题名: | 滴滤池间歇断流下微生物代谢产物协同转化及饥饿应激响应机制 |
作者: | |
学号: | 22204228064 |
保密级别: | 保密(1年后开放) |
语种: | chi |
学科代码: | 085900 |
学科: | 工学 - 工程 - 土木水利 |
学生类型: | 硕士 |
学位: | 工程硕士 |
学位年度: | 2025 |
学校: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 分散式农村污水处理与防治 |
导师姓名: | |
导师单位: | |
提交日期: | 2025-06-13 |
答辩日期: | 2025-05-30 |
外文题名: | Synergistic transformation of microbial metabolites and starvation stress response mechanisms under intermittent flow interruption in biotrickling filter |
关键词: | |
外文关键词: | biotrickling filter ; intermittent flow interruption ; extracellular polymeric substances ; synergistic transformation ; starvation stress response |
摘要: |
随着我国农村人居环境的不断改善,农村生活污水数量逐年增长,但受到分散排放、间歇断流等因素的影响,农村污水处理系统常面临水量波动的问题,导致处理系统脱氮除碳效果和维稳性能的降低。生物滴滤池具有良好的抗冲击负荷能力,能够缓解水质水量波动对污染物去除和微生物的影响。为探究水量波动下生物滴滤池处理农村生活污水的适用性,阐明其内部微生物适应性生长与代谢调控机制,本研究构建了间歇断流运行模式的滴滤池农村污水处理系统,以胞外聚合物(EPS)和代谢产物的动态转化特征为切入点,解析了断流期脱氮除碳功能菌群对饥饿、富氧等环境的应激响应机制,运用基因组学的分析手段,阐释了菌群效能恢复和维持稳定的生物代谢调控机制,为强化滴滤池农村污水处理系统运行效果和维稳性能提供理论技术支撑。研究得到的主要结果如下: (1)生物滴滤池能在间歇断流的进水条件下实现对农村污水的高效处理。系统稳定运行期间总氮(TN)、有机物和总磷(TP)的去除率分别维持在66.74±3.53%、95.56±1.10%和87.06±2.08%,反应器内以具有同步硝化反硝化和除碳功能的兼性层为主,各层主导反应类型存在差异,在靠近供氧区域的层位(1和5层)硝化反应活性更为明显,在靠近进水区域的非供氧兼性区(2至4层)氨化反应最为明显,各层均具有稳定的有机物去除能力,TP依靠微生物固定与填料吸附截留作用共同去除;扫描电镜下生物膜呈现进水时期松散复杂的孔隙结构,断流时期紧密平实的堆积结构。 (2)胞外聚合物的组分和结构特征在进水和断流期间存在明显差异。断流后期基质的匮乏促使微生物转化松散型EPS(LB-EPS)及其吸附的营养物质,以维持自身活性及菌群数量,同时通过调整紧密型EPS(TB-EPS)中蛋白质组分的占比构建适宜微生物聚集的疏水微环境;三维荧光分析结果显示,LB-EPS与TB-EPS中蛋白质以溶解性微生物代谢副产物类蛋白为主;X射线电子能谱(XPS)分析结果显示,EPS内疏水基团与架桥作用共同促进微生物聚集体的形成。 (3)脱氮功能菌在反应器中的菌群结构变化引起了氮的沿程和转化途径,靠近进水区域的供氧层(1层)优势菌有Nitrospira、Zoogloea,靠近曝气区域的供氧层(5层)中优势功能菌包括Nitrosotenuis、Dechloromonas,靠近进水区域的非供氧兼性区(2层)具有Acinetobacter、Thauera优势功能菌,靠近出水区域的非供氧兼性区(6层)含优势功能菌Nitrosomonas、Comamonas,曝气区域上方填料层(1、2层)硝化菌丰度高于反硝化菌,曝气区域下方填料层(5、6层)硝化菌丰度低于反硝化菌。断流期引起微生物数量的下降,对Nitrospira、Dechloromonas等脱氮功能菌的影响尤为明显。 (4)生物滴滤池微生物EPS转化和饥饿应激响应过程与碳水化合物代谢、能量代谢、多糖合成途径、ABC转运、核苷酸代谢和核糖体密切相关。宏基因组测序分析结果显示,断流阶段微生物戊二酸和丙酮酸的代谢能力明显提升,表现为NADH的生成过程与丙酮酸的合成过程基因丰度显著上升;胞外多糖合成途径中糖核苷酸代谢基因上调,说明断流阶段供氧层多糖代谢受到抑制,相反兼性层多糖代谢活性得到促进;蛋白质跨膜运输相关代谢途径的基因丰度在断流期明显升高,加强胞外代谢产物转化利用;磷循环中NADH脱氢酶和细胞色素c氧化酶基因数量上调,加强了ATP的产出过程,为维持断流后期的饥饿-富氧双重环境抑制下微生物的代谢活性提供能量;同时,核糖体、嘌呤嘧啶代谢中,功能蛋白的在富氧-饥饿环境下表达水平上升,对蛋白质的表达、能量代谢、辅酶因子合成、信息传递等功能富集效果明显。 |
外文摘要: |
The continuous improvement of rural living environments in China has led to a consistent annual increase in rural sewage quantities. However, rural wastewater treatment systems frequently experience water quantity fluctuations due to decentralized discharge and intermittent flow interruption, resulting in reduced denitrification-decarbonization efficiency and decreased operational stability. Biotrickling filters exhibit enhanced shock load resistance, effectively mitigating the effects of water quantity fluctuations on pollutant removal efficiency and microbial consortium dynamics. To evaluate the applicability of biotrickling filters in rural sewage treatment under water quantity fluctuations and delineate microbial adaptive growth with metabolic regulation mechanisms, in this study, the rural sewage treatment system under intermittent flow interruption operation mode was constructed. The stress response mechanisms of denitrification-decarbonization functional microbiota to starvation and oxygen-enriched environments during flow interruption periods were elucidated through characterization of extracellular polymeric substances and microbial metabolite dynamics. Genomic interrogation revealed biometabolic regulation mechanisms governing microbial functional recovery and system stabilization. This provides theoretical and technical foundations for enhancing operational performance and stability maintenance of biotrickling filter-based rural sewage treatment systems. The main results obtained from the study are as follows: (1) Biotrickling filter were capable of realizing efficient treatment of rural wastewater under intermittent intermittent influent conditions. During the stable operation of the system, the removal rates of total nitrogen (TN), organic matter and total phosphorus (TP) were maintained at 66.74±3.53%, 95.56±1.10% and 87.06±2.08%, respectively. The reactor was dominated by the parthenogenetic layer with simultaneous nitrification denitrification and carbon removal, and the dominant reaction types varied in each layer, with nitrification reactions more pronounced in the layers close to the oxygen supply area (layers 1 and 5), and ammonification reactions most active in the non-oxygen supply parthenogenetic zone close to the influent area (layers 2 to 4). The activity was more obvious in the layer near the oxygen supply area (layers 1 and 5), and the ammonification reaction was most obvious in the non-oxygen supply part-time area near the influent area (layers 2 to 4), and each layer had stable organic matter removal ability, and TP was removed by microbial immobilization and adsorption and retention of packing; the biofilm under scanning electron microscope showed loose and complex pore structure during the influent period, and tight and solid stacking structure during the interrupted flow period. (2) The components and structural characteristics of the extracellular polymers differed significantly between the influent and break-flow periods. The lack of substrate in the late stage of flow interruption prompted the microorganisms to transform the loose type EPS (LB-EPS) and its adsorbed nutrients to maintain their own activity and bacterial population, and at the same time, to adjust the proportion of protein components in the tight type EPS (TB-EPS) to construct a hydrophobic microenvironment suitable for microorganisms to aggregate; the results of three-dimensional fluorescence analysis showed that the proteins in the LB-EPS and the TB-EPS were mainly soluble and metabolic by-products of microorganisms. Three-dimensional fluorescence analysis showed that the proteins in LB-EPS and TB-EPS were mainly solubilized by-products of microbial metabolism, and the results of X-ray electron spectroscopy (XPS) showed that the hydrophobic groups and the bridging effect within the EPS promoted the formation of microbial aggregates. (3) Changes in the colony structure of denitrifying functional bacteria in the reactor induced nitrogen along and transformation pathways, the dominant bacteria in the oxygen supply layer (layer 1) near the influent area included Nitrospira, Zoogloea, the dominant functional bacteria in the oxygen supply layer (layer 5) near the aeration area included Nitrosotenuis, Dechloromonas, the non-aerobic parthenogenetic zone (layer 2) near the influent area had Acinetobacter, Thauera dominant functional bacteria, the non-aerobic parthenogenetic zone near the effluent zone (layer 6) contained dominant functional bacteria Nitrosomonas, Comamonas. The abundance of nitrifying bacteria was higher than that of denitrifying bacteria in the packing layers (layer 1 and 2) above the aeration area, while it was lower in the packing layers (layer 5 and 6) below the aeration area. The break-up period caused a decrease in microbial abundance, and the effect was particularly pronounced for functional nitrogen-removing bacteria such as Nitrospira and Dechloromonas. (4) The microbial EPS transformation and starvation stress response processes in the biotrickling filter were closely related to carbohydrate metabolism, energy metabolism, polysaccharide synthesis pathway, ABC transport, nucleotide metabolism and ribosomes. Macrogenomic sequencing analysis showed that the metabolism of glutaric acid and pyruvic acid of microorganisms was significantly enhanced during the flow interruption stage, which was manifested by a significant increase in the abundance of genes for NADH production and pyruvic acid synthesis. The abundance of genes in the metabolic pathway of protein transmembrane transport was significantly increased in the flow interruption stage, which enhanced the conversion and utilization of extracellular metabolites; the number of genes of NADH dehydrogenase and cytochrome c oxidase in the phosphorus cycle was up-regulated, which strengthened the process of ATP output, and provided energy for maintaining the metabolic activity of the microorganisms under the inhibition of the starvation-oxygen-rich environment in the late stage of the flow interruption stage; at the same time, the expression level of functional proteins of the ribosome, purine pyrimidine metabolism increased under the oxygen-rich and starvation At the same time, the expression level of functional proteins in ribosome and purine pyrimidine metabolism increased under the oxygen-rich-starvation environment, and the effect of enrichment of protein expression, energy metabolism, cofactor synthesis, and information transfer was obvious. |
参考文献: |
[2] 张冰, 杨海真. 农村混合生活污水排放特征及其处理工艺研究[J]. 四川环境, 2012, 31(4): 65-70. [4] 许凤刚, 周婷婷, 沈科. 填料生物滴滤池处理餐厨废水性能研究[J]. 环境科学与管理, 2013, 38(8): 122-126. [5] 卜风云, 闫海红, 郭红霞, 等. 农村生活污水磷回收及资源化利用路径探讨[J]. 农业资源与环境学报, 2024: 1-16. [6] 侯京卫, 范彬, 曲波, 等. 农村生活污水排放特征研究述评[J]. 安徽农业科学, 2012, 40(2): 964-967. [7] 刘晓慧. 我国农村生活污水排放现状初析[J]. 安徽农业科学, 2015, 43(23): 234-235, 238. [8] 廖日红, 顾华, 申颖洁, 等. 北京市农村生活污水排放现状调研与分析[J]. 中国给水排水, 2011, 27(2): 30-33. [9] 张鑫, 付永胜, 范兴建, 等. 农村生活污水排放规律及处理方法分析[J]. 广东农业科学, 2008(8): 139-142. [10] 荣懿. 村镇污水非连续流排放特性及生物强化处理技术研究[D]. 西安: 西安建筑科技大学, 2022. [14] 李培睿, 杨天佑, 李宗义, 等. 活性污泥凝絮体的形成过程研究[J]. 河南师范大学学报(自然科学版), 2007(1): 150-152. [16] 房平, 李雨娥, 魏东洋, 等. 污水处理过程中微生物群落多样性及其对环境因子响应的研究进展[J]. 微生物学通报, 2020, 47(9): 3004-3020. [17] 郑洁. 广西南丹县城镇污水处理技术的应用[J]. 农村科学实验, 2024(14): 48-50. [19] 王文琪, 李冬, 高鑫, 等. 不同好氧/缺氧时长联合分区排泥优化生活污水短程硝化反硝化除磷颗粒系统运行[J]. 环境科学, 2021, 42(9): 4406-4413. [21] 郝晓地, 杨振理, 于文波, 等. 污水处理过程N2O排放:过程机制与控制策略[J]. 环境科学, 2023, 44(2): 1163-1173. [22] 张亚平, 王海芹, 印杰, 等. 太湖流域农村生活污水处理技术模式调查和分析——以江苏省为例[J]. 农业资源与环境学报, 2017, 34(5): 483-491. [23] 张鼎强, 蔡天洲, 杨帆, 等. 改良SBR工艺处理分散式农村生活污水效能研究[J]. 工业水处理, 2023, 43(11): 167-172. [24] 侯帅帅. A2O处理农村生活污水的现状调研及优化工艺研究[D]. 上海: 上海师范大学, 2020. [25] 杨力恺, 李喆, 张立, 等. 江苏农村生活污水治理2种工艺实际处理效果对比分析[J]. 能源与环境, 2024(5): 108-110. [27] 唐佳佳, 孙捷, 陈晨, 等. 纯生物膜法在农村污水处理中的优势分析[J]. 农村经济与科技, 2023, 34(3): 40-42. [29] 任月华, 刘宝震, 马彬, 等. 新型生物膜法处理农村生活污水的研究进展[J]. 应用化工, 2024, 53(5): 1170-1174. [31] 曹锋锋. 曝气生物滤池对农村生活污水脱氮效能评价及机理分析[D]. 西安: 西安科技大学, 2021. [32] 张永乐. 曝气生物滤池处理农村污水的优化及评价[D]. 贵州大学, 2024. [33] 田军显. 多级跌水复氧生物接触氧化法处理农村污水的研究[D]. 郑州: 华北水利水电大学, 2023. [34] 侯祥东, 王洁宇, 刘爱国, 等. 移动床生物膜反应器-生物滤池脱氮除磷中试研究[J]. 山东农业大学学报(自然科学版), 2024, 55(1): 131-136. [35] 徐瑶瑶. 生态渗井户内灰水就地处理与资源化利用技术研究[D]. 西安建筑科技大学, 2021. [36] 国家统计局. 第七次全国人口普查公报(第七号)[EB]. 北京:国家统计局, 2021. [37] 鞠昌华, 张卫东, 朱琳, 等. 我国农村生活污水治理问题及对策研究[J]. 环境保护, 2016, 44(6): 49-52. [38] 中华人民共和国水利部. 2022年中国水资源公报[EB]. 北京:中华人民共和国水利部, 2023. [39] 马毅. 农村污水处理现状概述及对策研究[J]. 清洗世界, 2023, 39(11): 139-141. [41] 张健越, 刘世婷, 刘金凤, 等. 我国南方地区农村污水处理现状分析与对策研究——以浙江省和四川省为例[J]. 四川环境, 2025, 44(1): 69-75. [44] 李金玥. 农村生活污水处理装置剩余污泥就地处置及资源化利用实验研究[D]. 武汉: 湖北大学, 2024. [45] 宋雷. 农村生活污水分散式处理技术探析[J]. 黑龙江环境通报, 2025, 38(1): 137-139. [47] 田飞, 王文刚, 韩爱秋, 等. 基于生物滴滤池不同滤料的挂膜试验研究[C]. 中国环境科学学会环境工程分会, 2019: 167-169, 172. [50] 刘雪妮, 何连生, 姜登岭, 等. 生物滴滤池处理农村废水的研究进展[J]. 环境工程技术学报, 2017, 7(2): 194-200. [51] 袁震. 改进型生物滴滤池处理农家乐餐饮废水研究[D]. 安徽理工大学, 2015. [52] 张淼. 生物滴滤池一体化系统处理分散式农村生活灰水研究[D]. 中国地质大学(北京), 2023. [53] 李洋. 磁絮凝分离—生物滴滤组合工艺处理小城镇污水研究[D]. 哈尔滨工业大学, 2015. [54] 李江雯. 混凝滤布过滤—生物滤池组合工艺处理小城镇生活污水研究[D]. 哈尔滨工业大学, 2014. [55] 师晓春, 刘峰, 任雨森, 等. 滴滤法处理村镇生活污水研究[J]. 安徽农业科学, 2010, 38(25): 13979-13980. [56] 张国珍, 亢瑜, 武福平, 等. 一体化ABR-生物滴滤池系统处理农村生活污水[J]. 水处理技术, 2020, 46(11): 108-112. [57] 谢欣汝. 三种典型填料对生物滴滤池处理生活污水脱氮除磷作用的影响[D]. 西安: 西安建筑科技大学, 2019. [58] 王闪闪, 郭新超, 贾冬靖. 自然通风生物滴滤池的填料挂膜特性研究[J]. 环境污染与防治, 2014, 36(8): 59-63+68. [59] 陈蒙亮. 复合生物滴滤池处理生活污水的试验研究[D]. 中国地质大学(北京), 2013. [60] 李桂荣, 薛素勤, 方虎, 等. 生物滴滤池不同进水负荷处理生活污水试验研究[J]. 水处理技术, 2011, 37(11): 84-87. [61] 张文坤. 分层生物滴滤池生物膜特性研究[D]. 上海: 上海交通大学, 2013. [62] 张文宁. 水力负荷及填料对微动力生物滴滤池净水效果分析[J]. 水利技术监督, 2020(1): 42-44, 132. [63] 刘颍. 分层生物滴滤池处理生活污水强化脱氮除磷工艺优化研究[D]. 西安: 西安建筑科技大学, 2015. [65] 温沁雪, 施汉昌, 陈志强. 生物膜微环境和传质现象研究进展[J]. 环境污染治理技术与设备, 2006(6): 1-5. [67] 毛铮. 环境胁迫下好氧反硝化细菌的运动行为及其生理响应机制研究[D]. 重庆: 重庆大学, 2021. [77] 张铭, 蔡鹏, 吴一超, 等. 细菌胞外聚合物:基于土壤生态功能的视角[J]. 土壤学报, 2022, 59(2): 308-323. [79] 赵军, 徐高田, 秦哲, 等. 胞外聚合物EPS组成及对污泥特性的影响研究[J]. 安全与环境工程, 2008(1): 66-69, 73. [80] 孙明. 污泥中胞内和胞外聚合物的形成及对污泥性能的影响研究[D]. 哈尔滨: 哈尔滨工业大学, 2006. [81] 王文琪, 李冬, 高鑫, 等. 不同好氧/缺氧时长联合分区排泥优化生活污水短程硝化反硝化除磷颗粒系统运行[J]. 环境科学, 2021, 42(9): 4406-4413. [82] 李春艳, 谢珊珊, 王文文, 等. 干湿交替循环频率对生物膜特征及其微生物群落的影响[J]. 中国环境科学, 2023, 43(2): 9. [85] 马牧源, 崔丽娟, 张曼胤, 等. 白洋淀养鸭废水对生物膜生物量和胞外酶活性的影响[J]. 水资源保护, 2020, 36(1): 89-96. [87] 余宏刚. 污泥回流过程中缺氧处理对脱氮除磷的影响[D]. 西安: 西安建筑科技大学, 2017. [88] 陈滢, 彭永臻, 刘敏, 等. 营养物质对污泥沉降性能的影响及污泥膨胀的控制[J]. 环境科学, 2004(6): 54-58. [91] 魏复盛, 齐文启. 水和废水检测分析方法[M]. 北京: 中国环境科学出版社, 2002. [92] 顾超超, 郭彦海, 孙许超, 等. 曝气生物滤池生物膜胞外聚合物提取方法对比研究[J]. 东华大学学报(自然科学版), 2017, 43(5): 720-726. [94] 徐冲. 聚乙烯纳米塑料对生物除磷过程中胞内和胞外聚合物的影响和机制[D]. 安徽: 安徽建筑大学, 2024. [108]许炜怡, 黄凯文, 刘崇, 等. 高氮负荷下硫自养反硝化菌群的胞外聚合物和信号分子特征[J]. 中国环境科学, 2024, 44(8): 4314-4325. [122]郭璠. 植物碳源异养—硫自养协同反硝化强化人工湿地的脱氮效能和微生物分析[D]. 中国环境科学研究院, 2024. [127]贾永芳. 不同氮源及其浓度对微藻市政污水处理系统性能的影响研究[D]. 太原: 山西大学, 2024. [130]赵雪芳. 基于Lactiplantibacillus plantarum MC5全基因组序列的eps基因簇、产EPS能力及应用研究[D]. 兰州: 甘肃农业大学, 2023. [134]熊俊. 养猪废水菌藻体系及其对氮磷去除的过程机制研究[D]. 杭州: 浙江大学, 2024. [135]侯荣荣. DPR工艺对生活污水脱氮除磷的微生物作用机制研究[D]. 北京: 北京科技大学, 2024. [136]刘彤. 活性污泥系统溶解性微生物产物(SMPs)的形成与环境应激机制[D]. 西安: 西安理工大学, 2023. |
中图分类号: | X703 |
开放日期: | 2026-06-13 |