论文中文题名: |
渭北煤田三软煤层采动裂隙演化规律及瓦斯抽采研究
|
姓名: |
韩凯
|
学号: |
18220214103
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
085224
|
学科名称: |
工学 - 工程 - 安全工程
|
学生类型: |
硕士
|
学位级别: |
工程硕士
|
学位年度: |
2021
|
培养单位: |
西安科技大学
|
院系: |
安全科学与工程学院
|
专业: |
安全工程
|
研究方向: |
矿井瓦斯灾害
|
第一导师姓名: |
肖鹏
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2021-06-17
|
论文答辩日期: |
2021-05-30
|
论文外文题名: |
Research on the evolution law of mining fissures and gas drainage in the three-soft coal seam of Weibei coalfield
|
论文中文关键词: |
三软煤层 ; DIC ; 数值模拟 ; 破断裂隙 ; 卸压瓦斯抽采
|
论文外文关键词: |
Three soft coal seam ; DIC ; numerical simulation ; fracture fracture ; pressure relief gas drainage
|
论文中文摘要: |
︿
我国工业体系的稳定运行依赖着煤炭资源,近年来随着东部煤炭资源的枯竭,煤炭生产中心已逐渐转移到中西部地区,煤炭资源需求的增加使得煤炭开采强度变大、开采深度变深,这使得我们需要面临一些诸如动力灾害、水害、煤层自燃和瓦斯突出等开采难题,其中瓦斯突出造成的灾害尤为严重,故在三软煤层矿井开展采空区覆岩裂隙场演化的研究进而来指导瓦斯矿井的瓦斯抽采变得尤为重要。
文章主要采用了物理数值模拟分析方法来确定工作面覆岩裂隙演化规律,结合现场工业实验构建了一个简化的工程模型来指导瓦斯抽采,最后利用数值模拟确定高位钻孔的垂距和平距,近一步指导瓦斯抽采。通过本文的研究发现三软煤层开采覆岩破断特征与非三软煤层开采不同,初次来压较早,初次来压后顶板随采随落,周期来压步距小;通过不同推速下覆岩关键层应力和离层量等的分析得到推速对三软煤层综放覆岩的影响变化规律;现场钻孔窥视和微震监测的结果和模拟实验的结果相一致,最后确定了1508工作面裂隙带高度在65m左右,冒落带高度在18m左右;通过前述分析构建了三软煤层开采的覆岩裂隙采动工程简化模型,瓦斯富集区位移椭抛带中,通过三软煤层卸压瓦斯抽采关键参数数值模拟分析,确定了高位钻孔终孔位置垂距为18~27m,平距为10~25m。
上隅角和回风巷瓦斯浓度在施工高位钻孔抽采瓦斯后均降低到安全范围内,确保了工作面的安全生产,本文研究成果对三软煤层采动覆岩裂隙演化规律、卸压瓦斯抽采关键参数的设计,以及提升瓦斯抽采效率具有重要的指导意义。
﹀
|
论文外文摘要: |
︿
The stable operation of my country’s industrial system relies on coal resources. In recent years, coal production centers have gradually moved to the central and western regions with the exhaustion of coal resources in the east. The increase in demand for coal resources has increased the intensity and depth of coal mining. We need to face some mining problems such as dynamic disasters, water disasters, spontaneous combustion of coal seams, and gas outbursts. Among them, the disasters caused by gas outbursts are particularly serious. Therefore, in the three-soft coal seam, the evolution of the overburden fissure field in the goaf is used to guide the gas mine. The gas drainage becomes particularly important.
The article mainly uses the physical numerical simulation analysis method to determine the evolution of the overburden cracks in the working face. Combined with the on-site industrial experiment, a simplified engineering model is constructed to guide the gas drainage. Finally, the numerical simulation is used to determine the vertical and horizontal distances of the high-level boreholes. Take a step closer to guide gas drainage. Through the research of this article, it is found that the overburden failure characteristics of three-soft coal seam mining is different from that of non-three-soft coal seam mining. The initial pressure is earlier, and the roof falls with the mining after the initial pressure. The cycle pressure step is small; under different pushing speeds The analysis of the amount of stress separation in the key rock layers, etc., obtains the influence of the pushing speed on the overlying rock in the three-soft coal seam; the results of on-site drilling and microseismic monitoring are consistent with the results of the simulation experiment, and finally the 1508 working face cracks are determined The height of the belt is about 65m, and the height of the caving zone is about 18m. Based on the foregoing analysis, a simplified model of the overburden crack mining engineering for the mining of the three-soft coal seam is constructed. In the displacement ellipse zone of the gas enrichment zone, the pressure is relieved by the three-soft coal seam. Numerical simulation analysis of the key parameters of drainage has determined that the vertical distance of the final hole position of the high drilling hole is 18~27m, and the horizontal distance is 10~25m.
After the high-location drilling is used to extract the gas, which ensures the safe production of the working face, the phenomenon of gas concentration is reduced to a safe range in the upper corner and the return airway. The research results in this paper have a positive effect on the evolution law of the overburden cracks in the three-soft coal seam and the pressure relief. The design of the key parameters of gas drainage and the improvement of the efficiency of gas drainage have important guiding significance.
﹀
|
参考文献: |
︿
[1] 2020年能源工作指导意见[J].石油和化工节能,2020(04):1-9. [2] 袁亮. 我国深部煤与瓦斯共采战略思考[J]. 煤炭学报, 2016, 41(1):1-6. [3] 钱鸣高, 许家林. 煤炭工业发展面临几个问题的讨论[J]. 采矿与安全工程学报, 2006, 23(2):127-132. [4] 中华人民共和国2019年国民经济和社会发展统计公报[J].中国统计,2020(03):8-22. [5] 钱鸣高, 许家林, 王家臣. 再论煤炭的科学开采[J].煤炭学报,2018,43(01):1-13. [6] 谢和平, 王金华, 王国法, 等.煤炭革命新理念与煤炭科技发展构想[J].煤炭学报, 2018, 43(05):1187-1197. [7] 林海飞, 李树刚, 赵鹏翔, 等.我国煤矿覆岩采动裂隙带卸压瓦斯抽采技术研究进展[J]. 煤炭科学技术, 2018, 46(01): 28-35. [8] 钱鸣高. 煤炭的科学开采[J].煤炭学报, 2010, 35(04):529-534. [9] 谢和平, 周宏伟, 薛东杰, 等.我国煤与瓦斯共采:理论、技术与工程[J].煤炭学报, 2014, 39(08):1391-1397. [10] 林海飞, 李树刚, 赵鹏翔, 等.我国煤矿覆岩采动裂隙带卸压瓦斯抽采技术研究进展[J].煤炭科学技术, 2018, 46(01):28-35. [11] 王伟, 程远平, 袁亮, 陈荣柱, 王海锋, 杜凯. 深部近距离上保护层底板裂隙演化及卸压瓦斯抽采时效性[J]. 煤炭学报, 2016, 41(01): 138-148. [12] Ettinger I L. Methane saturation of coal strata as methane-coal solid solution[J]. Soviet Mining, 1990, 26(2): 159-164. [13] 林海飞. 综放开采覆岩裂隙演化与卸压瓦斯运移规律及工程应用[D]. 西安科技大学, 2009. [14] 魏攀. 三软煤层采动裂隙场与瓦斯流场研究[D]. 西安科技大学, 2017. [15] Li Q, Lin B, Yang W, et al. Gas control technology and engineering practice for three-soft coal seam with low permeability in XuanGang region, China[J]. Procedia Engineering, 2011, 26: 560-569. [16] 曹韶龙, 安安, 郑国祥, 等. 提高三软煤层开采层瓦斯抽采量方法探析[J]. 中州煤炭, 2012(12):21-23+32. [17] Karmis M, Triplett T, Haycocks C, et al. Mining subsidence and its prediction in the appalachian coalfield[C]//The 24th US Symposium on Rock Mechanics (USRMS). American Rock Mechanics Association, 1983. [18] Bai M , Elsworth D . Some aspects of mining under aquifers in China[J]. Mining Science and Technology, 1990, 10(1):81-91. [19] Palchik, V. Influence of physical characteristics of weak rock mass on height of caved zone over abandoned subsurface coal mines[J]. Environmental Geology, 2002, 42(1):92-101. [20] 刘天泉. 矿山岩体采动影响与控制工程学及其应用[J]. 煤炭学报, 1995(01):1-5. [21] 钱鸣高. 采场上覆岩层岩体结构模型及其应用[J]. 中国矿业学院学报, 1982(02):6-16. [22] 高延法. 岩移“四带”模型与动态位移反分析[J]. 煤炭学报, 1996(01):51-56. [23] 姜福兴, 张兴民, 杨淑华等. 长壁采场覆岩空间结构探讨[J]. 岩石力学与工程学报, 2006(05):979-984. [24] 钱鸣高, 许家林. 覆岩采动裂隙分布的“O”形圈特征研究[J]. 煤炭学报, 1998(05):20-23. [25] 许家林, 钱鸣高. 采动裂隙实验结果的量化方法[J]. 辽宁工程技术大学学报:自然科学版, 1998, 017(006):586-589. [26] 许家林, 钱鸣高. 应用图像分析技术研究采动裂隙分布特征[J]. 煤矿开采, 1997(01):37-39. [27] 李树刚, 钱鸣高. 覆岩采动裂隙椭抛带动态分布特征研究[J]. 采矿与安全工程学报, 1999(3):44-46. [28] 李树刚, 林海飞. 采动裂隙椭抛带分布特征的相似模拟实验分析[J]. 煤, 2008(02):19-21+39. [29] 林海飞, 李树刚, 成连华等. 覆岩采动裂隙带动态演化模型的实验分析[J]. 采矿与安全工程学报, 2011, 28(02):298-303. [30] 李树刚, 林海飞, 成连华. 综放开采支承压力与卸压瓦斯运移关系研究[J]. 岩石力学与工程学报, 2004(19):3288-3291. [31] 林海飞, 李树刚, 成连华, 等. 覆岩采动裂隙演化形态的相似材料模拟实验[J]. 西安科技大学学报, 2010, 30(5):507-512. [32] 杨科, 谢广祥. 采动裂隙分布及其演化特征的采厚效应[J]. 煤炭学报, 2008, 33(010):1092-1096. [33] 杨科, 谢广祥. 应力壳与采动裂隙演化特征及其动态效应[A]. 中国煤炭学会.煤炭科学与技术研究论文集[C].中国煤炭学会:中国煤炭学会,2010:12. [34] 杨科, 谢广祥. 深部长壁开采采动应力壳演化模型构建与分析[J]. 煤炭学报, 2010, 35(07):1066-1071. [35] 尹增德. 采动覆岩破坏特征及其应用研究[D]. 山东科技大学, 2007. [36] 康永华. 采煤方法变革对导水裂缝带发育规律的影响[J]. 煤炭学报, 1998(03):3-5. [37] 高明忠, 金文城, 郑长江, 等. 采动裂隙网络实时演化及连通性特征[J]. 煤炭学报, 2012, 37(09):1535-1540. [38] 薛东杰,周宏伟,王超圣, 等. 上覆岩层裂隙演化逾渗模型研究[J].中国矿业大学学报,2013,42(06):917-922+940. [39] 宋白雪, 陈立, 张发旺, 等.分形理论研究采动裂隙演化规律[J]. 工程勘察, 2017, 45(01):1-6. [40] 李志梁, 李树刚, 林海飞, 等. 基于声发射特征的覆岩采动裂隙演化规律研究[J]. 西安科技大学学报, 2017, 37(02):159-163. [41] 张云, 曹胜根, 来兴平, 等. 短壁块段式充填采煤覆岩导水裂隙发育机理及控制研究[J]. 采矿与安全工程学报, 2019, 36(06):1086-1092. [42] 刘小平, 陈占国, 刘永华, 等. 基于慢度矢量与偏振矢量的采动裂隙岩体各向异性研究[J]. 岩石力学与工程学报, 2020, 39(S2):3348-3358. [43] 贺征勋, 刘勇, 康向涛, 等.含断层覆岩采动裂隙演化规律[J]. 煤矿安全, 2017, 48(08):201-203. [44] 张勇, 刘传安, 张西斌, 等.煤层群上行开采对上覆煤层运移的影响[J]. 煤炭学报, 2011, 36(12):1990-1995. [45] 张勇, 张保, 张春雷, 等. 厚煤层采动裂隙发育演化规律及分布形态研究[J]. 中国矿业大学学报, 2013, 42(06):935-940. [46] 赵毅鑫, 令春伟, 刘斌, 等. 浅埋超大采高工作面覆岩裂隙演化及能量耗散规律研究[J]. 采矿与安全工程学报, 2021, 38(01):9-18+30. [47] 刘超, 李树刚, 薛俊华, 等. 基于微震监测的采空区覆岩高位裂隙体识别方法[J]. 中国矿业大学学报, 2016, 45(04):709-716. [48] 来兴平, 许慧聪, 康延雷. 综放面覆岩运动“时-空-强”演化规律分析[J]. 西安科技大学学报, 2018, 38(06):871-877. [49] 李新华, 张向东, 李东发, 等. 含水层下三软煤层首采工作面覆岩破坏与矿压显现规律研究[J]. 煤矿开采, 2017, 22(02):83-86+46. [50] 张凤杰, 高召宁, 孟祥瑞. 三软大采高综采工作面覆岩结构及运动规律分析[J]. 矿业安全与环保, 2012, 39(06):10-14+101. [51] 袁瑞甫, 刘银先, 李春杰. 三软煤层综放开采避开动压沿空留巷方法及应用[J]. 河南理工大学学报(自然科学版), 2016, 35(05):612-619. [52] 黄洋. 三软煤层大采高工作面采场覆岩运移规律相似模拟研究[J]. 煤炭科技, 2015(02):3-6. [53] 肖家平, 韩磊, 姚向荣, 等. 三软煤层大采高工作面采场覆岩运动规律数值研究[J]. 煤矿开采, 2012, 17(01):8-11. [54] 高新春, 孙光中, 王国际. 三软厚煤层开采覆岩运动规律模拟[J]. 煤炭技术, 2011, 30(10):69-71. [55] Jia-Chen W. Mechanism of the rib spalling and the controlling in the very soft coal seam[J]. Mei T'an Hsueh Pao (Journal of China Coal Society), 2007, 32. [56] 李召鑫, 王沉. 基于复变函数法的 三软 煤层回采巷道断面设计[J]. 煤矿安全, 2015, 46(4): 203-205,209. [57] 王沉, 屠世浩, 李召鑫, 等. 深部 三软 煤层回采巷道断面优化研究[D]. , 2015. [58] Yong Y, Shihao T, Xiaotao M. Coal wall stability of fully mechanized working face with great mining height in “three soft” coal seam and its control technology[J]. Journal of Mining & Safety Engineering, 2012, 29(1): 21-25. [59] 来兴平, 崔峰, 曹建涛, 等. 三软煤层综放工作面覆岩垮落及裂隙导水特征分析[J]. 煤炭学报, 2017, 42(01):148-154. [60] 撒占友, 张辉, 李佳慧. 三软煤层上保护层开采覆岩裂隙演化规律研究[J]. 青岛理工大学学报, 2018, 39(03):15-20. [61] 许满贵, 魏攀, 李树刚, 等. 三软煤层综采工作面覆岩运移和裂隙演化规律实验研究[J]. 煤炭学报, 2017, 42(S1):122-127. [62] 杨敏. 极近距离三软厚煤层分层连续开采下综采工作面矿压规律研究[D]. 安徽理工大学, 2015. [63] 李春杰, 刘银先, 高红彬, 等. 三软 煤层采场覆岩运动及应力分布规律[D]. , 2015. [64] 杨百顺, 王佳奇, 吴强, 等. 三软 不稳定低透气性煤层开采瓦斯防治技术[J]. 煤炭技术, 2017, 5. [65] 赵德深, 徐孟林. 软岩厚煤层开采覆岩破坏规律三维数值模拟分析[J]. 广西大学学报: 自然科学版, 2013, 38(1): 235-239. [66] Xu W, Wang E, Liu Z, et al. Research on distribution and evolution patterns of abutment pressure in front of the fully-mechanized working face of "three-soft" coal seam isolated island[M]// Progress in Mine Safety Science and Engineering II. 2014. [67] Cundall P A, Strack O D L. A discrete numerical model for granular assemblies[J]. geotechnique, 1979, 29(1): 47-65. [68] Jing L, Stephansson O. Fundamentals of discrete element methods for rock engineering: theory and applications[M]. Elsevier, 2007. [69] Bobet A, Fakhimi A, Johnson S, et al. Numerical models in discontinuous media: review of advances for rock mechanics applications[J]. Journal of geotechnical and geoenvironmental engineering, 2009, 135(11): 1547-1561. [70] Zhang Q, Zhu H, Zhang L, et al. Study of scale effect on intact rock strength using particle flow modeling[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(8): 1320-1328. [71] Ding X. Development of a Rock Expert System (RES) for Evaluating Rock Property Values and Utilization of Three Dimensional Particle Flow Code (PFC3D) to Investigate Rock Behavior[J]. 2013. [72] Potyondy D O. The bonded-particle model as a tool for rock mechanics research and application: current trends and future directions[J]. Geosystem Engineering, 2015, 18(1): 1-28. [73] 夏燕钦, 姚池, 何忱, 等. 基于LHS法的三维随机裂隙网络数值模拟及渗流分析[J]. 水电能源科学, 2019, 37(11):139-143. [74] 冷建民, 何顺斌, 况丹阳, 等. 基于三维随机裂隙网络模型的岩体质量分级与支护研究[J]. 矿业研究与开发, 2018, 38(08):62-66. [75] 黄帆, 姚池, 周创兵, 等. 考虑裂隙迹长和开度相关性的随机裂隙网络数值模拟及渗流分析[J]. 水利水运工程学报, 2018(02):35-42. [76] 耿萍, 卢志楷, 于本昌. 基于随机裂隙网络研究溶洞方位对隧洞渗流场影响[J]. 施工技术, 2018, 47(04):120-124. [77] 林景宜, 曾昭发, 李静, 等. 三维随机裂隙介质建模与GPR响应计算[J]. 物探化探计算技术, 2018, 40(06):748-756. [78] Gorbaty Martin L,George Graham N.,Kelemen Simon R.. Chemistry of organically bound sulphur forms during the mild oxidation of coal[J]. Elsevier,1990,69(8). [79] Noack K. Control of gas emissions in underground coal mines[J]. International Journal of Coal Geology, 1998, 35(1-4): 57-82. [80] Shinn J H. Study of coal molecular structure [J]. Fuel, 1984, 63:83. [81] 于不凡. 世界主要产煤国家煤矿瓦斯防治技术全国煤矿防治瓦斯工作会议资料, 1985. [82] 李锡林. 世界煤炭工业发展报告[M].北京: 煤炭工业出版社, 1999. [83] 冯增朝. 低渗透煤层瓦斯抽放理论与应用研究[D]. 太原理工大学, 2005. [84] 曹家琳, 崔永国. 煤矿重特大瓦斯突出事故宏观特征研究[J]. 华北科技学院学报, 2017, 14(03):14-19. [85] 徐超, 辛海会, 刘辉辉. 我国煤矿瓦斯抽放技术现状及展望[J]. 煤矿现代化, 2010(01):3-4. [86] 赵社会. 穿层钻孔预抽区域煤层瓦斯增透关键技术研究[J]. 煤炭工程, 2010(09):51-53. [87] Haifeng W, Yuanping C, Lei W. Regional gas drainage techniques in Chinese coal mines[J]. International Journal of Mining Science and Technology, 2012, 22(6): 873-878. [88] Fu J, Fu X, Hu X, et al. Research into comprehensive gas extraction technology of single coal seams with low permeability in the Jiaozuo coal mining area[J]. Mining Science and Technology (China), 2011, 21(4): 483-489. [89] Liang B, Sun W, Qi Q, et al. Technical evaluation system of co-extraction of coal and gas[J]. International Journal of Mining Science and Technology, 2012, 22(6): 891-894. [90] Liu J, Liu Z, Xue J, et al. Application of deep borehole blasting on fully mechanized hard top-coal pre-splitting and gas extraction in the special thick seam[J]. International Journal of Mining Science and Technology, 2015, 25(5): 755-760. [91] Tulu I B, Esterhuizen G S, Heasley K A. Calibration of FLAC3D to simulate the shear resistance of fully grouted rock bolts[C]//46th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association, 2012. [92] Shirin L N, Dudlya N A, Fedorenko E A. Methane drainage borehole drilling technology status of Ukraine[J]. Procedia Earth and Planetary Science, 2011, 3: 47-52. [93] Wang, S. R. , Wu, X. G. , Zhao, Y. H. , Hagan, P. , & Cao, C. . (2019). Evolution characteristics of composite pressure-arch in thin bedrock of overlying strata during shallow coal mining. International Journal of Applied Mechanics. [94] Wang, X., Wu, Y., Li, X., & Liang, S. (2019). Numerical Investigation into Evolution of Crack and Stress in Residual Coal Pillars under the Influence of Longwall Mining of the Adjacent Underlying Coal Seam. Shock and Vibration, 2019. [95] Yin, Z., Chen, Z., Chang, J., Hu, Z., Ma, H., & Feng, R. (2019). Crack Initiation Characteristics of Gas-Containing Coal under Gas Pressures. Geofluids, 2019. [96] Ju, Y., Wang, Y., Su, C., Zhang, D., & Ren, Z. (2019). Numerical analysis of the dynamic evolution of mining-induced stresses and fractures in multilayered rock strata using continuum-based discrete element methods. International Journal of Rock Mechanics and Mining Sciences, 113, 191-210. [97] He, S. Q., Jin, L. Z., Ou, S. N., & Ming, X. H. (2018). Soft coal solid–gas coupling similar material for coal and gas outburst simulation tests. Journal of Geophysics and Engineering, 15(5), 2033-2046. [98] 潘国营, 武亚遵, 林云. 煤矿水害探查和评价[M]. 煤炭工业出版社, 2014. [99] 《建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规范》解读[J]. 安全与健康, 2017(9):36-37. [100] 王静, 李鸿琦, 邢冬梅等. 数字图像相关方法在桥梁裂缝变形监测中的应用[J]. 力学季刊, 2003(04):512-516. [101] 金观昌, 孟利波, 陈俊达等. 数字散斑相关技术进展及应用[J]. 实验力学, 2006(06):25-38. [102] 王学滨, 侯文腾, 潘一山等. 基于数字图像相关方法的单轴压缩煤样应变局部化过程试验[J]. 煤炭学报, 2018, v.43;No.283(04):87-95. [103] 王涛, 盛谦, 陈晓玲. 基于直接法节理网络模拟的三维离散单元法计算[J]. 岩石力学与工程学报, 2005, 24(10):1649-1653. [104] 刘传孝, 王同旭, 杨永杰. 高应力区巷道围岩破碎范围的数值模拟及现场测定的方法研究[J]. 岩石力学与工程学报, 2004, 23(14):2413-2416. [105] 潘俊锋, 齐庆新, 毛德兵, 等. 冲击性顶板运动及其应力演化特征的3DEC模拟研究[J]. 岩石力学与工程学报, 2007, 26(S1):3546-3552. [106] 唐元君, 钟立博. 基于3DEC的页岩气水平井开挖模拟[C]. 北京力学会第二十五届学术年会会议论文集, 北京力学学会, 2019. [107] 郝庆雨, 骆秀齐. 基于3DEC特厚水平煤层开采地表裂缝分布规律研究[J]. 北京测绘, 2019, 33(1):18-23. [108] Zhang, W. D., & Ma, T. H. (2013, June). Research on Characteristic of Rockburst and Rules of Microseismic Monitoring at Headrace Tunnels in Jinping II Hydropower Station. In 2013 Fourth International Conference on Digital Manufacturing & Automation (pp. 1039-1042). IEEE. [109] Zhao, Y., Yang, T., Zhang, P., Xu, H., Zhou, J., & Yu, Q. (2019). Method for Generating a Discrete Fracture Network from Microseismic Data and its Application in Analyzing the Permeability of Rock Masses: a Case Study. Rock Mechanics and Rock Engineering, 1-23. [110] Li, Y., Yang, T., Song, W., & Yu, L. (2019). Movement Law and Discriminant Method of Key Strata Breakage Based on Microseismic Monitoring. Shock and Vibration, 2019. [111] Wang, Q., Li, C., Lyu, P., Zhao, Y., Ai, D., & Xie, B. (2019). Experimental Study on Stress Evolution and Microseismic Signals under Vibration Conditions of Coal during Excavation and Subsequent Waiting Time. Shock and Vibration, 2019. [112] Cui Feng, Yang Yanbin, Lai Xingping, & Cao Jiantao. (2019). Similar material simulation experimental study on rockbursts induced by key stratum breaking based on microseismic monitoring. Journal of Rock Mechanics and Engineering, 38 (4), 803-814 in Chinese.
﹀
|
中图分类号: |
TD712
|
开放日期: |
2021-06-17
|