- 无标题文档
查看论文信息

论文中文题名:

 5G室内基站的超表面天线设计    

姓名:

 郝汉    

学号:

 19307205023    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085208    

学科名称:

 工学 - 工程 - 电子与通信工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 通信与信息工程学院    

专业:

 电子与通信工程    

研究方向:

 天线设计    

第一导师姓名:

 王树奇    

第一导师单位:

  西安科技大学    

论文提交日期:

 2022-06-22    

论文答辩日期:

 2022-06-09    

论文外文题名:

 Design of Matesurface Array Antenna for 5G Indoor Base Station    

论文中文关键词:

 超表面5G圆极化阵列天线    

论文外文关键词:

 metasurface ; 5G ; circular polarization ; array antenna    

论文中文摘要:

郝汉 9:50:25
随着人类社会日益增长的通信需求,研究人员将天线应用在各种各样的场景中,包括室外环境,城市地区和室内系统。因此,要满足复杂多变通信需求,需要使用不同功能的天线,特别是室内环境存在空间限制、多径效应和遮挡等问题。圆极化微带天线具有轻质量、低剖面、设计加工方便、抵抗多径效应等优点。因此,被研究人员广泛应用在卫星、射频、车载天线和移动通信等方面。它对多径效应造成的衰落损耗有很显著的效果。此外,圆极化天线不考虑接收天线相对于发射天线的方向,因此它适用于空间受限的室内无线应用方面。
针对单个天线增益过低的问题,设计工作在5G毫米波频段的微带阵列天线,并采用并联馈电网络的设计,阵元间的电流等幅同相。该阵列天线的阻抗带宽为24.9-25.6 GHz,在26 GHz处的最大增益为17 dBi,E面和H面的副瓣电平分别为-6.57 dB和-6.47 dB,半功率波瓣宽度分别16°和18°。该阵列天线具有较高的增益并且有满足工作需求的带宽,可应用于5G毫米波频段,但同时存在轴比带宽较窄的问题。
针对轴比带宽不足的问题,设计了超表面的紧凑型宽带CP天线阵列。该天线阵列是一组2×2的CP缝隙天线,通过在环形缝隙天线加入十字缝隙和采用SP馈电网络,极大地提升了阻抗带宽,通过加入超表面结构来实现电磁波的线圆转化。天线的尺寸为78×78×10.1mm3。天线的-10 dB带宽为3.18-6.2 GHz (64%),3dB AR带宽为3.94-5.24 GHz(28.32%)。同时,本文天线的波束宽度为60°,具有良好的辐射性能。该天线的工作带宽覆盖5G频段,可用于复杂场景下的5G频段通信。
针对天线辐射前后比和带宽的问题,设计了采用人工磁导体结构的顺序相位馈电宽缝阵列天线。介绍了天线的设计方法和作用原理,并在微波暗室中对天线实物进行了测试。首先,天线辐射单元的设计增加了轴比带宽,采用SP馈电网络来连接形成阵列,在天线下方放置人工磁导体结构,增加了天线正向的辐射,并且减小了天线空气层高度。实验结果表明,设计的天线达到了77.67% (2.74-6.22 GHz)的阻抗带宽,并且拥有65.16% 轴比宽带(3.00-5.90 GHz),天线的剖面高度为0.11 λ0。本章节设计了加载人工磁导体结

郝汉 9:50:39
构的顺序相位馈电宽带圆极化宽缝阵列天线,具有高增益,宽频带、低成本的优点,可用于空间受限的环境,如室内和密集建筑区域。
本文中所介绍的三种阵列天线主要应用在室内场景下,同时通过优化天线的辐射阵元、馈电网络、加载超表面的方式来提升天线性能。在设计天线方面也充分考虑到天线的实际应用价值,采用更低成本的加工方式的基板材料,最大化的提升天线性能。使天线在室内5G基站天线方面有更好的应用价值,实现信号覆盖的盲点补充。

 

论文外文摘要:

With the growing communication needs of human society, researchers have applied antennas in a variety of scenarios, including outdoor environments, urban areas, and indoor systems. In fact, in the case of the indoor environment, the electromagnetic signal propagation faces a great challenge, due to the external interference in the environment also has a requirement on the stability of wireless communication system, for the line polarization antenna is not able to meet the needs of the application. Circular polarized microstrip antenna have the advantages of light mass, low profile, easy design and processing, and resistance to the multipath effect. Therefore, it is widely used by researchers in satellite, RF, vehicle antenna, and mobile communication. It has a remarkable effect on the fading loss caused by the multipath effect. In addition, the circularly polarized antenna does not consider the direction of the receiving antenna relative to the transmitting antenna, so it is suitable for space-constrained indoor wireless applications.
A microstrip array antenna operating in the 5G millimeter band was designed to solve the low gain problem of a single antenna. The array antenna has an impedance bandwidth of 24.9-25.6 GHz, a maximum gain of 17 dBi at 26 GHz, SLL of -6.57 dB, and -6.47 dB in the E-plane and H-plane, respectively, and half-power flap widths of 16°and 18°, respectively. The array antenna has a high gain and a bandwidth to meet the working demand, which can be applied to a 5G millimeter-wave band, but there is also a problem of narrow axial ratio bandwidth.
The compact broadband circularly polarized (CP) antenna array with super surface is designed for the problem of insufficient axial ratio bandwidth. The antenna array is a set of 2×2 CP slot antennas, which greatly enhances the impedance bandwidth by adding cross slits to the ring slit antenna and employing an sequential phase (SP) feed network, and the line-circle conversion of electromagnetic waves by adding a metasurface structure. The dimension of the antenna is 78×78×10.1 mm3. The -10 dB bandwidth of the antenna is 3.18-6.2 GHz with the relative bandwidth of 64%, and the 3 dB axial ratio (AR) bandwidth is 3.94-5.24 GHz with the relative bandwidth of 28.32%. Meanwhile, the antenna in this paper has a beamwidth of 60° with good radiation performance (peak gain is 6.2 dBi). The operating bandwidth of the antenna covers the 5G band, which can be used for 5G communication in complex scenarios.
The SP-fed wide slot array antenna with artificial magnetic conductor (AMC) structure is designed for the problems of antenna radiation front-to-back ratio and bandwidth. The design method and the principle of the antenna are introduced, and the antenna is simulated and tested in a microwave anechoic chamber. Firstly, the antenna radiation unit is designed to increase the axial ratio bandwidth, and the SP-fed network is used to connect to form the array. Secondly, the AMC structure enhances the radiation performance of the antenna in the +z direction and reduces the antenna profile at the same time. The experimental results show that the designed antenna achieves 77.67% (2.74-6.22 GHz) impedance bandwidth and has 65.16% axial ratio bandwidth (3.00-5.90 GHz) with a profile height of 0.11 λ0. Our designed SP-fed broadband circularly polarized wide-slot array antenna loading with AMC structure has the advantages of high gain, wide bandwidth, low cost, and can be used for space-constrained applications. It has the advantages in space-constrained environments, such as indoor and dense building areas.
The three array antennas introduced are mainly used in indoor scenarios, while continuously optimizing the antenna's radiation array elements, feed network, and loading super surface to improve the antenna performance so that the designed antenna impedance and axial ratio bandwidth and gain have been significantly improved. The design of the antenna also fully considers the practical application value of the antenna, adopt a lower cost processing method of substrate material, and maximizes the performance of the antenna. So that the antenna has better application value in indoor 5G base station antenna and realizes the blind spot supplement of signal coverage.

参考文献:

[1] Chen Z, Song W, Wu G, et al. Circular Polarized 3-D-Printed Dielectric Loaded Antenna Using Inset Waveguide-to-Dielectric Transition for 5G Millimeter-Wave Application[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(11): 1929-1932.

[2] Li Y, Zhao Z, Tang Z, et al. Differentially Fed, Dual-Band Dual-Polarized Filtering Antenna With High Selectivity for 5G Sub-6 GHz Base Station Applications[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(4): 3231-3236.

[3] Serghiou D, Khalily M, Singh V, et al. Sub-6 GHz Dual-Band 8×8 MIMO Antenna for 5G Smartphones[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(9): 1546-1550.

[4] Wang Z, Liang T, Dong Y. Metamaterial-based, compact, wide beam-width circularly polarized antenna for 5G indoor application[J]. Microwave and Optical Technology Letters, 2021, 63(8): 2171-2178.

[5] 李波, 李荣强, 刘俐君. 应用于智能交通系统的小型化圆极化微带天线[J]. 微波学报, 2019, 35(04): 76-80.

[7] 韩国栋, 陈侃, 袁家德. 应用于北斗导航终端的小型圆极化微带天线[J]. 现代雷达, 2017, 39(12): 64-66.

[8] 丁丁, 龚克. 圆极化波室内传播特性研究[J]. 电波科学学报, 1999, (03): 304-307.

[9] Li A, Shreya S, Dan S. Metasurfaces and their applications[J]. Nanophotonics, 2018, 7(6): 989-1011.

[10] Lam K, Luk K, Kai F L, et al. Small Circularly Polarized U-Slot Wideband Patch Antenna[J]. IEEE Antennas & Wireless Propagation Letters, 2011, 10: 87-90.

[11] Li W, Liu B, Zhao H. The U-Shaped Structure in Dual-Band Circularly Polarized Slot Antenna Design[J]. IEEE Antennas & Wireless Propagation Letters, 2014, 13: 447-450.

[12] Raval F, Kosta Y P, Joshi H. Reduced size patch antenna using complementary split ring resonator as defected ground plane[J]. AEU-International Journal of Electronics and Communications, 2015, 69(8):1126-1133.

[13] 陈峤羽, 张金栋, 吴文. 一种单层双频双圆极化微带天线的设计[J]. 微波学报, 2015, 31(S2): 87-91.

[14] Yang X, Yuan J. Dual‐band and dual‐circularly polarized microstrip antenna with low elevation gain improvement for CNSS applications[J]. Microwave & Optical Technology Letters, 2016, 58(5): 1016-1022.

[15] 武哲, 杨林, 栗曦. 宽带圆极化微带缝隙天线的设计[J]. 微波学报, 2018(A01): 175-177.

[16] Cao R, Yu S. Wideband Compact CPW-Fed Circularly Polarized Antenna for Universal UHF RFID Reader[J]. IEEE Transactions on Antennas & Propagation, 2015, 63(9): 4148-4151.

[17] Felegari N, Nourinia J, Ghobadi C, et al. Broadband CPW-Fed Circularly Polarized Square Slot Antenna With Three Inverted-L-Shape Grounded Strips[J]. IEEE Antennas & Wireless Propagation Letters, 2011, 10: 274-277.

[18] Pourahmadazar J, Ghobadi C, Nourinia J, et al. Broadband CPW-Fed Circularly Polarized Square Slot Antenna With Inverted-L Strips for UWB Applications[J]. IEEE Antennas and Wireless Propagation Letters, 2011, 10: 369-372.

[19] 李霞, 胡卫东, 孙浩, 等. 一种V波段微带串馈阵列天线的设计[J]. 微波学报, 2018(A02): 384-386.

[20] Maharjan J, Choi D Y. Four-Element Microstrip Patch Array Antenna with Corporate-Series Feed Network for 5G Communication[J]. International Journal of Antennas and Propagation, 2020, 2020:1-12.

[21] Jung Y, Chi J, Chang W. Low-Cost -Band Patch Array Antenna for High-Sensitivity EM Sensor[J]. IEEE Antennas & Wireless Propagation Letters, 2010, 9(1): 982-985.

[22] Thenmozhi, K., et al. Simulation of microstrip array antenna for Ka - Band applications. in International Conference on Electronics and Communication System (ICECS -2014). 2014:

[23] 郝宏刚, 周小川. 一种新型混合馈电24GHz车载雷达阵列天线设计[J]. 微波学报, 2018, 34(3): 48-51.

[24] 高飞龙, 冯菊, 廖成等. 24GHz平面宽波束阵列天线设计[J]. 电子测量技术, 2019, 42(01): 112-115.

[24] 王绍龙,王伟. 24GHz小型化低副瓣微带天线阵设计[J].微波学报, 2014, 30( S) : 302-304.

[26] Hall P. S. Application of sequential feeding to wide bandwidth, circularly polarised microstrip patch arrays. IEE Proceedings, 1989. 136(5): 390-398.

[27] Deng C, Li Y, Zhang Z, et al. A Wideband Sequential-Phase Fed Circularly Polarized Patch Array[J]. IEEE Transactions on Antennas & Propagation, 2014, 62(7): 3890-3893.

[28] Yang W, Zhou J, Yu Z, et al. Bandwidth- and Gain-Enhanced Circularly Polarized Antenna Array Using Sequential Phase Feed[J]. IEEE Antennas & Wireless Propagation Letters, 2014, 13(13): 1215-1218.

[29] Li Y, Zhang Z, Feng Z. A Sequential-Phase Feed Using a Circularly Polarized Shorted Loop Structure[J]. IEEE Transactions on Antennas & Propagation, 2013, 61(3): 1443-1447.

[30] Mohammadi-Asl S, Nourinia J, Ch. G, et al. Targeting Wideband Circular Polarization: An Efficient 2×2 Sequentially-Phase-Fed Rotated Array Antenna[J]. Radioengineering, 2018, 27(1): 79-84.

[31] Wang, L, Zhu Z, En Y. Performance Enhancement of Broadband Circularly Polarized Slot-Microstrip Antenna Using Parasitic Elements. IEEE Antennas and Wireless Propagation Letters, 2021. 20(12): 2255-2259.

[32] Ding K, Gao C, Yu T, et al. Gain-Improved Broadband Circularly Polarized Antenna Array With Parasitic Patches[J]. IEEE Antennas & Wireless Propagation Letters, 2017, (16): 1468-1471.

[33] Su W, Li J, Liu R. A compact double‐layer wideband circularly polarized microstrip antenna with parasitic elements[J]. International Journal of RF and Microwave Computer‐Aided Engineerin, 2021, 31(1): 22471.

[34] Liu W, Cao Z, Wang Z. A compact wideband circularly polarized antenna with two pairs of driven patch arrays[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2020, 30(11): 22428.

[35] Asrin P, Hosein R, Pejman M. Wide-band circularly polarised antenna array using sequential phase feed structure and reinforced square radiating patch element[J]. IET Microwaves Antennas & Propagation, 2018, 12(8): 1395-1399.

[36] Rafii V, Nourinia J, Ghobadi C, et al. Broadband Circularly Polarized Slot Antenna Array Using Sequentially Rotated Technique for C-Band Applications[J]. IEEE Antennas & Wireless Propagation Letters, 2013, 12(1):128-131.

[37] Chen A, Zhang Y, Chen Z, et al. A Ka-Band High-Gain Circularly Polarized Microstrip Antenna Array[J]. IEEE Antennas & Wireless Propagation Letters, 2010, 9(1):1115-1118.

[38] Pan C, Chen H. Circularly polarized sequentially rotated antenna array for dual‐band WLAN applications[J]. 2021, 31(5): 22590.

[39] Deng C, Li Y, Zhang Z, et al. A Wideband Isotropic Radiated Planar Antenna Using Sequential Rotated L-Shaped Monopoles[J]. IEEE Transactions on Antennas & Propagation, 2014, 62(3): 1461-1464.

[40] Maddio S. A Compact Wideband Circularly Polarized Antenna Array for -band Applications[J]. IEEE Antennas & Wireless Propagation Letters, 2015, 14:1081-1084.

[41] Ta S X, Park I. Compact Wideband Sequential-Phase Feed for Sequentially Rotated Antenna Arrays[J]. IEEE Antennas and Wireless Propagation Letters, 2017 16: 661-664.

[42] D J. Bisharat, Liao S, Quan X. Wideband Unidirectional Circularly Polarized Antenna with L-shaped Radiator Structure[J]. IEEE Antennas & Wireless Propagation Letters, 2017, 16(1): 12-15.

[43] Hu W, Feng T, Hu Z, et al. Low rofile wideband circularly polarized asymmetric dipole antenna with artificial magnetic conductor[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2021. 31(6): 22628.

[44] Zheng Q, Guo C, Ding J, et al. Low-Profile Circularly Polarized Array With Gain Enhancement and RCS Reduction Using Polarization Conversion EBG Structures[J]. IEEE Transactions on Antennas and Propagation, 2019, 68(3): 2440-2445.

[45] Ta S X, Park I. Planar wideband circularly polarized metasurface-based antenna array[J]. Journal of Electromagnetic Waves and Applications, 2016, 30(12): 1620-1630.

[46] Chung K L, Chaimool S, Zhang C. Wideband subwavelength-profile circularly polarised array antenna using anisotropic metasurface[J]. Electronics Letters, 2015, 51(18): 1403-1405.

[47] Li K, Ying L, Jia Y, et al. A Circularly Polarized High-Gain Antenna With Low RCS Over a Wideband Using Chessboard Polarization Conversion Metasurfaces[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(8): 4288-4292.

[48] Chen Q, Zhang G, He C, et al. Wideband and high-gain circularly-polarized L-shaped slot antenna array using metamaterial[J]. International Journal of Microwave and Wireless Technologies, 2021, 13(4): 359-364.

[49] Mu Z, Ma J, Zhao Y, et al. Wideband, low radar cross section circularly polarized array antenna based on metasurface and sequential phase feed[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2021. 31(7): 22639.

[50] Tran H, Park I. Wideband circularly polarized low-profile antenna using artificial magnetic conductor[J]. Journal of Electromagnetic Waves & Applications, 2016, 30(7): 889-897.

[51] Feng D, Zhai H, Xi L, et al. A Broadband Low-profile Circular Polarized Antenna on an AMC Reflector[J]. IEEE Antennas & Wireless Propagation Letters, 2017, 16: 2840-2843.

[52] Cao Y, Zhang X, Mo T. Low-Profile Conical-Pattern Slot Antenna With Wideband Performance Using Artificial Magnetic Conductors[J]. IEEE Transactions on Antennas & Propagation, 2018, 66(5): 2210-2218.

[53] Wei L, Chen S, Ziolkowski R, et al. Reconfigurable, Wideband, Low-Profile, Circularly Polarized Antenna and Array Enabled by an Artificial Magnetic Conductor Ground[J]. IEEE Transactions on Antennas & Propagation, 2018, 66(3): 1564-1569.

[54] Xu R, Gao S, Liu J, et al. Analysis and Design of Ultra-Wideband Circularly Polarized Antenna and Array[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(12): 7842-7853.

[55] Ta S X, Park I. Compact Wideband Circularly Polarized Patch Antenna Array Using Metasurface[J]. IEEE Antennas & Wireless Propagation Letters, 2017, 16: 1932-1936.

[56] Zhao Z, Zhang H. A wide-band circularly polarized antenna array using a sequential phase feed structure applied to 5G-band[J]. Journal of Electromagnetic Waves and Applications, 2021, 35(1): 2141-2152.

[57] Rui J, Kun W. A Broadband Circularly Polarized Crossed-Dipole Antenna[J]. IEEE Transactions on Antennas & Propagation 2016, 64(10): 4509-4513.

[58] Feng C, Zhang F. A low-cost broadband circularly polarized antenna with integrated feeding network[C]. IEEE MTT-S International Wireless Symposium (IWS). IEEE, 2018. 4800851.

[59] Jiang X, Zhang Z, Li Y, et al. A Low-Cost Wideband Circularly Polarized Slot Array With Integrated Feeding Network and Reduced Height[J]. IEEE Antennas & Wireless Propagation Letters 15: 222-225.

[60] 钟顺时. 微带天线理论与应用[M]. 西安电子科技大学出版社: 1991.

[61] 尹静. 微带天线宽频带技术研究[D]. 北京交通大学.

[62] 商锋. 用于卫星定位系统的矩形圆极化微带天线的研究[J]. 西安邮电学院学报, 2008.

[63] Mak K, Lai H, Luk K, et al. Polarization Reconfigurable Circular Patch Antenna With a C-Shaped[J]. IEEE Transactions on Antennas & Propagation, 2016, 65(3):1388-1392.

[64] 汪茂光, 吕善伟, 刘瑞祥. 阵列天线分析与综合[M]. 电子科技大学出版社: 1989.

中图分类号:

 TN821    

开放日期:

 2022-06-22    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式