- 无标题文档
查看论文信息

论文中文题名:

 中国北方荒漠化动态监测及其驱动力分析    

姓名:

 张家政    

学号:

 19210061017    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0816    

学科名称:

 工学 - 测绘科学与技术    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 测绘科学与技术学院    

专业:

 测绘科学与技术    

研究方向:

 定量遥感应用    

第一导师姓名:

 李崇贵    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-27    

论文答辩日期:

 2022-06-01    

论文外文题名:

 Monitoring the dynamics of desertification in northern China and analysis of its driving forces    

论文中文关键词:

 荒漠化 ; 气候区划 ; 指标体系 ; 时空演变 ; 驱动力    

论文外文关键词:

 Desertification ; Climate zoning ; Indicator system ; Spatial and temporal evolution ; Driving forces    

论文中文摘要:

    全球及区域气候变化和人类活动是导致荒漠化的主要原因,土地荒漠化已成为人类必须面对的重要生态环境问题,它严重制约着区域生态平衡及人类经济社会稳定。我国北方地区荒漠化过程明显,在全球气候变暖大背景下开展该区域荒漠化遥感动态监测及其驱动因素分析,对于科学认识我国北方荒漠化过程及其时空格局和调整防治政策与措施具有重要的理论与现实意义。

    本文以中国北方为研究区域,以2000~2020年MODIS 09A1数据为基础,分析了不同土地荒漠化遥感监测模型对研究区的适用性,寻找最佳监测模型对我国北方地区土地荒漠化时空变化和驱动力进行研究;此外,基于GIS地理统计分析方法,从时间和空间维度综合分析土地荒漠化的变化特征、空间分布格局与重心演变规律;最后,结合气候、自然地理和社会经济三个方面11种因素,应用Pearson相关系数法、地理探测器和地理加权回归模型探讨影响土地荒漠化时空变化的关键因素及作用效果。本文的主要研究结论如下:

(1)基于Thornthwaite公式结合地面气象站点数据确定了我国北方地区荒漠化的潜在发生范围,为后续荒漠化监测体系的建立提供理论依据。本文根据计算的湿润指数进行荒漠化气候区划发现,2000~2020年间,各气候类型面积占比均呈现减少趋势,其中以半干旱区面积减少较为显著,其平均增长率为-0.302/a;在各气候区划类型中,亚湿润干旱区面积占比最小,其次是干旱区,半干旱区面积占比最大;截至到2020年,我国北方荒漠化潜在发生区面积占我国北方地区总面积的34.42%。

(2)采用主成分分析法构建综合荒漠化指数(Remote Sensing-based Desertification Index,RSDI),并将该指数与现有的像元二分模型、Albedo-NDVI特征空间(线对线和点对点)和Albedo-MSAVI特征空间(线对线和点对点)提取结果进行全域和区域尺度精度对比分析。在我国北方地区,基于RSDI不仅弥补了现有荒漠化监测模型中的不足,而且模型精度最高,其总体精度为87.11%。

(3)在时间变化趋势上,我国北方地区土地荒漠化呈现下降趋势,其平均增长率为-0.0007/a;在空间上,我国北方地区荒漠化的空间变化趋势主要以逐步改善趋势为主,区域占比48.79%,主要分布在我国生态修复工程实施的重点区域。基于Hurst指数的未来趋势分析中,发现未来荒漠化的反向持续性强于正向持续性,也说明我国北方地区未来荒漠化程度呈现逐步改善趋势。各荒漠化类型重心以中度荒漠化类型迁移距离最大(553.86km),重度荒漠化类型迁移距离最小(36.93km),且极度、重度、轻度和非荒漠化影响范围在逐步缩小,中度荒漠化影响范围在逐步扩大。

(4)利用Pearson相关分析法定性探究不同驱动因子与RSDI时空相关性,平均风速、平均气温和日照时数呈现正相关趋势,降水量和平均相对湿度呈现负相关趋势。运用地理探测器分别从因子和交互探测两个方面,进一步从全局尺度定量研究了不同驱动因子对RSDI的影响。自然地理因素对我国北方地区荒漠化的影响力无明显变化,而气候因素和社会经济因素对荒漠化的影响越来越强,并且总降水和平均相对湿度是影响我国北方荒漠化的主要因子。运用地理加权回归模型,进一步从局部尺度定量研究了不同驱动因子对RSDI的影响。不同因素对不同时期、不同空间RSDI的影响呈现差异性,总降水表现出正向促进作用,平均气温、日照时数和高程既存在正向作用,又存在负向作用。

论文外文摘要:

Global and regional climate change and human activities are the main causes of desertification, and land desertification has become an important ecological and environmental problem that human beings must face, which seriously restricts the regional ecological balance and human economic and social stability. In the context of global warming, remote sensing dynamic monitoring of desertification and its driving factors are of great theoretical and practical significance for scientific understanding of the desertification process and its spatial and temporal patterns in northern China and adjusting the policies and measures for prevention and control.

This paper takes northern China as the study area, based on MODIS 09A1 data from 2000 to 2020, analyzes the applicability of different land desertification remote sensing monitoring models to the study area, and searches for the best monitoring model to study the spatial and temporal changes and driving forces of land desertification in northern China; in addition, based on GIS geostatistical analysis method, the change characteristics of land desertification, spatial distribution pattern and evolution law of center of gravity are comprehensively analyzed from time and space dimensions; finally, Pearson correlation coefficient method, geographic probe and geographic weighted regression model are applied to explore the key factors affecting spatial and temporal changes of land desertification by combining 11 factors in climate, physical geography and socio-economic aspects and The main findings of this paper are as follows. The main research findings of this paper are as follows:

(1) Based on Thornthwaite's formula combined with the data from ground meteorological stations, the potential occurrence range of desertification in the northern region of China was determined, providing a theoretical basis for the establishment of the subsequent desertification monitoring system. In this paper, the climatic zoning of desertification based on the calculated wetness index finds that the area share of each climatic type shows a decreasing trend between 2000 and 2020, among which the area share of semi-arid zone decreases more significantly, and its average growth rate is -0.302/a; among the climatic zoning types, the area share of sub-humid arid zone is the smallest, followed by arid zone, and the area share of semi-arid zone is the largest; up to 2020, the area of potential occurrence of desertification in northern China accounts for 34.42% of the total area of northern regions in China.

(2) In this study, the Remote Sensing-based Desertification Index (RSDI) was constructed using principal component analysis, and the index was compared with the existing image dichotomous model, Albedo-NDVI feature space (line-to-line and point-to-point) and Albedo-MSAVI feature space (line-to-line and point-to-point). point-to-point) extraction results for a comparative analysis of full-area and regional scale accuracy. In the northern region of China, the RSDI-based model not only compensates for the deficiencies in the existing desertification monitoring models, but also has the highest model accuracy, with an overall accuracy of 87.11%.

(3) In the trend of temporal change, the land desertification in the northern regions of China shows a decreasing trend, and its average growth rate is -0.0007/a. Spatially, the spatial change trend of desertification in the northern regions of China is mainly based on the trend of gradual improvement, and the regional proportion is 48.79%, which is mainly distributed in the key areas where ecological restoration projects are implemented in China. In the future trend analysis based on Hurst index, it is found that the reverse persistence of desertification in the future is stronger than the positive persistence, which also indicates that the future desertification degree in the northern regions of China shows a gradual improvement trend. The center of gravity of each desertification type has the largest migration distance (553.86km) for the moderate desertification type and the smallest migration distance (36.93km) for the severe desertification type, and the influence range of extreme, severe, mild and non-desertification is gradually decreasing, while the influence range of moderate desertification is gradually expanding.

(4) Using Pearson correlation analysis to qualitatively explore the spatial and temporal correlations between different driving factors and RSDI, the average wind speed, average temperature and sunshine hours showed positive correlation trends, and the precipitation and average relative humidity showed negative correlation trends. The influence of different driving factors on RSDI was further quantitatively investigated from the global scale by using the geographic probe model in terms of factors and interaction detection, respectively. There was no significant change in the influence of natural geographical detector on desertification in northern China, while climatic and socio-economic factors had an increasingly strong influence on desertification, and total precipitation and mean relative humidity were the main factors affecting desertification in northern China. Using a geographically weighted regression model, the influence of different driving factors on RSDI was further studied quantitatively at the local scale. The effects of different factors on RSDI in different periods and spaces showed variability, with total precipitation showing a positive contribution, and average temperature, sunshine hours and elevation having both positive and negative effects.

参考文献:

[1] Vairavamoorthy K, Gorantiwar S D, Pathirana A. Managing urban water supplies in developing countries–Climate change and water scarcity scenarios[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2008, 33(5): 330-339.

[2] Meng W, He M, Hu B, et al. Status of wetlands in China: A review of extent, degradation, issues and recommendations for improvement[J]. Ocean & Coastal Management, 2017, 146: 50-59.

[3] Adger W N, Benjaminsen T A, Brown K, et al. Advancing a political ecology of global environmental discourses[J]. Development and change, 2001, 32(4): 681-715.

[4] Ma H, Zhao H. United Nations: Convention to combat desertification in those countries experiencing serious drought and/or desertification, particularly in Africa[J]. Int. Legal Mater, 1994, 33: 1328-1382.

[5] 刘爱霞. 中国及中亚地区荒漠化遥感监测研究[D]. 北京: 中国科学院研究生院(遥感应用研究所), 2004.

[6] 司洪生. 关于“荒漠化”与“沙漠化”概念的讨论[J]. 世界林业研究, 1998: 69-72.

[7] 王涛, 朱震达. 我国沙漠化研究的若干问题——1.沙漠化的概念及其内涵[J]. 中国沙漠, 2003: 3-8.

[8] 任东风, 齐欢, 赵俊宇. 彰武县沙化信息提取及动态监测研究[J]. 测绘工程, 2020, 29: 49-55.

[9] Kong Z-H, Stringer L, Paavola J, et al. Situating China in the global effort to combat desertification[J]. Land, 2021, 10(7): 702.

[10] 潘顺. 我国北方地区土地荒漠化时空分布特征分析[D]. 青岛: 山东科技大学, 2020.

[11] You Y, Zhou N, Wang Y. Comparative study of desertification control policies and regulations in representative countries of the Belt and Road Initiative[J]. Global Ecology and Conservation, 2021, 27: e01577.

[12] Chomsky N, Pollin R. Climate crisis and the global green new deal: The political economy of saving the planet[M]. Verso Books, 2020.

[13] Xu D, Kang X, Zhuang D, et al. Multi-scale quantitative assessment of the relative roles of climate change and human activities in desertification–a case study of the Ordos Plateau, China[J]. Journal of Arid Environments, 2010, 74(4): 498-507.

[14] Hillel D, Rosenzweig C: Desertification in relation to climate variability and change, Advances in agronomy: Elsevier, 2002: 1-38.

[15] Lal R. Potential of desertification control to sequester carbon and mitigate the greenhouse effect[J]. Climatic change, 2001, 51(1): 35-72.

[16] 郝真旎. 内蒙古草原荒漠化治理政府责任问题研究[D]. 呼和浩特: 内蒙古大学, 2019.

[17] 张永. 石羊河流域植被覆盖与荒漠化动态研究[D]. 兰州: 甘肃农业大学, 2018.

[18] Guo B, Zang W, Han B, et al. Dynamic monitoring of desertification in Naiman Banner based on feature space models with typical surface parameters derived from LANDSAT images[J]. Land Degradation & Development, 2020, 31(12): 1573-1592.

[19] 李宝林, 周成虎. 东北平原西部沙地沙质荒漠化的遥感监测研究[J]. 遥感学报, 2002: 117-122+163.

[20] Wang X, Li Y, Wang X, et al. Temporal and Spatial Variations in NDVI and Analysis of the Driving Factors in the Desertified Areas of Northern China From 1998 to 2015[J]. Frontiers in Environmental Science, 2021: 14.

[21] Xiao J, Shen Y, Tateishi R, et al. Development of topsoil grain size index for monitoring desertification in arid land using remote sensing[J]. International Journal of Remote Sensing, 2006, 27(12): 2411-2422.

[22] 李鸿威, 杨小平. 浑善达克沙地近30年来土地沙漠化研究进展与问题[J]. 地球科学进展, 2010, 25: 647-655.

[23] 田静, 苏红波, 陈少辉, 等. 黑河中游绿洲化荒漠化的时空变化遥感分析[J]. 资源科学, 2011, 33: 347-355.

[24] Guo B, Zhang D, Lu Y, et al. A novel‐optimal monitoring model of rocky desertification based on feature space models with typical surface parameters derived from LANDSAT_8 OLI[J]. Land Degradation & Development, 2021, 32(17): 5023-5036.

[25] 曾永年, 向南平, 冯兆东, 等. Albedo-NDVI特征空间及沙漠化遥感监测指数研究[J]. 地理科学, 2006: 75-81.

[26] Vendruscolo J, Perez Marin A M, Dos Santos Felix E, et al. Monitoring desertification in semiarid Brazil: using the Desertification Degree Index (DDI)[J]. Land Degradation & Development, 2021, 32(2): 684-698.

[27] Xu F, Li H, Li Y. Ecological environment quality evaluation and evolution analysis of a rare earth mining area under different disturbance conditions[J]. Environmental geochemistry and health, 2021, 43(6): 2243-2256.

[28] 冯娟, 丁建丽, 魏雯瑜. 基于Albedo-MSAVI特征空间的渭库绿洲土壤盐渍化研究[J]. 中国农村水利水电, 2018: 147-152.

[29] Bian L, Wang J, Liu J, et al. Spatiotemporal Changes of soil salinization in the yellow river delta of China from 2015 to 2019[J]. Sustainability, 2021, 13(2): 822.

[30] Wei H, Wang J, Han B. Desertification information extraction along the China–Mongolia railway supported by multisource feature space and geographical zoning modeling[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 392-402.

[31] Harozono Y. GRASSLAND DESERTIFICATION AND MICRO METEOROLOGICAL CHANGES IN NAIMAN[J]. Journal of Desert Research, 1998, 18(4): 359.

[32] Zheng Y, Xie Z, Robert C, et al. Did climate drive ecosystem change and induce desertification in Otindag sandy land, China over the past 40 years?[J]. Journal of Arid Environments, 2006, 64(3): 523-541.

[33] Dong Z, Hu G, Yan C, et al. Aeolian desertification and its causes in the Zoige Plateau of China’s Qinghai–Tibetan Plateau[J]. Environmental Earth Sciences, 2010, 59(8): 1731-1740.

[34] Li J, Li Z, Dong S, et al. Spatial and temporal changes in vegetation and desertification (1982–2018) and their responses to climate change in the Ulan Buh Desert, Northwest China[J]. Theoretical and Applied Climatology, 2021, 143(3): 1643-1654.

[35] Chen A, Yang X, Xu B, et al. Monitoring the Spatiotemporal Dynamics of Aeolian Desertification Using Google Earth Engine[J]. Remote Sensing, 2021, 13(9): 1730.

[36] 吴波, 慈龙骏. 五十年代以来毛乌素沙地荒漠化扩展及其原因[J]. 第四纪研究, 1998: 165-172+193-194.

[37] 孙丹峰. 民勤1988~1997年间土地荒漠化社会经济驱动力分析[J]. 农业工程学报, 2005: 131-135.

[38] 井学辉. 民勤绿洲景观格局与动态及荒漠化成因分析[D]. 保定: 河北农业大学, 2005.

[39] 张东杰. 共和盆地近50年来草地荒漠化驱动因素定量研究[J]. 水土保持研究, 2010, 17: 166-169.

[40] 马燕, 李志萍, 曹希强. 近200年来额济纳绿洲土地荒漠化进程及其驱动机制[J]. 水土保持研究, 2010, 17: 158-162.

[41] 屈佳. 陕北农牧交错带荒漠化动态变化研究[D]. 西安: 西北农林科技大学, 2010.

[42] 李红超, 孙永军, 李晓琴, 等. 黄河中游地区荒漠化变化特征及影响因素[J]. 国土资源遥感, 2013, 25: 143-148.

[43] 王占军, 邱新华, 唐志海, 等. 宁夏1999—2009年土地荒漠化演变影响因素分析[J]. 中国沙漠, 2013, 33: 325-333.

[44] 何磊. 基于遥感方法的阿拉善盟荒漠化研究[D]. 兰州: 兰州大学, 2013.

[45] 范泽孟, 李赛博. 中蒙俄经济走廊荒漠化时空格局变化及其驱动因子[J]. 生态学报, 2020, 40: 4252-4263.

[46] 赵文博, 冯莉莉, 赵安周, 等. 河北省2000-2017年荒漠化的时空演变及其气候驱动因子[J]. 水土保持通报, 2021, 41: 252-259.

[47] 王旭, 刁兆岩, 郑志荣, 等. 中蒙毗邻草原区荒漠化时空动态研究[J]. 环境科学研究, 2021, 34: 2935-2944.

[48] 张博. 1999-2018年青海省土地荒漠化遥感监测及其驱动力分析[D]. 北京: 中国地质大学, 2020.

[49] Ding H, Xingming H. Spatiotemporal change and drivers analysis of desertification in the arid region of northwest China based on geographic detector[J]. Environmental Challenges, 2021, 4: 100082.

[50] Guo B, Wei C, Yu Y, et al. The dominant influencing factors of desertification changes in the source region of Yellow River: Climate change or human activity?[J]. Science of The Total Environment, 2022, 813: 152512.

[51] Luo G, Peng H, Zhang S, et al. Exploring the variations of redbed badlands and their driving forces in the nanxiong basin, southern china: A geographically weighted regression with gridded data[J]. Journal of Sensors, 2021, 2021.

[52] 章晓冬. 我国北方区域尺度人工造林对大气污染的影响[D]. 兰州: 兰州大学, 2019.

[53] 吴丽君, 朱宇, 颜俊, 等. “一带一路”沿线国家或地区间人口迁移的空间格局及其演化特征[J]. 世界地理研究, 2022, 31: 249-258+328.

[54] 徐涵秋. 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J]. 遥感学报, 2005: 589-595.

[55] 刘海江, 柴慧霞, 程维明, 等. 基于遥感的中国北方风沙地貌类型分析[J]. 地理研究, 2008: 109-118.

[56] 尹云鹤, 马丹阳, 邓浩宇, 等. 中国北方干湿过渡区生态系统生产力的气候变化风险评估[J]. 地理学报, 2021, 76: 1605-1617.

[57] Su K, Zheng W, Yin W, et al. Improving the Accuracy of Groundwater Storage Estimates Based on Groundwater Weighted Fusion Model[J]. Remote Sensing, 2022, 14(1): 202.

[58] 陈燕. 中国北方地区市域经济发展差异及影响因素研究[D]. 兰州: 西北师范大学, 2019.

[59] García-Monteiro S, Sobrino J, Julien Y, et al. Surface Temperature trends in the Mediterranean Sea from MODIS data during years 2003–2019[J]. Regional Studies in Marine Science, 2022, 49: 102086.

[60] Mirgheidari T, Rayegani B, Bodagh-Jamali J. Coastal water quality assessment based on the remotely sensed water quality index using time series of satellite images[J]. Journal of Applied researches in Geographical Sciences, 2022, 22(65): 207-226.

[61] 崔浩楠, 罗海江, 张学珍. 1982—2019年长江经济带植被覆盖变化的时空特征[J]. 生态学杂志, 2021, 40: 2517-2529.

[62] 姜鲁光, 杨成, 刘晔. 基于夜间灯光数据的1992—2020年老挝经济社会发展时空变化[J]. 资源科学, 2021, 43: 2381-2392.

[63] 赵艳艳, 张晓平, 陈明星, 等. 中国城市空气质量的区域差异及归因分析[J]. 地理学报, 2021, 76: 2814-2829.

[64] Li X, Zhang X, Xu X. Precipitation and Anthropogenic Activities Jointly Green the China–Mongolia–Russia Economic Corridor[J]. Remote Sensing, 2022, 14(1): 187.

[65] Bezerra A C, Da Silva J L B, De Albuquerque Moura G B, et al. Dynamics of land cover and land use in Pernambuco (Brazil): Spatio-temporal variability and temporal trends of biophysical parameters[J]. Remote Sensing Applications: Society and Environment, 2022, 25: 100677.

[66] 邓小进, 井长青, 郭文章, 等. 准噶尔盆地地表反照率时空变化特征及其影响因素分析[J]. 干旱区研究, 2021, 38: 314-326.

[67] Xiao X, Boles S, Liu J, et al. Characterization of forest types in Northeastern China, using multi-temporal SPOT-4 VEGETATION sensor data[J]. Remote Sensing of Environment, 2002, 82(2-3): 335-348.

[68] 杨达, 易桂花, 张廷斌, 等. 青藏高原植被生长季NDVI时空变化与影响因素[J]. 应用生态学报, 2021, 32: 1361-1372.

[69] Wei W, Yu X, Zhang M-Z, et al. Dynamics of desertification in the lower reaches of Shiyang River Basin, Northwest China during 1995-2018[J]. Ying Yong Sheng tai xue bao= The Journal of Applied Ecology, 2021, 32(6): 2098-2106.

[70] Adorno B V, Barreira S, Ferreira M E, et al. Influence of native and exotic tree plantations on biophysical indicators in the Brazilian Savanna[J]. Pesquisa Agropecuária Tropical, 2021, 51.

[71] Yang Z, Gao X, Lei J, et al. Analysis of spatiotemporal changes and driving factors of desertification in the Africa Sahel[J]. Catena, 2022, 213: 106213.

[72] Ji J, Tang Z, Zhang W, et al. Spatiotemporal and Multiscale Analysis of the Coupling Coordination Degree between Economic Development Equality and Eco-Environmental Quality in China from 2001 to 2020[J]. Remote Sensing, 2022, 14(3): 737.

[73] Chen A, Yang X, Guo J, et al. Synthesized remote sensing-based desertification index reveals ecological restoration and its driving forces in the northern sand-prevention belt of China[J]. Ecological Indicators, 2021, 131: 108230.

[74] Guo Z, Xie Y, Guo H, et al. Are land degradation and desertification worsening in Northern China? Quantitative evidence and enlightenment from satellites[J], 2022.

[75] 刘英, 马保东, 吴立新, 等. 基于NDVI-ST双抛物线特征空间的冬小麦旱情遥感监测[J]. 农业机械学报, 2012, 43: 55-63.

[76] Guo B, Zhang J, Meng X, et al. Long-term spatio-temporal precipitation variations in China with precipitation surface interpolated by ANUSPLIN[J]. Scientific reports, 2020, 10(1): 1-17.

[77] 彭大为, 周秋文, 韦小茶, 等. 中国西南岩溶区水分利用效率变化及其对气象要素的响应[J]. 生态学报, 2021, 41: 9470-9480.

[78] 程伟, 辛晓平. 基于TVDI的内蒙古草地干旱变化特征分析[J]. 中国农业科学, 2020, 53: 2728-2742.

[79] 鲍涵, 滕堂伟, 胡森林, 等. 长三角地区城市绿色创新效率空间分异及影响因素[J]. 长江流域资源与环境, 2022, 31: 273-284.

[80] 冯子钰, 施润和. 中国近地面PM_(2.5)浓度与排放的时空分布及其关联分析[J]. 地球信息科学学报, 2021, 23: 1221-1230.

[81] Lei L, Chang-Sheng Y, Hui-Dan L. On Relationship between Population Distribution and Natural Factors based on Geographic Detector[J]. Journal of Southwest China Normal University (Natural Science Edition), 2021, 46(6): 105-114.

[82] 赖夏华, 郭熙, 赵小敏, 等. 基于GWR的南昌市中心城区商业地价驱动因素分析[J]. 中国土地科学, 2019, 33: 28-38.

[83] 丘宝剑. 竺可桢先生对中国气候区划的贡献[J]. 地理科学, 1990: 28-34+97.

[84] Lu X, Zhang H, Han Y, et al. Applicability and improvement of different evapotranspiration methods of reference crops in Jiangxi Province[J]. Theoretical and Applied Climatology, 2022, 147(1): 73-86.

[85] Mulyadi D, Wahyudi S. Analysis of the availability of water resources using the Thornthwaite-Matter water balance method with dual reservoir development in residential locations in Tangerang regency[C]. IOP Conference Series: Earth and Environmental Science, 2022: 012028.

[86] 郭强. 中国北方荒漠化遥感动态监测与定量评估研究[D]. 北京: 中国科学院大学(中国科学院遥感与数字地球研究所), 2018.

[87] 刘茂华, 邵悦, 李雪欣. 基于归一化植被指数和地表反照率的土地沙漠化遥感监测研究[J]. 沈阳建筑大学学报(自然科学版), 2019, 35: 512-518.

[88] 魏海硕. 多源特征空间和地理分区建模支持下的蒙古国荒漠化信息精细提取[D]. 淄博: 山东理工大学, 2020.

[89] 胡德勇, 乔琨, 王兴玲, 等. 单窗算法结合Landsat8热红外数据反演地表温度[J]. 遥感学报, 2015, 19: 964-976.

[90] 叶钰, 秦建新, 胡顺石. 长沙市热岛效应时空特征变化研究[J]. 地球信息科学学报, 2017, 19: 518-527.

[91] 赵禾苗, 阿里木江·卡斯木. 基于Landsat数据的乌鲁木齐市热环境时空演化特征分析[J]. 生态科学, 2021, 40: 21-29.

[92] 杨天娇. 城镇民用建筑碳排放的时空变化及影响因素[D]. 北京: 北京交通大学, 2021.

[93] Li J, Wang J, Zhang J, et al. Growing-season vegetation coverage patterns and driving factors in the China-Myanmar Economic Corridor based on Google Earth Engine and geographic detector[J]. Ecological Indicators, 2022, 136: 108620.

[94] Deng X, Hu S, Zhan C. Attribution of vegetation coverage change to climate change and human activities based on the geographic detectors in the Yellow River Basin, China[J]. Environmental Science and Pollution Research, 2022: 1-16.

[95] Zhou C, Chen J, Wang S. Examining the effects of socioeconomic development on fine particulate matter (PM2. 5) in China's cities using spatial regression and the geographical detector technique[J]. Science of the Total Environment, 2018, 619: 436-445.

[96] Duan Q, Tan M. Using a geographical detector to identify the key factors that influence urban forest spatial differences within China[J]. Urban Forestry & Urban Greening, 2020, 49: 126623.

[97] 马瑞芳. 基于土地利用的陕西省生态系统服务价值及影响因素研究[D]. 西安: 长安大学, 2021.

[98] 董又铭, 郭炎, 李志刚, 等. 长江经济带乡村性的时空分异格局及驱动机制[J]. 自然资源学报, 2022, 37: 378-395.

中图分类号:

 P237/X171    

开放日期:

 2022-06-27    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式