- 无标题文档
查看论文信息

论文中文题名:

 急倾斜煤岩复合体结构劣化失稳机理及控制研究    

姓名:

 任杰    

学号:

 18103077005    

保密级别:

 保密(2年后开放)    

论文语种:

 chi    

学科代码:

 0819    

学科名称:

 工学 - 矿业工程    

学生类型:

 博士    

学位级别:

 工学博士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 能源学院    

专业:

 矿业工程    

研究方向:

 岩体力学与工程    

第一导师姓名:

 来兴平    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-27    

论文答辩日期:

 2023-05-30    

论文外文题名:

 Research on Mechanisms and Control of Structural Deterioration and Instability of Steeply Inclined Coal-Rock Mass Composite    

论文中文关键词:

 急倾斜煤岩复合体 ; 结构劣化失稳 ; 多模态 ; 数据蒸馏 ; 劣化特征路径    

论文外文关键词:

 Steeply Inclined Coal-Rock Complex ; Structural Degradation Instability ; Mmultimodal ; Data Distillation ; Degradation Feature Path.    

论文中文摘要:

急倾斜煤岩复合体在采掘过程极易造成结构劣化失稳,是制约矿井安全高效开采的难题之一。本文以新疆乌东煤矿为研究背景,基于现场工程地质调研、理论分析与岩石力学实验,数值模拟及现场综合监测等多种方式,开展急倾斜煤岩复合体结构劣化失稳机理及控制基础研究,为矿井安全开采提供了理论基础和科学依据。主要研究工作及成果如下:

开展了急倾斜煤岩复合体赋存环境调查和围岩应力测试,确定了影响煤岩复合围岩结构劣化失稳的影响因素。通过钻孔窥视和松动圈监测以及构建急倾斜煤岩复合力学模型,深入分析了急倾斜煤岩复合体内部结构裂隙、结构变形失稳,并对急倾斜煤岩复合体划分为失稳层、传递层和控制层,为后续研究提供了有效数据依据。

根据急倾斜煤岩围岩赋存特征,设计了不同岩层倾角和锚固强度的急倾斜煤岩复合体结构劣化失稳多模态表征实验。建立了急倾斜煤岩复合体强度劣化随岩层倾角和锚固强度变化的关系式。根据急倾斜煤岩复合体损伤多模态表征结果得出了急倾斜煤岩复合体结构随倾角增大而劣化程度先降后增,而随着锚固强度的增强结构劣化程度表现出逐渐增大的规律。发现了急倾斜煤岩复合体中夹持煤层为裂隙空间分布的关键区域。

急倾斜煤岩复合体通过数据蒸馏的方式获取结构劣化失稳过程中小样本时序特征数据。发现了急倾斜煤岩复合体强度劣化失稳过程中夹持煤层劣化特征速率高于其他岩层。得出了高能量剪切破坏是高强度急倾斜煤岩复合体结构劣化失稳的主要诱因。得到了急倾斜煤岩复合体在时域上应力降低处夹持煤层优先发生结构劣化失稳。形成了急倾斜煤岩复合体以能量传递为桥梁,先破坏夹持煤层后劣化软弱岩层的关键劣化路径。

构建了以能量耗散理论为基础的急倾斜煤岩复合体能量展布模型,分析了急倾斜煤岩复合体在不同倾角和锚固强度条件下的结构失稳。得出了急倾斜煤岩复合体结构失稳过程中随强度劣化的变化一致,发现了夹持煤层为主要结构劣化区域。揭示了随倾角和锚固强度的变化,急倾斜煤岩复合体强度劣化失稳后能量展布规律,发现了夹持煤层和泥岩为主要能量耗散区域。

以乌东煤矿急倾斜煤岩复合围岩失稳为研究背景,构建了急倾斜煤岩复合体锚固力学模型和支护体受力分析,推导得出了急倾斜煤岩复合围岩有效锚固厚度,制定了急倾斜煤岩复合围岩结构失稳控制方案。通过对急倾斜煤岩复合围岩变形时效监测和围岩松动圈测试,结果表明优化后的支护方案有效控制了急倾斜煤岩复合体结构劣化失稳,急倾斜煤岩复合围岩失稳问题得到了较好的解决和控制。

论文研究结果在促进急倾斜煤岩复合体结构劣化失稳机理及控制基础研究方面具有较好的科学及实用价值,为相似煤层赋存条件下形成急倾斜煤岩复合体结构劣化失稳控制提供了指引。

论文外文摘要:

Research on the mechanisms and control of structural deterioration and instability of steeply inclined coal-rock mass composites is a challenging issue that constrains safe and efficient mining in coal mines. This study, conducted in the context of the Wudong Coal Mine in Xinjiang, China, utilizes multiple approaches including field geological investigation, theoretical analysis, rock mechanics experiments, numerical simulations, and comprehensive on-site monitoring. The research aims to establish a fundamental understanding of the mechanisms and control measures for structural deterioration and instability of steeply inclined coal-rock mass composites, providing theoretical basis and scientific evidence for safe mining operations. The main research achievements are as follows:

We conducted an investigation on the occurrence environment and surrounding rock stress of the steeply inclined coal-rock composite body, and identified the influencing factors for the degradation and instability of the surrounding rock structure. Through borehole observation, loose circle monitoring, and construction of a steeply inclined coal-rock composite mechanical model, we analyzed in depth the internal structural fractures and deformation instability of the steeply inclined coal-rock composite body. We divided the composite body into unstable layer, transfer layer, and control layer, providing effective data basis for subsequent research.

2. According to the interlayer occurrence characteristics of steeply inclined coal-rock, we designed experiments to characterize the structural degradation and instability of coal-rock composite body with different rock layer dip angles and anchoring strengths. We established mathematical relationships between the strength degradation of the coal-rock composite body and the variations in rock layer dip angles and anchoring strengths. Based on the multimodal characterization results of the damage to the coal-rock composite body, we found that the degree of structural degradation initially decreases and then increases with increasing dip angle, while it gradually increases with the strengthening of anchoring strength. We also identified that the coal layers in between the rock layers are critical areas for the distribution of fractures in the steeply inclined coal-rock composite body.

3.The time sequence feature data of small samples during the process of structural degradation and instability of highly inclined coal-rock mass were obtained through data distillation. It was found that the rate of degradation of the confined coal seam was higher than that of other rock layers during the process of strength degradation and instability of the highly inclined coal-rock mass. High-energy shear failure was identified as the main cause of structural degradation and instability of the highly inclined coal-rock mass with high strength. It was found that the confined coal seam was preferentially subjected to structural degradation and instability at the stress reduction point in the time domain of the highly inclined coal-rock mass. A critical degradation path was formed in the highly inclined coal-rock mass, where the confined coal seam was initially damaged, followed by the degradation of weak rock layers, bridged by energy transfer.

4. A energy dissipation-based model for the distribution of energy in a steeply inclined coal-rock composite body was constructed, and the structural instability of the composite body under different dip angles and anchor strength conditions was analyzed. It was found that the degradation of strength during the structural instability of the steeply inclined coal-rock composite body is consistent, and the coal seam clamping area was identified as the main region of structural degradation. The distribution pattern of energy after strength degradation and instability in the steeply inclined coal-rock composite body was revealed with changes in dip angle and anchor strength, and the coal seam clamping area and mudstone were identified as the main areas of energy dissipation.

5. Based on the background of the structural instability of steeply inclined coal-rock composite surrounding rock in Wudong Coal Mine, a mechanical model for interlayer anchoring of steeply inclined coal-rock composite rock and stress analysis of support system was constructed. The effective anchoring thickness of the composite surrounding rock was derived, and a control scheme for the composite surrounding rock of steeply inclined coal-rock was formulated. Deformation aging monitoring and loose circle testing of the composite surrounding rock of steeply inclined coal-rock were conducted, and the results showed that the optimized support scheme effectively controlled the structural degradation and instability of the steeply inclined coal-rock composite body. The problem of instability of the composite surrounding rock of steeply inclined coal-rock was well addressed and controlled.

The research results of the paper have significant scientific and practical value in promoting the understanding of the mechanism of structural degradation and instability of steeply inclined coal-rock composite bodies, and providing guidance for controlling the structural degradation and instability of similar coal-rock composite bodies under similar conditions.

参考文献:

[1]康红普, 谢和平, 任世华, 陈佩佩, 焦小淼, 郑德志, 张亚宁, 陈茜, 秦容军. 全球产业链与能源供应链重构背景下我国煤炭行业发展策略研究[J/OL]. 中国工程学: 1-12[2022-12-14].

[2]王国法, 李世军, 张金虎, 庞义辉, 陈佩佩, 陈贵锋, 杜毅博. 筑牢煤炭产业安全 奠定能源安全基石[J].中国煤炭, 2022, 48(07): 1-9.

[3]王国法, 张金虎, 李世军,孟令宇. 构建现代煤炭产业治理与安全保障体系[J]. 中国应急管理科学, 2022(06): 117-129.

[4]谢和平, 任世华, 谢亚辰, 焦小淼. 碳中和目标下煤炭行业发展机遇[J]. 煤炭学报,2021,46(07): 2197-2211.

[5]来兴平, 方贤威.“双碳”目标驱动西部煤炭分阶控碳减熵增效与协同发展路径[J].西安科技大学学报,2022,42(05):841-848.

[6]来兴平,杨毅然,王宁波,单鹏飞,张东升.急斜煤岩体动力失稳时空演化特征综合分析[J].岩石力学与工程学报,2018,37(03):583-592.

[7]Roy N, Sarkar R, Bharti S D. Prediction model for performance evaluation of tunnel excavation in blocky rock mass[J]. International Journal of Geomechanics, 2018, 18(1): 04017125.

[8]Bewick R P, Kaiser P K, Amann E. Strength of massive to moderately jointed hard rock masses[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2019, 11(3): 562-575.

[9]Ju Y, Ren Z Y, Zheng J T, et al. Quantitative visualization methods for continuous evolution of three-dimensional discontinuous structures and stress field in subsurface rock mass induced by excavation and construction-An overview[J]. Engineering Geology, 2020, 265: 105443.

[10]Kang H P, Jiang P F, Wu Y Z, et al. A combined "ground support-rock modification-destressing" strategy for 1000-m deep roadways in extreme squeezing ground condition[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 142: 104746.

[11]张农, 陈红, 陈瑶. 千米深.井高地压软岩巷道沿空留巷工程案例[J].煤炭学报, 2015, 40(3): 494-501.

[12]黄炳香, 张农, 靖洪文, 等. 深井采动巷道围岩流变和结构失稳大变形理论[J]. 煤炭学报, 2020, 45(3): 911-926.

[13]常聚才, 谢广祥. 深部巷道围岩力学特征及其稳定性控制[J]. 煤炭学报, 2009, 34(7): 881-886.

[14]Do N A, Dias D, Dinh V D, et al. Behavior of noncircular tunnels excavated in stratified rock masses-Case of underground coal mines[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2019, 11(1), 99-110.

[15]康红普, 姜鹏飞, 黄炳香, 等. 煤矿千米深井巷道围岩支护-改性-卸压协同控制技术[J]. 煤炭学报, 2020, 45(3): 845-864.

[16]Hu S C, Tan Y L, Zhou H, et al. Impact of bedding planes on mechanical properties of sandstone[J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 50: 2243-2251.

[17]靖洪文, 孟庆彬, 朱俊福, 等. 深部巷道围岩松动圈稳定控制理论与技术进展[J]. 采矿与安全工程学报, 2020, 37(3): 429-442.

[18]谢和平, 苗鸿雁, 周宏伟. 我国矿业学科"十四五"发展战略研究[J]. 中国科学基金, 2021, 35(6):8.

[19]朱俊福, 尹乾, 张京民, 靖洪文. 深部缓倾软弱夹层巷道围岩变形演化与非对称支护[J]. 采矿与岩层控制工程学报,2022,4(05): 47-61.

[20]范子儀, 李永亮, 孙昊, 陈小磊, 黄海鹏. 采动影响下弱胶结软岩巷道非对称变形特征与控制对策[J]. 采矿与岩层控制工程学报, 2022,4(02):44-53.

[21]黄万朋, 李超, 邢文彬, 袁奇, 曲广龙. 蠕变状态下千米深巷道长期非对称大变形机制与控制技术[J]. 采矿与安全工程学报,2018,35(03):481-488+495

[22]张盛, 王小良, 贾志明, 句世元. 非对称支护技术在多层倾斜岩层巷道中的应用研究[J]. 煤炭科学技术,2018,46(01):74-80+126.

[23]Xu X, He F, Li X, et al. Research on mechanism and control of asymmetric deformation of gob side coal roadway with fully mechanized caving mining[J]. Engineering Failure Analysis, 2021, 120:105097.

[24]Gw A, Wca B, Sj C, et al. Deformation characteristics of a roadway in steeply inclined formations and its improved support[J]. International Journal of Rock Mechanics and Mining Sciences, 130.

[25]Tian M, Han L, Yang X, et al. Asymmetric deformation failure mechanism and support technology of roadways under non-uniform pressure from a mining disturbance[J]. Bulletin of Engineering Geology and the Environment, 2022.

[26]姚强岭,李英虎,夏泽,李学华,王烜辉,晁宁.基于有效锚固层厚度的煤系巷道围岩叠加梁支护理论及应用[J].煤炭学报,2022,47(02):672-682.

[27]孟召平, 陆鹏庆, 贺小黑. 沉积结构面及其对岩体力学性质的影响[J]. 煤田地质与勘探, 2009, 37(1):36-40.

[28]张桂民, 李银平, 刘伟, 等. 基于沉积特征的层状盐岩界面抗剪强度特性研究[J]. 岩石力学与工程学报2014,33(s2):3631-3638.

[29]Tsesarsky M, Hatzor Y H. Tunnel roof deflection in blocky rock masses as a function of joint spacing and friction – A parametric study using discontinuous deformation analysis (DDA)[J]. Tunnelling and Underground Space Technology, 2006, 21(1): 29-45.

[30]Golshani A, Oda M, Okui Y, et al. Numerical simulation of the excavation damaged zone around an opening in brittle rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(6): 835-845.

[31]Heuze F E, Morris J P. Insights into ground shock in jointed rocks and the response of structures there-in[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(5): 647-676.

[32]Zuo J P, Peng S P, Li Y J, et al. Investigation of karst collapse based on 3-D seismic technique and DDA method at Xieqiao coal mine, China[J]. International Journal of Coal Geology, 2009, 78(4): 276-287.

[33]Jiang Y J, Li B, Yamashita Y. Simulation of cracking near a large underground cavern in a discontinuous rock mass using the expanded distinct element method[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(1): 97-106.

[34]Tsesarsky M. Deformation mechanisms and stability analysis of undermined sedimentary rocks in the shallow subsurface[J]. Engineering Geology, 2012, 133-134: 16-29.

[35]Li Y J, Zhang D L, Fang Q, et al. A physical and numerical investigation of the failure mechanism of weak rocks surrounding tunnels[J]. Computers and Geotechnics, 2014, 61: 292-307.

[36]Nomikos P P, Sofianos A I, Tsoutrelis C E. Structural response of vertically multi-jointed roof rock beams[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(1): 79-94.

[37]贾蓬, 唐春安, 王述红. 巷道层状岩层围岩破坏机理[J]. 煤炭学报, 2006, 1: 11-15.

[38]姜耀东, 刘文岗. 开滦矿区深部开采中巷道围岩稳定性研究[J]. 岩石力学与工程学报, 2005, 11: 1857-1862.

[39]Shabanimashcool M, Li C C. Analytical approaches for studying the stability of laminated roof strata[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 79: 99-108.

[40]李季,强旭博,马念杰,张荣光,李博.巷道围岩蝶形塑性区蝶叶方向性形成机制及工程应用[J].煤炭学报,2021,46(09):2838-2852.

[41]杨仁树,朱晔,李永亮,李炜煜,肖博.采动影响巷道弱胶结层状底板稳定性分析与控制对策[J].煤炭学报,2020,45(07):2667-2680.

[42]穆成林,裴向军,路军富,裴钻,习朝辉.基于尖点突变模型巷道层状围岩失稳机制及判据研究[J].煤炭学报,2017,42(06):1429-1435.

[43]孟陆波,黄意霖,李天斌,陈渤,张文居,陈海清,李昊禹.高地应力层状软岩隧道非对称挤压大变形分级修正方法研究[J].岩石力学与工程学报,2022,41(01):147-156.

[44]He M C, Jia X N, Gong W L, et al. Physical modeling of an underground roadway excavation in vertically stratified rock using infrared thermography[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(7): 1212-1221.

[45]沙鹏, 伍法权, 李响, 等. 高地应力条件下层状地层隧道围岩挤压变形与支护受力特征[J]. 岩土力学, 2015, 36(5): 1407-1414.

[46]张明建, 郜进海, 魏世义, 等. 倾斜岩层平巷围岩破坏特征的相似模拟试验研究[J]. 岩石力学与工程学报, 2010, 29(S1): 3259-3264.

[47]肖晓春, 樊玉峰, 吴迪, 等. 组合煤岩力学性质与声-电荷信号关 系研究[J]. 中国安全生产科学技术, 2018, 14(2): 126-132.

[48]陆菜平. 组合煤岩的强度弱化减冲原理及其应用[D].中国矿业大学, 2008.

[49]张晨阳. 底煤厚度对巷道底板冲击启动的影响规律研究[D].煤炭科学研究总院, 2018.

[50]白金正. 顶—煤—底“三硬”组合结构下承载煤柱冲击机理及其应用[D].中国矿业大学,2019.

[51]陈绍杰,尹大伟,张保良,等.围岩–煤柱结构体力学特性及其渐进破坏机制研究[J].岩石力学与工程学报, 2017, 36(7): 1588-1598.

[52]Ma Qing, Tan Yun liang, Liu Xue sheng, Zhao Zeng hui, Fan De yuan, Purev Lkhamsuren. Experimental and numerical simulation of loading rate effects on failure and strain energy characteristics of coal-rock composite samples[J]. Journal of Central South University,2021,28(10).

[53]杨科,刘文杰,马衍坤,许日杰,池小楼.真三轴单面临空下煤岩组合体冲击破坏特征试验研究[J].岩土力学,2022,43(01):15-27.

[54]YU Weijian, WU Genshui, PAN Bao, et al. Laboratory and field investigations of different bolting configurations for coal mine roadways in weak coal strata[J]. Bulletin of Engineering Geology and the Environment, 2021.

[55]余伟健, 吴根水, 刘泽, 等. 煤-岩-锚组合锚固体单轴压缩试验及锚杆力学机制[J]. 岩石力学与工程学报,2020,39 ( 1) : 57-68.

[56]PAN Bao, YU Wweijian, SHEN Wenbin. Experimental study on energy evolution and failure characteristics of rock-coal-rock combination with different height ratios[J]. Geotechnical and Geological Engineering, 2021, 39( 1) : 425-435.

[57]YU Weijian, WU Genshui, PAN Bao. Experimental investigation of the mechanical properties of sandstone-coal-bolt specimens with different angles under conventional triaxial compression[J]. International Journal of Geomechanics,2021,21( 6) : 04021067.

[58]尹大伟, 陈绍杰, 陈兵, 等. 煤样贯穿节理对岩−煤组 合体强度及破坏特征影响模拟研究[J]. 采矿与安全工 程学报, 2018, 35(5): 1054-1062.

[59]左建平, 谢和平, 孟冰冰, 等. 煤岩组合体分级加卸载 特性的试验研究[J]. 岩土力学, 2011, 32(5): 1287-1296.

[60]左建平, 陈岩, 崔凡. 不同煤岩组合体力学特性差异及 冲击倾向性分析[J]. 中国矿业大学学报, 2018, 47(1): 81-87.

[61]Wang Tuo,Ma Zhanguo. Research on strain softening constitutive model of coal-rock combined body with damage threshold[J]. International Journal of Damage Mechanics,2022,31(1).

[62]谭学术. 复合岩体力学理论及其应用[M]. 北京: 煤炭工业出版 社,1994: 6.

[63]韦四江,李宝富.预紧力锚杆作用下锚固体的形成与失稳模式[J].煤炭学报,2013,38(12):2126-2132

[64]侯朝炯, 勾攀峰. 巷道锚杆支护围岩强度强化机制研究[J]. 岩石力学与工程学报, 2000, 19(3): 342-345.

[65]韦四江, 勾攀峰. 锚杆预紧力对锚固体强度强化的模 拟试验研究[J]. 煤炭学报, 2012, 37(12): 1987-1993.

[66]张宁, 李术才, 吕爱钟, 等. 拉伸条件下锚杆对含表面裂隙类岩石试验加固效应试验研究[J]. 岩土工程学报, 2011, 33(5): 769-776.

[67]李术才, 张宁, 吕爱钟, 等. 单轴拉伸条件下断续节理岩体锚固效应试验研究[J]. 岩石力学与工程学报, 2011, 30(8): 1579-1586.

[68]李术才, 陈卫忠, 朱维申, 等. 加锚节理岩体裂纹扩展失稳的突变模型研究[J]. 岩石力学与工程学报, 2003, 22(10): 1661-1666.

[69]王斌,宁勇,冯涛,等. 低应变率加载速度影响脆性岩体锚固效果的试验研究[J]. 煤炭学报,2019,44 ( 9) : 2691-2699.

[70]邱鹏奇,宁建国,王俊,杨尚,胡善超,谭云亮,韦欣,闫顺尚.冲击动载作用下加锚岩体抗冲时效试验研究[J].煤炭学报,2021,46(11):3433-3444.

[71]尤春安,战玉宝.预应力锚索锚固段界面滑移的细观力学分析[J].岩石力学与工程学报,2009,28(10):1976-1985.

[72]Genshui, Wu W, Yu J, et al. Experimental and theoretical investigation on mechanisms performance of the rock-coal-bolt (RCB) composite system[J]. International Journal of Mining Science and Technology, 2020, v.30(06):18-27.

[73]余伟健, 吴根水,刘泽, 黄钟, 刘芳芳, 任恒. 煤-岩-锚组合锚固体单轴压缩试验及锚杆力学机制[J]. 岩石力学与工程学报,2020,39(01):57-68.

[74]王平,冯涛,朱永建,余伟健.加锚预制裂隙类岩体锚固机制试验研究及其数值模拟[J].岩土力学,2016,37(03):793-801.

[75]王平,冯涛,朱永建,余伟健.加锚多组有序裂隙类岩体单轴破断试验分析[J].岩土工程学报,2015,37(09):1644-1652.

[76]赵同彬,程康康,魏平,傅知勇,李刚.含弱面岩石滑移破坏及锚固控制试验研究[J].采矿与安全工程学报,2017,34(06):1081-1087.

[77]ZHAO Tongbin, YIN Yanchun., TAN Yunliang, et al. Deformation tests and failure process analysis of an anchorage structure[J]. International Journal of Mining Science and Technology, 2015, 25(2): 237-242.

[78]朱文心, 靖洪文, 张力,等. 锚杆作用下块状岩体力学特性试验研究[J]. 采矿与安全工程学报, 2018, 35(2):7.

[79]杨建辉,夏建中.层状岩石锚固体全过程变形性质的 试验研究[J].煤炭学报,2005,30(4):414-417.

[80]孟波,靖洪文,杨旭旭,等.破裂围岩锚固体变形破坏特征试验研究[J].岩石力学与工程学报,2013,32(12):2497-2505.

[81]尹延春,赵同彬,谭云亮,等.锚固体应力分布演化规律及其影响因素研究[J].采矿与安全工程学报, 2013,30(5):712-716.

[82]张益东,程亮,杨锦峰,等.锚杆支护密度对锚固复合承载体承载特性影响规律试验研究[J].采矿与安全工程学报,2015,32(2):305-309.

[83]李东印,王伸.螺纹钢横肋作用下锚固体应力分布与破坏规律[J].煤炭学报,2015,40(9):2026-2032.

[84]丁书学,靖洪文,齐燕军,等.含软弱夹层锚固体变形过程中锚杆受力分析[J].采矿与安全工程学报, 2017,34(6):1094-1102.

[85]王其洲,叶海旺,谢文兵,等.峰后锚固体力学特性 及其再破坏特征试验研究[J].采矿与安全工程学报, 2018,35(6):1115-1121.

[86]Zhang Z H, Deng J H, Zhu J B, et al. An experimental investigation of the failure mechanisms of jointed and intact marble under compression based on quantitative analysis of acoustic emission waveforms[J]. Rock Mechanics and Rock Engineering, 2018, 51(7): 2299-2307.

[87]吴顺川, 甘一雄, 任义, 等. 基于 RA 与 AF 值的声发射指标在隧道监测中的可行性[J]. 工程科学学报, 2020, 42(6): 723-730.

[88]Liu W R, Xu, J, Wang Z, et al. Experimental research on damage characteristics and safety damage threshold of jointed caverns based on acoustic emissions[J]. Geomechanics and Geophysics for Geo-energy and Geo-resources, 2021, 7(3): 72.

[89]Nikolenko P V, Shkuratnik V L. Acoustic emission in composites and applications for stress monitoring in rock masses[J]. Journal of Mining Science, 2015, 50(6): 1088-1093.

[90]Meng Q B, Zhang M W, Han L J, et al. Effects of acoustic emission and energy evolution of rock specimens under the uniaxial cyclic loading and unloading compression[J]. Rock Mechanics and Rock Engineering, 2016, 49(10): 3873-3886.

[91]来兴平,方贤威,单鹏飞,崔峰,陈建强等. 脆性孔洞煤样承载过程破坏模式及能量阶段蓄积释放规律分析[J]. 采矿与安全工程学报,2021,38(05):1005-1014.

[92]来兴平,张帅,代晶晶,王泽阳,许慧聪. 水力耦合作用下煤岩多尺度损伤演化特征[J]. 岩石力学与工程学报,2020,39(S2):3217-3228.

[93]来兴平,张帅, 崔峰,王泽阳,许慧聪,方贤威. 含水承载煤岩损伤演化过程能量释放规律及关键孕灾声发射信号拾取[J]. 岩石力学与工程学报,2020,39(03):433-444.

[94]Jin P J, Wang E Y, Song D Z. Study on correlation of acoustic emission and plastic strain based on coal-rock damage theory. Geomech Eng, 2017,12(4):627.

[95]Deng X B, Liu Y Z, Xing K, et al. Analysis based on AE spacetime evolution characteristics for stage division of whole stress-strain curve of rock. Chin J Rock Mech Eng, 2018, 37(Suppl 2): 4086.

[96]纪洪广, 穆楠楠, 张月征. 冲击地压事件AE与压力耦合前兆特征分析[J]. 煤炭学报,2013, 38(Suppl 1): 1.

[97]左建平, 裴建良, 刘建锋, 等. 煤岩体破裂过程中声发射行为及时空演化机制[J]. 岩石力学与工程学报, 2011, 30(8): 1564-1570.

[98]刘保县, 黄敬林, 王泽云, 等. 单轴压缩煤岩损伤演化及声发射特性研究[J]. 岩石力学与工程学报, 2009, 28(S1): 3234-3238.

[99]王笑然, 王恩元, 刘晓斐, 等. 裂隙砂岩裂纹扩展声发射响应及速率效应研究[J]. 岩石力学与工程学报, 2018, 37(6): 1446-1458.

[100]李 杰,邱黎明,殷 山,等. 煤岩膨胀破裂应变及声发射特征试验研究[J]. 工矿

[101]自动化,2021,47(2):63–69.

[102]TROMBIK M,ZUBEREK W. Microseismic research in polish coal mine[C]// Proceedings of the First Conference on Acoustic Emission/ Microseismic Activity in Geological Structures and Materials. [S. l.]: Trans Tech Publications,1977:169–194.

[103]MCKAVANAGH B M,ENEVER J R. Developing a microseismic outburst warning system[C]// Proceedings of the Second Conference on Acoustic Emission/Microseismic Activity in Geological Structures and Materials. [S. l.]: Trans Tech Publications,1980:211–225.

[104]吕进国,潘立. 微震预警冲击地压的时间序列方法[J]. 煤炭学报,2010,35(12):2 002–2005.

[105]杨增福,杨胜利,杨文强. 煤岩单轴压缩条件下声发射与破坏特征差异性研究[J]. 煤炭工程,2021,53(4):136–140.

[106]夏永学,蓝航,魏向志. 基于微震和地音监测的冲击危险性综合评价技术研究[J]. 煤炭学报,2011,36(增 2):358–364.

[107]李元辉,刘建坡,赵兴东,等. 岩石破裂过程中的声发射 b 值及分形特征研究[J]. 岩土力学,2009,30(9):2 559–2 563.

[108]张志博,李树杰,王恩元,等. 基于声发射事件时–空维度聚类分析的煤体损伤演化特征研究[J]. 岩石力学与工程学报,2020, 39(增 2):3 338–3 347.

[109]SUN H,MA L Q,ADELEKE N,et al.Background thermal noise correction methodology for average infrared radiation temperature of coal under uniaxial loading[J].Infrared Physics & Technology,2017,81: 157-165.

[110]MA L Q,SUN H.Spatial-temporal infrared radiation precursors of coal failure under uniaxial compressive loading[J].Infrared Physics & Technology,2018,93: 144-153.

[111]MA L Q,SUN H,ZHANG Y,et al.The role of stress in controlling infrared radiation during coal and rock failures[J].Strain,2018,54(6):e12295.

[112]刘善军,魏嘉磊,黄建伟,等.岩石加载过程中红外 辐射温度场演化的定量分析方法[J].岩石力学与工程 学报,2015,34(5):2968-2975.

[113]MA L Q,SUN H,ZHANG Y,et al.Characteristics of infrared radiation of coal specimens under uniaxial loading[J].Rock Mechanics and Rock Engineering,2016, 49(4):1567-1572.

[114]来兴平,孙欢,单鹏飞,等.急倾斜坚硬岩柱动态破裂“声-热”演化特征实验[J].岩石力学与工程学报,2015,34(11):2285-2292.

[115]吴立新,唐春安,钟声,等.非连续断层破裂红外辐射与声发射、应力场的对比研究[J].岩石力学与工程 学报,2006,25(6):1111-1117.

[116]刘善军, 魏嘉磊, 黄建伟, 等. 岩石加载过程中红外辐射温度场演化的定量分析方法[J]. 岩石力学与工程学报, 2015, 34(S1): 2968−2976.

[117]马立强,张东升,郭晓炜,等.煤单轴加载破裂时的差分红外方差特征[J].岩石力学与工程学报,2017, 36(增刊 2):3927-3934.

[118]来兴平, 刘小明, 单鹏飞, 等. 采动裂隙煤岩破裂过程热红外辐射异化特征[J]. 采矿与安全工程学报, 2019, 36(4): 777 −785.

[119]LUONG M P. Infrared thermovision of damage processes in concrete and rock[J]. Engineering Fracture Mechanics, 1990, 35(1/2/3): 291−301.

[120]邓明德, 钱家栋, 尹京苑, 等. 红外遥感用于大型混凝土工 程稳定性监测和失稳预测研究[J]. 岩石力学与工程学报, 2001, 20(2): 147−150.

[121]WU Lixin, LIU Shanjun, WU Yuhua, et al. Precursors for rock fracturing and failure−Part I: IRR image abnormalities [J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(3): 473−482.

[122]WU Lixin, LIU Shanjun, WU Yuhua, et al. Precursors for rock fracturing and failure−Part II: IRR T-Curve abnormalities [J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(3): 483−493.

[123]WANG Chunlai, LU Zhijiang, LIU Lu, et al. Predicting points of the infrared precursor for limestone failure under uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 88: 34−43.

[124]SALAMI Y, DANO C, HICHER P Y. Infrared thermography of rock fracture[J]. Géotechnique Letters, 2017, 7(1): 36−40

[125]CAI Xin, ZHOU Zilong, TAN Lihai, et al. Water saturation effects on thermal infrared radiation features of rock materials during deformation and fracturing[J]. Rock Mechanics & Rock Engineering, 2020, 53(11): 4839-4856.

[126]周子龙, 刘洋, 蔡鑫, 等. 冲击荷载下砂岩的红外辐射特性[J]. 中南大学学报(自然科学版), 2022, 53(7): 2555−2562.

[127]Rongxi Shen, Hongru Li, et al. Infrared radiation characteristics and fracture precursor information extraction of loaded sandstone samples with varying moisture contents[J]. International Journal of Rock Mechanics and Mining Sciences, 130.

[128]Shan T, Li Z, Zhang X, et al. Infrared Radiation and Acoustic Emission of Damage Evolution and Failure Precursory for Water-Bearing Coal[J]. Rock Mechanics and Rock Engineering, 2022, 55(12):7657-7674.

[129]Khan N M, Ma L, Cao K, et al. Early Violent Failure Precursor Prediction Based on Infrared Radiation Characteristics for Coal Specimens Under Different Loading Rates[J]. Rock Mechanics and Rock Engineering, 2022, 55(11):6939-6961.

[130]纪维伟,潘鹏志,苗书婷,等. 基于数字图像相关法的两类岩石断 裂特征研究[J]. 岩土力学,2016,37(8):2 299–2 305.

[131]安定超,张 盛,张旭龙,等. 岩石断裂过程区孕育规律与声发射 特征实验研究[J]. 岩石力学与工程学报,2021,40(2):290–301.

[132]DUTLER N,NEJATI M,VALLEY B,et al. On the link between fracture toughness,tensile strength,and fracture process zone in anisotropic rocks[J]. Engineering Fracture Mechanics , 2018 , 201(August):56–79.

[133]李二强, 冯吉利, 朱天宇, 等. 基于数字图像相关方法的层状板岩Ⅰ型断裂特性研究[J]. 采矿与安全工程学报, 2021(005):038.

[134]佘吉. 岩石-混凝土界面剪切本构关系研究与工程应用[D]. 大连理工大学, 2018.

[135]LIN Q,WANG S,WAN B,et al. Characterization of Fracture Process in Sandstone:A Linear Correspondence Between Acoustic Emission Energy Density and Opening Displacement Gradient[J]. Rock Mechanics and Rock Engineering,2020,53(2):975–981.

[136]KEERTHANA K,KISHEN JMC. Micromechanics of fracture and failure in concrete under monotonic and fatigue loadings[J]. Mechanics of Materials,2020,148:103490.

[137]Shuhong Dai,Xiaoli Liu,Kumar Nawnit. Experimental Study on the Fracture Process Zone Characteristics in Concrete Utilizing DIC and AE Methods[J]. Applied Sciences,2019,9(7):1–12.

[138]XIE H, JU Y, LI L, et al. Energy mechanism of deformation and failure of rock masses[J]. Chin J Rock Mech Eng, 2008, 27(9): 1729-1739.

[139]LI L Y, XIE H P, JU Y, et al. Experimental investigations of releasable energy and dissipative energy within rock[J]. Engineering Mechanics, 2011, 28(3): 35-40.

[140]ZHANG Z, GAO F. Research on nonlinear characteristics of rock energy evolution under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6): 1198-1207.

[141]ZHANG Z, GAO F. Research on nonlinear characteristics of rock energy evolution under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6): 1198-1207.

[142]ZHANG Z, GAO F. Confining pressure effect on rock energy[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(1): 1-11.

[143]左建平,宋洪强.煤岩组合体的能量演化规律及差能失稳模型[J].煤炭学报,2022,47(08):3037-3051.

[144]李成杰, 徐颖, 叶洲元. 冲击荷载下类煤岩组合体能量 耗散与破碎特性分析[J]. 岩土工程学报, 2020, 42(5): 981-988.

[145]李成杰, 徐颖, 冯明明, 等. 单轴荷载下类煤岩组合体 变形规律及破坏机理[J]. 煤炭学报, 2020, 45(5): 1773- 1782.

[146]赵毅鑫, 姜耀东, 祝捷, 等. 煤岩组合体变形破坏前兆信息的试验研究[J]. 岩石力学与工程学报, 2008, 27(2): 339-346.

[147]杨磊, 高富强, 王晓卿, 等. 煤岩组合体的能量演化规 律与破坏机制[J]. 煤炭学报, 2019, 44(12): 3894-3902.

[148]杨磊, 高富强, 王晓卿. 不同强度比组合煤岩的力学响 应与能量分区演化规律[J]. 岩石力学与工程学报, 2020, 39(增刊 2): 3297-3305.

[149]杨科, 刘文杰, 窦礼同, 等. 煤岩组合体界面效应与渐进失稳特征试验[J]. 煤炭学报, 2020, 45(5): 1691-1700.

[150]陈光波,张俊文,贺永亮,张国华,李谭.煤岩组合体峰前能量分布公式推导及试验[J].岩土力学,2022,43(S2):130-143+154.

[151]秦忠诚,陈光波,秦琼杰.组合方式对煤岩组合体力学特性和冲击倾向性影响实验研究[J].西安科技大学学报,2017,37(5):655-661.

[152]刘颖浩, 袁勇. 全螺纹GFRP粘结型锚杆锚固性能试验 研究[J]. 岩石力学与工程学报, 2010, 29(2): 394-400.

[153]Baltrusaitis, Tadas; Ahuja, Chaitanya; Morency, Louis-Philippe (2018). Multimodal Machine Learning: A Survey and Taxonomy. IEEE Transactions on Pattern Analysis and Machine Intelligence, (), 1–1.

[154]Eberhardt E,Stead D,Stimpson B,et al.Changes in acoustic event properties with progressive fracture damage[J]. International Journal of Rock Mechanics and Mining Sciences,1997,34( 3) : 71.e1-71.e12.

[155]Amann F,Button E A,Evans K F,et al.Experimental study of the brittle behavior of clay shale in rapid unconfined compression[J].Rock Mechanics and Rock Engineering,2011,44( 4) : 415-430.

[156]李存宝,谢和平,谢凌志.页岩起裂应力和裂纹损伤应力的试验及理论[J].煤炭学报,2017,42( 4) : 969-976.

[157]Xingping Lai, Jie Ren, Feng Cui, et al. Study on vertical cross loading fracture of coal mass through hole based on AE-TF characteristics[J]. Applied Acoustics, 166.

[158]Shiotani T. Evaluation of long-term stability for rock slope by means of acoustic emission technique[J]. NDT&E International, 2006, 39(3):217-228.

[159]Shiotani T, Shigeishi M, Ohtsu M. Acoustic emission characteristics of concrete-piles[J]. Construction and Building Materials, 1999, 13(1-2):73-85.

[160]Shiotani, T., Ohtsu, M., & Ikeda, K.Detection and evaluation of AE waves due to rock deformation[J]. Construction and Building Materials, 2001, 15(5-6):235-246.

[161]Ohtsu M. Simplified moment tensor analysis and unified decomposition of acoustic emission source: Application to in situ hydrofracturing test[J]. Journal of Geophysical Research: Solid Earth, 1991, 96(B4):6211-6211.

[162]Cyrille B, Jo LB, Bruno T, et al. Acoustic monitoring of a thermo-mechanical test simulating withdrawal in a gas storage salt cavern[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 111:21-32.

[163]SOLAV D, MOERMAN K M, JAEGER A M, et al. Multidic: an open-source toolbox for multi-view 3d digital image correlation[J]. IEEE Access, 2018, 6: 30520-30535.

[164]范杰, 朱星, 胡桔维,等. 基于3D-DIC的砂岩裂纹扩展及损伤监测试验研究[J]. 岩土力学, 2022(004):043.

[165]BIENIAWSKI Z T. Mechanism of brittle fracture of rock: part I—theory of the fracture process[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1967, 4(4): 395-406.

[166]邵仁荣,刘宇昂,张伟,王骏.深度学习中知识蒸馏研究综述[J].计算机学报,2022,45(08):1638-1673.

[167]徐建华.现代地理学中的数学方法[M].北京:高等教育出版社,2016

[168]赵忠虎, 鲁睿,张国庆.岩石失稳破裂的能量原理分析[J]. 金属矿山, 2006(10):17-21.

[169]秦四清. 初论岩体失稳过程中耗散结构的形成机制[J] .岩石力学与工程学报, 2000, 19(3):265-269.

[170]韩现民, 李晓. 岩体工程失稳的塑性能突变判据及其应用[J].金属矿山, 2009(08):15-18.

[171]ZHENG H, LIU D F, LEE C F, et al. Principle of analysis of brittle-plastic rock mass[J]. International Journal of Solids and Structures, 2005, 42(1): 139-158.

[172]苏国韶,蒋剑青,冯夏庭,等. 岩爆弹射破坏过程的试验研究[J]. 岩石力学与工程学报,2016,35(10):1 990–1 999.

[173]梁鹏,张艳博,田宝柱,姚旭龙,孙林,刘祥鑫.巷道岩爆过程能量演化特征实验研究[J].岩石力学与工程学报,2019,38(04):736-746.

[174]王水林,郑宏,刘泉声,郭明伟,葛修润.应变软化岩体分析原理及其应用[J].岩土力学,2014,35(03):609-622+630.

[175]郑宏, 刘德富. 弹塑性矩阵Dep的特性和有限元边坡稳定性分析中的极限状态标准[J]. 岩石力学与工程学报, 2005, 24(7): 1099-1105.

[176]王晓卿,康红普,赵科,等.黏结刚度对预应力锚杆支护效用的数值分析[J].煤炭学报,2016,41(12): 2999-3007.

[177]Itasca Consulting Group Inc. FLAC3D 5.0 manual. 2010,Minneapolis:ICG.

中图分类号:

 TD325    

开放日期:

 2025-06-27    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式