination is an important way to form PCBs in EAF steelmaking.
2. The concentration level and characteristics of new POP-PCNs emitted during the preheating and smelting process of EAF steelmaking are expounded. The concentration of PCNs in flue gas during the preheating stage from EAF steelmaking is 92.44~3473 ng Nm-3. The emission levels of PCNs in fly ash during preheating and smelting are 1.05~15.18 ng g-1 and 3.44~6.32 ng g-1, respectively, indicating that the preheating stage is an important stage of PCNs formation. Among the 57 congeners of PCNs, 2-MOCN and 1-MOCN had higher concentrations. The concentration of PCNs homologues decreased with the increase of the number of chlorine substitutions. Moreover, there is a good correlation between the concentrations of PCNs and PCBs in fly ash (R=0.93), It is inferred that PCNs and PCBs have similar generation mechanisms in the EAF steelmaking.
3. EAF steelmaking was identified as a potential source of Cl/Br-PAHs, and the emission level and characteristics of new POPs-Cl/Br-PAHs during the preheating and smelting process from typical EAF steelmaking were clarified. The concentration of Cl-PAHs and Br-PAHs in flue gas during the preheating stage from EAF steelmaking is 48.65~3164 and 2.93~258 ng Nm-3, respectively. The highest concentrations of Cl-PAHs and Br-PAHs in fly ash reached 69.1 and 10.05 ng g-1. The characteristics of Cl/Br-PAHs in EAF steelmaking are not consistent with those in other thermal processes. 9-ClPhe/2-ClPhe contributes the highest among the Cl-PAHs congeners from the flue gas, while the 1-ClPyr from the waste incineration process accounts for the highest proportion, reaching 50%. 1-ClPyr is the highest proportion of Cl-PAHs in fly ash, while 9-ClPhe/2-ClPhe is the main congener in fly ash from secondary copper smelters.
﹀
|
参考文献: |
︿
[1] Bailey R. E., Van W. D., Thomas P. C., et al. Sources and prevalence of pentachlorobenzene in the environment[J]. Chemosphere, 2009, 75: 555-564 [2] 余刚, 黄俊, 张彭义. 持久性有机污染物:倍受关注的全球性环境问题[J]. 环境保护, 2001: 37-39 [3] 黄俊, 余刚, 钱易. 我国的持久性有机污染物问题与研究对策[J]. 环境保护, 2001: 3-6 [4] Alaee M., Arias P., Sjödin A., et al. An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release[J]. Environment international, 2003, 29: 683-689 [5] Ba T., Zheng M., Zhang B., et al. Estimation and characterization of PCDD/Fs and dioxin-like PCBs from secondary copper and aluminum metallurgies in China[J]. Chemosphere, 2009, 75: 1173-1178 [6] Yu B.W., Jin G.Z., Moon Y.H., et al. Emission of PCDD/Fs and dioxin-like PCBs from metallurgy industries in S. Korea[J]. Chemosphere, 2006, 62: 494-501 [7] Weber R., Herold C., Hollert H., et al. Blepp M. and Ballschmiter K. Life cycle of PCBs and contamination of the environment and of food products from animal origin[J]. Environmental science and pollution research international, 2018, 25: 16325-16343 [8] Chen P., Gong W., Yu G., et al. Preliminary release inventories of unintentionally generated dl-PCB and HCB from sources in China: Base year 2015[J]. Chemosphere, 2019, 219: 875-881 [9] Van den Berg M., Birnbaum L. S., Denison M., et al. The 2005 World Health Organization reevaluation of human and Mammalian toxic equivalency factors for dioxins and dioxin-like compounds[J]. Toxicological sciences, 2006, 93: 223-41 [10] Li Y. C., Yang Y., Yu G., et al. Emission of unintentionally produced persistent organic pollutants (UPOPs) from municipal waste incinerators in China[J]. Chemosphere, 2016, 158: 17-23 [11] Liu G. R., Zheng M. H., Liu W. B., et al. Atmospheric Emission of PCDD/Fs, PCBs, Hexachlorobenzene, and Pentachlorobenzene from the Coking Industry[J]. Environmental Science & Technology, 2009, 43: 9196-9201 [12] Liu G. R., Liu W. B., Cai Z. W., et al. Concentrations, profiles, and emission factors of unintentionally produced persistent organic pollutants in fly ash from coking processes[J]. Journal of Hazardous Materials, 2013, 261: 421-426 [13] Lv P., Zheng M. H., Liu G. R., et al. Estimation and characterization of PCDD/Fs and dioxin-like PCBs from Chinese iron foundries[J]. Chemosphere, 2011, 82: 759-763 [14] Li S. M., Liu G. R., Zheng M. H., et al. Unintentional production of persistent chlorinated and brominated organic pollutants during iron ore sintering processes[J]. Journal of Hazardous Materials, 2017, 331: 63-70 [15] Jackson K., Aries E., Fisher R., et al. Assessment of Exposure to PCDD/F, PCB, and PAH at a Basic Oxygen Steelmaking (BOS) and an Iron Ore Sintering Plant in the UK[J]. Annals of Occupational Hygiene, 2012, 56: 37-48 [16] Aries E., Anderson D. R., Fisher R., et al. PCDD/F and "dioxin-like" PCB emissions from iron ore sintering plants in the UK[J]. Chemosphere, 2006, 65: 1470-1480 [17] Nie Z. Q., Zheng M. H., Liu W. B., et al. Estimation and characterization of PCDD/Fs, dl-PCBs, PCNs, HxCBz and PeCBz emissions from magnesium metallurgy facilities in China[J]. Chemosphere, 2011, 85: 1707-1712 [18] Hu J. C., Zheng M. H., Nie Z. Q., et al. Polychlorinated dibenzo-p-dioxin and dibenzofuran and polychlorinated biphenyl emissions from different smelting stages in secondary copper metallurgy[J]. Chemosphere, 2013, 90: 89-94 [19] Grochowalski A., Lassen C., Holtzer M., et al. Determination of PCDDs, PCDFs, PCBs and HCB emissions from the metallurgical sector in Poland[J]. Environmental Science and Pollution Research-International, 2007, 14: 326-332 [20] Ba T., Zheng M. H., Zhang B., et al. Estimation and characterization of PCDD/Fs and dioxin-like PCBs from secondary copper and aluminum metallurgies in China[J]. Chemosphere, 2009, 75: 1173-1178 [21] Ba T., Zheng M. H., Zhang B., et al. Estimation and characterization of PCDD/Fs and dioxin-like PCB emission from secondary zinc and lead metallurgies in China[J]. Journal of Environmental Monitoring, 2009, 11: 867-872 [22] Bidleman T. F., Helm P. A., Braune B. M., et al. Polychlorinated naphthalenes in polar environments—a review[J]. Science of the Total Environment, 2010, 408: 2919-2935 [23] 郭丽, 巴特, 郑明辉. 多氯萘的研究[J]. 化学进展, 2009, 21: 377-388 [24] 黄蓉, 张素坤, 任明忠, 等. 高分辨率气相色谱/高分辨率质谱同位素内标法测定烟气样品中的多氯萘[J]. 环境化学, 2015, 34: 529-535 [25] 赵曦, 李娟, 陆克定, 等. 华南某垃圾焚烧厂排放PCBs和PCNs的固气分布、同系物分布及毒性当量特征[J]. 环境化学, 2015, 34: 1268-1274 [26] 邹家素, 郭志顺, 刘坤. 电子垃圾拆解区土壤和沉积物中多氯萘污染研究[J]. 环境科学与技术, 2016, 39: 74-78 [27] Noma Y., Yamamoto T., Sakai S. I. Congener-specific composition of polychlorinated naphthalenes, coplanar PCBs, dibenzo-p-dioxins, and dibenzofurans in the halowax series[J]. Environmental Science & Technology, 2004, 38: 1675-1680 [28] Guo L., Zhang B., Xiao K., et al. Levels and distributions of polychlorinated naphthalenes in sewage sludge of urban wastewater treatment plants[J]. Chinese Science Bulletin, 2008, 53: 508-513 [29] Yamashita N., Kannan K., Imagawa T., et al. Concentrations and profiles of polychlorinated naphthalene congeners in eighteen technical polychlorinated biphenyl preparations[J]. Environmental Science & Technology, 2000, 34: 4236-4241 [30] Liu G., Cai Z., Zheng M. Sources of unintentionally produced polychlorinated naphthalenes[J]. Chemosphere, 2014, 94: 1-12 [31] Xu Y., Li J., Chakraborty P., et al. Atmospheric polychlorinated naphthalenes (PCNs) in India and Pakistan[J]. Science of the total environment, 2014, 466: 1030-1036 [32] Mahmood A., Malik R. N., Li J., et al. Congener specific analysis, spatial distribution and screening-level risk assessment of polychlorinated naphthalenes in water and sediments from two tributaries of the River Chenab, Pakistan[J]. Science of the total environment, 2014, 485: 693-700 [33] Liu G. R., Zheng M. H., Du B., et al. Identification and characterization of the atmospheric emission of polychlorinated naphthalenes from electric arc furnaces[J]. Environmental Science and Pollution Research, 2012, 19: 3645-3650 [34] Jin R., Liu G. R., Zheng M. H., et al. Secondary Copper Smelters as Sources of Chlorinated and Brominated Polycyclic Aromatic Hydrocarbons[J]. Environmental Science & Technology, 2017, 51: 7945-7953 [35] Ohura T. Environmental behavior, sources, and effects of chlorinated polycyclic aromatic hydrocarbons[J]. The Scientific World Journal, 2007, 7: 372-380 [36] 罗云, 张保琴, 任晓倩, 等. 氯代多环芳烃的污染现状及毒性研究进展[J]. 生态毒理学报, 2017, 12: 120-134 [37] Ohura T., Sawada K. I., Amagai T., et al. Discovery of Novel Halogenated Polycyclic Aromatic Hydrocarbons in Urban Particulate Matters: Occurrence, Photostability, and AhR Activity[J]. Environmental Science & Technology, 2009, 43: 2269-2275 [38] Sun J.L., Ni H.G., Zeng H. Occurrence of chlorinated and brominated polycyclic aromatic hydrocarbons in surface sediments in Shenzhen, South China and its relationship to urbanization[J]. Journal of Environmental Monitoring, 2011, 13: 2775-2781 [39] 孙建林, 常文静, 陈正侠, 等. 深圳大气颗粒物中卤代多环芳烃污染研究[J]. 环境科学, 2015, 36: 1513-1522 [40] Wang Q., Miyake Y., Tokumura M., et al. Effects of characteristics of waste incinerator on emission rate of halogenated polycyclic aromatic hydrocarbon into environments[J]. Science of the Total Environment, 2018, 625: 633-639 [41] Jin R., Liu G., Zheng M., et al. Secondary Copper Smelters as Sources of Chlorinated and Brominated Polycyclic Aromatic Hydrocarbons[J]. Environmental Science & Technology, 2017, 51: 7945-7953 [42] Jin R., Zhan J., Liu G., et al. Variations and factors that influence the formation of polychlorinated naphthalenes in cement kilns co-processing solid waste[J]. Journal of Hazardous Materials, 2016, 315: 117-125 [43] Tian B., Huang J., Wang B., et al. Emission characterization of unintentionally produced persistent organic pollutants from iron ore sintering process in China[J]. Chemosphere, 2012, 89: 409-415 [44] Li S. M., Zheng M. H., Liu W. B., et al. Estimation and characterization of unintentionally produced persistent organic pollutant emission from converter steelmaking processes[J]. Environmental Science and Pollution Research, 2014, 21: 7361-7368 [45] Yang Q. T., Yang L. L., Shen J., et al. Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) emissions from electric arc furnaces for steelmaking[J]. Emerging Contaminants, 2020, 6: 330-336 [46] 杨元平, 杨莉莉, 刘国瑞, 等. 工业热过程中无意产生的持久性有机污染物生成机理[J]. 中国科学:化学: 1-9 [47] 梁宝瑞, 赵荣志, 张文伯, 等. 钢铁行业二噁英的形成机理及降解方法研究现状[J]. 中国冶金, 2021, 31: 1-5 [48] 尹文华, 彭江波, 龙世康, 等. 烧结和球团PCDD/Fs的污染特征与健康风险评价[J]. 烧结球团, 2021: 1-7 [49] Chiu J. C., Shen Y. H., Li H. W., et al. Emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans from an electric arc furnace, secondary aluminum smelter, crematory and joss paper incinerators[J]. Aerosol and Air Quality Resarch, 2011, 11: 13-20 [50] Ooi T. C., Lu L. Formation and mitigation of PCDD/Fs in iron ore sintering[J]. Chemosphere, 2011, 85: 291-299 [51] Aries E., Anderson D. R., Ordsmith N., et al. Development and validation of a method for analysis of "dioxin-like" PCBs in environmental samples from the steel industry[J]. Chemosphere, 2004, 54: 23-31 [52] Wu X. L., Zheng M. H., Zhao Y. Y., et al. Thermochemical formation of polychlorinated dibenzo-p-dioxins and dibenzofurans on the fly ash matrix from metal smelting sources[J]. Chemosphere, 2018, 191: 825-831 [53] Odabasi M., Bayram A., Elbir T., et al. Electric Arc Furnaces for Steel-Making: Hot Spots for Persistent Organic Pollutants[J]. Environmental Science & Technology, 2009, 43: 5205-5211 [54] Liu G. R., Zheng M. H., Lv P., et al. Estimation and Characterization of Polychlorinated Naphthalene Emission from Coking Industries[J]. Environmental Science & Technology, 2010, 44: 8156-8161 [55] Liu G. R., Zheng M. H., Du B., et al. Atmospheric emission of polychlorinated naphthalenes from iron ore sintering processes[J]. Chemosphere, 2012, 89: 467-472 [56] Liu G. R., Lv P., Jiang X. X., et al. Identifying Iron Foundries as a New Source of Unintentional Polychlorinated Naphthalenes and Characterizing Their Emission Profiles[J]. Environmental Science & Technology, 2014, 48: 13165-13172 [57] Du B., Zheng M. H., Tian H. H., et al. Occurrence and characteristics of polybrominated dibenzo-p-dioxins and dibenzofurans in stack gas emissions from industrial thermal processes[J]. Chemosphere, 2010, 80: 1227-1233 [58] Wang L. C., Wang Y. F., Hsi H. C., et al. Characterizing the Emissions of Polybrominated Diphenyl Ethers (PBDEs) and Polybrominated Dibenzo-p-dioxins and Dibenzofurans (PBDD/Fs) from Metallurgical Processes[J]. Environmental Science & Technology, 2010, 44: 1240-1246 [59] Anderson D. R, Fisher R. Sources of dioxins in the United Kingdom: the steel industry and other sources[J]. Chemosphere, 2002, 46: 371-381 [60] Chang M. B., Huang H. C., Tsai S. S., et al. Evaluation of the emission characteristics of PCDD/Fs from electric are furnaces[J]. Chemosphere, 2006, 62: 1761-1773 [61] Liu G. R., Zheng M. H., Cai M. W., et al. Atmospheric emission of polychlorinated biphenyls from multiple industrial thermal processes[J]. Chemosphere, 2013, 90: 2453-2460 [62] Xhrouet C, De Pauw E. Formation of PCDD/Fs in the sintering process: role of the grid - Cr2O3 catalyst in the de novo synthesis[J]. Chemosphere, 2005, 59: 1399-1406 [63] Xhrouet C., Pirard C, De Pauw E. De novo synthesis of polychlorinated dibenzo-p-dioxins and dibenzofurans on fly ash from a sintering process[J]. Environmental Science & Technology, 2001, 35: 1616-1623 [64] Xhrouet C, De Pauw E. Formation of PCDD/Fs in the Sintering Process: Influence of the Raw Materials[J]. Environmental Science & Technology, 2004, 38: 4222-4226 [65] Wey M. Y., Liu K. Y., Yu W. J., et al. Influences of chlorine content on emission of HC1 and organic compounds in waste incineration using fluidized beds[J]. Waste Management, 2008, 28: 406-415 [66] Weber R, Hagenmaier H. PCDD/PCDF formation in fluidized bed incineration[J]. Chemosphere, 1999, 38: 2643-2654 [67] Born J. G. P., Louw R., Mulder P. Fly ash mediated (oxy)chlorination of phenol and its role in PCDD/F formation[J]. Chemosphere, 1993, 26: 2087-2095 [68] Wang L. C., Lee W. J., Tsai P. J., et al. Emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans from stack flue gases of sinter plants[J]. Chemosphere, 2003, 50: 1123-1129 [69] Buekens A., Zhang M. De novo synthesis in iron ore sintering[J]. International Journal of Environment and Pollution, 2016, 60: 111 [70] Imagawa T., Lee C. W. Correlation of polychlorinated naphthalenes with polychlorinated dibenzofurans formed from waste incineration[J]. Chemosphere, 2001, 44: 1511-1520 [71] Iino F., Imagawa T., Takeuchi M., et al. De novo synthesis mechanism of polychlorinated dibenzofurans from polycyclic aromatic hydrocarbons and the characteristic isomers of polychlorinated naphthalenes[J]. Environmental Science & Technology, 1999, 33: 1038-1043 [72] Weber R., Kuch B. Relevance of BFRs and thermal conditions on the formation pathways of brominated and brominated–chlorinated dibenzodioxins and dibenzofurans[J]. Environment International, 2003, 29: 699-710 [73] Ren M., Peng P., Cai Y., et al. PBDD/F impurities in some commercial deca-BDE[J]. Environmental Pollution, 2011, 159: 1375-80 [74] 吴志文, 梁凯松. 电弧炉炼钢过程中二噁英的防治技术[J]. 科技经济导刊, 2020, 28: 28-30 [75] 李力, 陈曦, 吕永龙, 等. 钢铁行业POPs控制技术应用及扩散机制研究[J]. 环境污染与防治, 2012, 34: 92-96 [76] Chang M. B., Chi K. H., Chang-Chien G. P. Evaluation of PCDD/F congener distributions in MWI flue gas treated with SCR catalysts[J]. Chemosphere, 2004, 55: 1457-1467 [77] Chen Y. C., Kuo Y. C., Chen M. R., et al. Reducing polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) emissions from a real-scale iron ore sinter plant by adjusting its sinter raw mix[J]. Journal of Cleaner Production, 2016, 112: 1184-1189 [78] Takaoka M., Fujimori T., Shiono A., et al. Formation of chlorinated aromatics in model fly ashes using various copper compounds[J]. Chemosphere, 2010, 80: 144-149 [79] Ooi T. C., Aries E., Anderson D. R., et al. Melamine as suppressant of PCDD/F formation in the sintering process[J]. Organohalogen Compounds, 2008, 70: 58-61 [80] Long H. M., Li J. X., Wang P., et al. Emission reduction of dioxin in iron ore sintering by adding urea as inhibitor[J]. Ironmaking & Steelmaking, 2011, 38: 258-262 [81] UNEP. The Guidelines on best available techniques and guidance on best environmental practices relevant to Article 5 and Annex C of the Stockholm Convention on Persistent Organic Pollutants, Section V Guidance/guidelines by source category: Source categories in Part II of Annex C. Part II Source category (d): Thermal processes in the metallurgical industry[J]. 2006, [82] Hartig W., Stedem K. H., Lin R. Sinter plant waste gas cleaning - State of the art[J]. Revue De Metallurgie-Cahiers D Informations Techniques, 2006, 103: 257-265 [83] Esposito V., Maffei A., Bruno D., et al. POP emissions from a large sinter plant in Taranto (Italy) over a five-year period following enforcement of new legislation[J]. Science of The Total Environment, 2014, 491-492: 118-122 [84] Abreu G. C., Carvalho J. A. d., Silva B. E. C. d., et al. Operational and environmental assessment on the use of charcoal in iron ore sinter production[J]. Journal of Cleaner Production, 2015, 101: 387-394 [85] Shih T. S., Shih M. L., Lee W. J., et al. Particle size distributions and health-related exposures of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) of sinter plant workers[J]. Chemosphere, 2009, 74: 1463-1470 [86] Guerriero E., Guarnieri A., Mosca S., et al. PCDD/Fs removal efficiency by electrostatic precipitator and wetfine scrubber in an iron ore sintering plant[J]. Journal of Hazardous Materials, 2009, 172: 1498-1504 [87] Goemans M., Clarysse P., Joannès J., et al. Catalytic NOx reduction with simultaneous dioxin and furan oxidation[J]. Chemosphere, 2003, 50: 489-497 [88] Wang J. B., Hung C. H., Hung C. H., et al. Polychlorinated dibenzo-p-dioxin and dibenzofuran emissions from an industrial park clustered with metallurgical industries[J]. Journal of Hazardous Materials, 2009, 161: 800-807 [89] UNEP. The Guidelines on best available techniques and guidance on best environmental practices relevant to Article 6 and Annex C of the Stockholm Convention on Persistent Organic Pollutants, Section VI Guidance/guidelines by source category: Source categories in Part III of Annex C. Part III Source category (b): Thermal processes in the metallurgical industry not mentioned in Annex C, Part II. 2006, [90] Hung P. C., Lo W. C., Chi K. H., et al. Reduction of dioxin emission by a multi-layer reactor with bead-shaped activated carbon in simulated gas stream and real flue gas of a sinter plant[J]. Chemosphere, 2011, 82: 72-77 [91] European. Best Available Techniques (BAT) Reference Document for Iron and Steel Production. 2013, [92] Wu G. L., Weber R., Ren Y., et al. State of art control of dioxins/unintentional POPs in the secondary copper industry: A review to assist policy making with the implementation of the Stockholm Convention[J]. Emerging Contaminants, 2020, 6: 235-249 [93] European. Commission implementing decision of 28 February 2012 establishing the best available techniques (BAT) conclusions under Directive 2010/75/EU of the European Parliament and of the Council on industrial emissions for iron and steel production. 2012, [94] Japan G. O. Law Concerning Special Measures against Dioxins (The Dioxins Law), Approved July 12, 1999, promulgated July 16, 1999 & entered into force January 15, 2000. 1999, [95] UNEP. General Technical Guidelines on the Environmentally Sound Management of Wastes Consisting of, Containing or Contaminated with Persistent Organic Pollutants, 2019, 20. June 2019, UNEP/CHW.14/7/Add.1/Rev.1. 2019, [96] European. European Commission Regulation no. 166/2006 of the European Parliament and of the Council concerning the establishment of a European pollutant release and transfer register and amending Council Directives 91/689/EEC and 96/61/EC. Off J Eur Communities, 2006, 33: 1-17 [97] 施维枝, 杨宁川, 黄其明, 等. 电弧炉废钢预热技术发展[J]. 工业加热, 2019, 48: 26-31 [98] 操龙虎. 现代电炉炼钢技术发展趋势分析[J]. 工业加热, 2019, 48: 55-59 [99] Jager J. PCDD/F and PCB emission from steel producing, processing and reclamation plants with varying input[J]. Toxicological and Environmental Chemistry, 1993, 40: 201-211 [100] Mai Thi Ngoc P., Hoang Quoc A., Xuan Truong N., et al. Characterization of PCDD/Fs and dioxin-like PCBs in flue gas from thermal industrial processes in vietnam: A comprehensive investigation on emission profiles and levels[J]. Chemosphere, 2019, 225: 238-246 [101] Lee C.C., Shih T.S., Chen H.L. Distribution of air and serum PCDD/F levels of electric arc furnaces and secondary aluminum and copper smelters[J]. Journal of Hazardous Materials, 2009, 172: 1351-1356 [102] Odabasi M., Dumanoglu Y., Kara M., et al. Polychlorinated naphthalene (PCN) emissions from scrap processing steel plants with electric-arc furnaces[J]. Science of The Total Environment, 2017, 574: 1305-1312 [103] Sofilic T., Jendricko J., Kovacevic Z., et al. Measurement of polychlorinated dibenzo-p-dioxin and dibenzofuran emission feom EAF steel making proces[J]. Archives of Metallurgy and Materials, 2012, 57: 811-821 [104] Li H.W., Lee W.J., Tsai P.J., et al. A novel method to enhance polychlorinated dibenzo-p-dioxins and dibenzofurans removal by adding bio-solution in EAF dust treatment plant[J]. Journal of Hazardous Materials, 2008, 150: 83-91 [105] Murakami T., Shimura M., Kasai E. Formation of hexachlorobenzene from dusts of an electric arc furnace used in steelmaking: Effect of temperature and dust composition[J]. Environmental Science & Technology, 2008, 42: 7459-7463 [106] Fernandes A., Mortimer D., Gem M., et al. Polychlorinated Naphthalenes (PCNs): Congener Specific Analysis, Occurrence in Food, and Dietary Exposure in the UK[J]. Environmental Science & Technology, 2010, 44: 3533-3538 [107] Liu X., Fiedler H., Gong W., et al. Potential sources of unintentionally produced PCB, HCB, and PeCBz in China: A preliminary overview[J]. Frontiers of Environmental Science & Engineering, 2018, 12: 1 [108] Yang L. L., Jin F., Liu G. R., et al. Levels and characteristics of polychlorinated biphenyls in surface sediments of the Chaobai river, a source of drinking water for Beijing, China[J]. Ecotoxicology and Environmental Safety, 2020, 189: 109922 [109] Nie Z. Q., Zheng M. H., Liu G. R., et al. A preliminary investigation of unintentional POP emissions from thermal wire reclamation at industrial scrap metal recycling parks in China[J]. Journal of Hazardous Materials, 2012, 215: 259-265 [110] Li Y. C., Yu G., Huang J., et al. Catalytic decomposition of dioxins and other unintentional POPs in flue gas from a municipal waste incinerator (MWI) in China: a pilot testing[J]. Environmental Science and Pollution Research, 2018, 25: 31799-31804 [111] 董文平, 矫桂丽, 乔光明, 等. 钢铁行业持久性有机污染物的生成与控制研究[J]. 环境科学与管理, 2014, 39: 30-35 [112] 胡吉成, 邬静, 许晨阳, 等. 典型再生铜冶炼厂周边土壤中PCDD/Fs、PCBs和PCNs的污染特征及健康风险评估[J]. 环境科学, 2021, 42: 1141-1151 [113] Fostinelli J., Catalani S., Gaia A., et al. Assessment of residual exposure to PCBs in metallurgy[J]. Medicina Del Lavoro, 2017, 108: 174-186 [114] Aries E., Anderson D. R., Fisher R. Exposure assessment of workers to airborne PCDD/Fs, PCBs and PAHs at an electric arc furnace steelmaking plant in the UK[J]. Annals of Occupational Hygiene, 2008, 52: 213-225 [115] Odabasi M., Ozgunerge Falay E., Tuna G., et al. Biomonitoring the spatial and historical variations of persistent organic pollutants (POPs) in an industrial region[J]. Environmental Science & Technology, 2015, 49: 2105-2114 [116] Chang M. B., Huang H. C., Tsai S. S., et al. Evaluation of the emission characteristics of PCDD/Fs from electric arc furnaces[J]. Chemosphere, 2006, 62: 1761-1773 [117] Wu E. M.Y., Wang L.C., Lin S.L., et al. Validation and characterization of persistent organic pollutant emissions from stack flue gases of an electric arc furnace by using a long-term sampling system (AMESA®)[J]. Aerosol and Air Quality Research, 2014, 14: 185-196 [118] Liu W. B., Li H. F., Tao F., et al. Formation and contamination of PCDD/Fs, PCBs, PeCBz, HxCBz and polychlorophenols in the production of 2,4-D products[J]. Chemosphere, 2013, 92: 304-308 [119] Wang M. J., Liu W. B., Hou M. F., et al. Removal of polychlorinated naphthalenes by desulfurization and emissions of polychlorinated naphthalenes from sintering plant[J]. Scientific Reports, 2016, 6: 9 [120] Jansson S., Fick J., Marklund S. Formation and chlorination of polychlorinated naphthalenes (PCNs) in the post-combustion zone during MSW combustion[J]. Chemosphere, 2008, 72: 1138-1144 [121] Fernandes A., Falandysz J., Olivero-Verbel J. A new focus on legacy pollutants: Chlorinated Paraffins (CPs) and Polychlorinated Naphthalenes (PCNs)[J]. Chemosphere, 2020, 238: 2 [122] Yang Y. P., Yang L. L., Wang M. X., et al. Concentrations and profiles of persistent organic pollutants unintentionally produced by secondary nonferrous metal smelters: Updated emission factors and diagnostic ratios for identifying sources[J]. Chemosphere, 2020, 255: 126958 [123] 张婧, 倪余文, 张海军, 等. 水泥窑除尘器捕集灰中PCDD/Fs、PCBs和PCNs的分布特征[J]. 环境科学, 2009, 30: 568-573 [124] 田亚静, 姜晨, 吴广龙, 等. 再生铜冶炼过程多氯萘与二噁英类排放特征分析与控制技术评估[J]. 环境科学, 2015, 36: 4682-4689 [125] Yang Q. T., Yang L. L., Shen X. J., et al. Organic pollutants from electric arc furnaces in steelmaking: a review[J]. Environmental Chemistry Letters, 2020, [126] Dat N. D., Huang Y. J., Chang M. B. Characterization of PCN emission and removal from secondary copper metallurgical processes[J]. Environmental Pollution, 2020, 258: 9 [127] Nguyen-Duy D., Chang K., Chang. Characteristics of atmospheric polychlorinated naphthalenes (PCNs) collected at different sites in northern Taiwan[J]. Environmental Pollution, 2018, 237: 186-195 [128] Helm P. A., Bidleman T. F., Li H. H., et al. Seasonal and Spatial Variation of Polychlorinated Naphthalenes and Non-/Mono-Ortho-Substituted Polychlorinated Biphenyls in Arctic Air[J]. Environmental Science & Technology, 2004, 38: 5514-5521 [129] Noma Y., Yamamoto T., Sakai S. I. Congener-specific composition of polychlorinated naphthalenes, coplanar PCBs, dibenzo-p-dioxins, and dibenzofurans in the Halowax series[J]. Environmental Science & Technology, 2004, 38: 1675-80 [130] Schneider M., Stieglitz L., Will R., et al. Formation of polychlorinated naphthalenes on fly ash[J]. Chemosphere, 1998, 37: 2055-2070 [131] Jin R., Zheng M. H., Lammel G., B., et al. Chlorinated and brominated polycyclic aromatic hydrocarbons: Sources, formation mechanisms, and occurrence in the environment[J]. Progress in Energy and Combustion Science, 2020, 76: 20 [132] 倪秀峰, 王儒威, 蔡飞旋, 等. 燃煤电厂和垃圾焚烧电厂燃烧产物中卤代多环芳烃的赋存特征和毒性风险[J]. 环境科学: 1-11 [133] Jin R., Yang L. L., Zheng M. H., et al. Source identification and quantification of chlorinated and brominated polycyclic aromatic hydrocarbons from cement kilns co-processing solid wastes[J]. Environmental Pollution, 2018, 242: 1346-1352 [134] Horii Y., Ok G., Ohura T., et al. Occurrence and Profiles of Chlorinated and Brominated Polycyclic Aromatic Hydrocarbons in Waste Incinerators[J]. Environmental Science & Technology, 2008, 42: 1904-1909
﹀
|
中图分类号: |
X592
|
开放日期: |
2021-06-16
|