- 无标题文档
查看论文信息

论文中文题名:

     

姓名:

 段优优    

学号:

 20205224069    

保密级别:

     

论文语种:

 chi    

学科代码:

 085500    

学科名称:

  -     

学生类型:

     

学位级别:

     

学位年度:

 2024    

培养单位:

 西    

院系:

 机械工程学院    

专业:

 机械    

研究方向:

     

第一导师姓名:

 马宏伟    

第一导师单位:

 西安科技大学    

第二导师姓名:

 赵友军    

论文提交日期:

 2024-06-17    

论文答辩日期:

 2024-06-06    

论文外文题名:

 Research on Intelligent Monorail Crane Material Transportation System in Coal Mine Roadway    

论文中文关键词:

 煤矿掘进巷道 ; 单轨吊 ; 组合定位 ; 速度控制 ; 电池管理    

论文外文关键词:

 Mine tunnel excavation ; Monorail crane ; Combined positioning ; Velocity control ; Battery management    

论文中文摘要:
<p></p> <p>&ldquo;&rdquo;</p> <p>&ldquo;+&rdquo;</p> <p>&ldquo;+&rdquo;/&ldquo;+&rdquo;/</p> <p>PID</p> <p></p>
论文外文摘要:
<p>As one of the auxiliary transportation equipment of coal mine, monorail crane undertakes the transportation of materials, personnel and equipment in the coal mining face. In recent years, with the improvement of the intelligence level of the rapid tunneling system, higher requirements have been put forward for the safety and efficiency of the auxiliary transportation system. Due to the small space and many equipment in the excavation face, it is difficult for the traditional auxiliary transportation equipment to transport materials to the front end of the excavation work in close proximity, which affects the roadway excavation efficiency.</p> <p>In view of the problems of discontinuity, large number of operators and low level of intelligence in the material transportation of the &quot;shield coal mine roadway excavation robot system&quot; developed by the team, an overall scheme of the intelligent monorail crane material transportation system for coal mine roadway was proposed, and the key technologies such as precise positioning, adaptive speed control and efficient battery management of the monorail crane were studied.</p> <p>In order to solve the problem that the monorail crane in the roadway cannot be accurately positioned, a global positioning scheme for monorail crane driving was proposed, a combined positioning model of &quot;strapdown inertial navigation + odometer&quot; was established, the odometer short-range high-precision positioning data was fused into the inertial navigation positioning data, and an improved adaptive Kalman filtering algorithm was proposed to realize the global high-precision positioning of the monorail crane by taking the difference between the position estimation of inertial navigation and odometer as the observation measurement.</p> <p>In order to solve the problem that the accuracy of &quot;strapdown inertial navigation + odometer&quot; becomes low during long-distance positioning and the position of loading/unloading point cannot be accurately detected, a positioning scheme of monorail crane end in tunneling roadway is proposed, and a combined positioning model of &quot;binocular vision + laser target&quot; is established, through the installation of laser targets at the loading/unloading points, the actual position of the laser target is obtained by binocular vision, an image segmentation algorithm to improve regional growth is proposed, and the center point coordinates of the laser spot image are solved by circular fitting method. Triangulation is used to obtain the actual distance of the laser target to achieve high-precision positioning of the monorail crane end.</p> <p>In view of the problem that the running speed of the traditional monorail crane is constant and it is difficult to adapt to adjust according to different working conditions, an adaptive speed control method based on slope and load is proposed, the dynamic model and speed control model of the monorail crane are established, the relationship between the driving force and acceleration of the monorail crane under different working conditions is studied, and the fuzzy PID vector control method of permanent magnet synchronous motor is proposed to adaptively set the running speed of the monorail crane and realize the intelligent speed regulation of the monorail crane.</p> <p>In view of the safety of monorail crane charging in the tunneling roadway, a side-mounted explosion-proof charging scheme for monorail crane was proposed, and an explosion-proof charging device was designed. In order to solve the problem of balance management during the charging of the monorail crane, a passive balancing control method of the power battery pack was proposed to ensure the safe charging and long battery life of the monorail crane.</p>
参考文献:

[1]王茂森,鲍久圣,章全利,等.煤矿井下单轨吊无人驾驶目标识别算法与轨道接缝检测方法[J/OL].煤炭学报,1-15[2024-04-30].

[2]吕玉寒,张牧野,鲍久圣,等.基于UKF滤波加权C-T融合算法的无人驾驶单轨吊双标签UWB定位[J/OL].煤炭科学技术,1-14[2024-04-30].

[3]马宏伟,段优优,薛旭升,等.煤矿智能单轨吊研究进展与关键技术[J].工矿自动化,2023, 49(06):57-67.

[4]王国法,任怀伟,赵国瑞,等.煤矿智能化十大“痛点”解析及对策[J].工矿自动化,2021,47 (06):1-11.

[5]韩鹏海.煤矿井下辅助运输系统的优化[J].中国石油和化工标准与质量,2019,39(13): 132-133.

[6]袁晓明,郝明锐.煤矿辅助运输机器人关键技术研究[J].工矿自动化,2020,46(08):8-14.

[7]杨健健,张强,王超,等.煤矿掘进机的机器人化研究现状与发展[J].煤炭学报,2020,45 (08):2995-3005.

[8]谭章禄,吴琦.智慧矿山理论与关键技术探析[J].中国煤炭,2019,45(10):30-40.

[9]葛世荣.煤矿机器人现状及发展方向[J].中国煤炭,2019,45(07):18-27.

[10]李梅,杨帅伟,孙振明,等.智慧矿山框架与发展前景研究[J].煤炭科学技术,2017,45(01): 121-128+ 134.

[11]薛力猛,马宏伟,王川伟,等.护盾式智能掘进系统截割机器人截割能力研究[J].西安科技大学学报, 2023, 43 (04): 779-786.

[12]马宏伟,王世斌,毛清华,等.煤矿巷道智能掘进关键共性技术 [J].煤炭学报, 2021, 46 (01): 310-320.

[13]马宏伟,王鹏,张旭辉,等.煤矿巷道智能掘进机器人系统关键技术研究 [J]. 西安科技大学学报, 2020, 40 (05): 751-759.

[14]Kawauchi K,Miyaki T,Rekimoto J.Directional Beaconing:A Robust WiFi Positioning Method Using Angle-of-Emission Information[C]// Location and Context Awareness, 4th International Symposium, LoCA 2009, Tokyo, Japan, May 7-8, 2009, Proceedings. DBLP, 2009.

[15]Aca B,Pf B ,Pmt B.UWB-based sensor networks for localization in mining environments[J]. Ad Hoc Networks, 2009,7( 5):987-1000.

[16]Bulusu N,Heidemann J.GPS-less low-cost outdoor localization for very small devices[J].IEEE personal communications, 2000, 7(5):P.28-34.

[17]杨勇,王方杰,周思维.基于RFID和Zig Bee技术的矿井机车定位系统设计[J].煤炭技术,2017,36(1): 245-247.

[18]郭芳萍.基于CAN总线的KJ150型矿井人员车辆综合跟踪监测系统的应用[J].煤,2006,15(5): 41-43.

[19]何学文,曹清梅,樊宽刚.基于Zig Bee的钨矿井下矿车定位监测系统研究与设计[J].金属矿山,2015, 44(2):127-132.

[20]孙继平,李晨鑫.基于WiFi和计时误差抑制的TOA煤矿井下目标定位方法[J].煤炭学报,2014, 39(01):192-197.

[21]张麦玲,吴延昌.基于超宽带的矿井机车定位系统设计[J].煤矿机械,2015,36(8):21-23.

[22]王国法.煤矿智能化最新技术进展与问题探讨[J].煤炭科学技术,2022,50(01):1-27.

[23]王玮,吕攀,王琪,等.惯性导航下煤矿移动车辆动态定位研究[J].煤炭工程,2016,48(10): 138-141.

[24]冯迭腾.一种矿山有轨电机车无人自动驾驶系统[J].采矿技术,2019,19(02):114-117.

[25]郭梁,宋建成,宁振兵,等.基于捷联惯性导航的矿用单轨吊机车定位算法[J].工矿自动化,2021, 47(01):49-54+86.

[26]郭梁,宋建成,宁振兵,等.矿用单轨吊机车定位系统开发[J].煤矿机械,2021,42(09):177- 179.

[27]朱涵.无位置传感器永磁同步电机的制动控制系统研究[D].长春:吉林大学,2020.

[28]崔弘,李艳东.永磁同步电机控制策略综述[J]. 防爆电机, 2021, 56(3): 3-7.

[29]Sakunthala, R. Kiranmayi, P. N. Mandadi. A review on speed control of permanent magnet synchronous motor drive using different control techniques[C]. 2018 International Conference on Power, Energy, Control and Transmission Systems. 2018, 97-102.

[30]胡文婷.基于自抗扰的永磁同步电机调速控制策略研究[D].西安:西安工业大学,2023.

[31]胡恒嘉.永磁同步电机驱动器设计与控制算法研究[D].北京:北方工业大学,2023.

[32]吕从鑫,汪波,陈静波,等.永磁同步电机控制策略综述与展望[J].电气传动自动化, 2022, 44(4): 1-10.

[33]宋娟娟,王尹琛,吴竟启,等.永磁同步电机控制算法综述[J].汽车文摘,2022(5): 33-43.

[34]吕英俊,黄旭,苏涛,等.感应电动机无速度传感器矢量控制系统极低速性能研究[J].中国电机工程学报, 2020, 40(04): 1320-1328+1423.

[35]涂志文,蒋成明,涂群章,等.电动车用永磁同步电机无传感器控制技术综述[J].微电机, 2022, 55(6): 99-105.

[36]秦玉贵.车用永磁同步电机模糊直接转矩控制研究[D].西安:长安大学,2021.

[37]AbdEMAW, AdelMM,Taha M,et al. PSO technique applied to sensorless field-oriented control PMSM drive with discretized RL-fractional integral[J]. Alexandria Engineering Journal, 2021, 60(4): 112-118.

[38]杨贵杰,孙力,崔乃政,等.空间矢量脉宽调制方法的研究[J].中国电机工程学报,2001, 21(5):80-84.

[39]熊健,康勇,张凯,等.电压空间矢量调制与常规SPWM的比较研究[J].电力电子技术, 1999,33(1): 25-28.

[40]刘亚.永磁同步电机线性自抗扰控制研究[D].株洲:湖南工业大学, 2020.

[41]Wang S , Li C , Che C, et al. Direct Torque Control for 2L-VSI PMSM Using Switching Instant Table[J]. IEEE Transactions on Industrial Electronics, 2018,65(12):9410-9420.

[42]杨定成,许俊.基于低分辨率位置传感器的永磁同步电动机转矩脉动控制[J].中国工程机械学报,2019,17(04):316-322.

[43]肖萌,史婷娜,王志强,等.基于多级滞环控制器的永磁同步电机直接转矩控制[J].中国电机工程学报,2017,37(14):4201-4211+4300.

[44]LIU Jinkun,SUN Fuchun,刘金琨,等.Research and development on theory and algorithms of sliding mode control 滑模变结构控制理论及其算法研究与进展[J]. 控制理论与应用, 2007, 24(3):407-418.

[45]张海刚,胡添添,王步来,等.一种改进的 PMSM 滑模变结构控制策略研究[J].电气传动, 2019, 49(10): 13-15.

[46]刘牮,杨鹏,马文良,等.基于模糊切换增益调节的PMSM滑膜控制算法的仿真[J].电子测量技术,2019,42(19):106-110.

[47]Gong Chao, Hu Yihua, Gao Jinqiu, et al. An Improved Delay-Suppressed Sliding-Mode Observer for Sensorless Vector-Controlled PMSM[J]. IEEE Transactions on Industrial Electronics, 2020, 67(7): 5913-5923.

[48]Wang Qi, Yu Haitao, Wang Min, et al. An Improved Sliding Mode Control Using Disturbance Torque Observer for Permanent Magnet Synchronous Motor[J]. IEEE Access, 2019, 7: 36691-36701.

[49]孙虎,华云松.基于RBF神经网络补偿的滑膜控制[J].农业装备与车辆工程,2018,56 (09):45-48.

[50]莫理莉.基于滑模变结构的表面式永磁同步电机速度与位置控制[D].广州:华南理工大学,2020.

[51]卢达.永磁同步电机调速系统控制策略研究[D].杭州:浙江大学,2013.

[52]徐艳平,王极兵,张保程,等.永磁同步电机三矢量模型预测电流控制[J].电工技术学报,2018,33(05): 980-988.

[53]夏长亮,仇旭东,王志强,等.基于矢量作用时间的新型预测转矩控制[J].中国电机工程学报,2016, 36(11):3045-3053.

[54]Stumper J F , Hagenmeyer V , Kuehl S , et al. Deadbeat Control for Electrical Drives:A Robust and Performant Design Based on Differential Flatness[J]. IEEE Transactions on Power Electronics, 2015, 30(8): 4585-4596.

[55]杨博涵.基于模糊PI的永磁同步电机伺服控制系统研究[D].大连:大连海事大学,2019.

[56]杜常清,曾红霞,武冬梅,等.永磁同步电机控制策略对比仿真研究[J].数字制造科学,2018(1).

[57]徐轶凡.基于DSP的交流永磁同步电机伺服系统设计[D].青岛:青岛理工大学,2016.

[58]芮骐骅,赵亮,王磊,等.矿用大容量磷酸铁锂电池管理系统设计[J].工矿自动化,2014,40(02):5-7.

[59]李博.矿用车载型锂离子电源管理系统设计[J].金属矿山,2014,(05):134-137.

[60]李博.矿用锂离子电池组均衡管理系统研究[J].自动化与仪器仪表,2014(07): 20-21+24.

[61]张文山,张全柱,邓永红.基于ARM的矿用动力电池管理系统研究[J].华北科技学院学报,2017, 14(05):40-45.

[62]李学哲,张有东,李孝平,等.基于Zig bee-GSM技术的矿用锂电池管理系统研究[J].电源技术,2017,41(05):714-716.

[63]李学哲,刘汉武,刘少海,等.矿用动力锂电池组均衡管理策略及系统研究[J].电源技术,2017, 41(06):849-851.

[64]王亮,张亚,罗双,等.矿用单轨吊磷酸铁锂电池组复合式分层均衡电路[J].工矿自动化,2020, 46(01):100-104.

[65]常凯,刘志更,袁晓明,等.煤矿辅助运输系统智能化现状分析及框架设计研究[J].工矿自动化, 2022, 48 (06): 27-35.

[66]王旭.煤矿井下高速单轨吊分布式混合动力系统设计及控制策略研究[D].徐州:中国矿业大学, 2022.

[67]易国晶.单轨吊机车在盘江矿井中的应用 [J]. 煤炭工程, 2020, 52 (07): 88-92.

[68]陈羽.大型单轨吊驱动部设计分析[D].徐州:中国矿业大学, 2020.

[69]马宏伟,杨金科,毛清华,等.煤矿护盾式掘进机器人系统精确定位研究 [J].工矿自动化, 2022, 48 (03): 63-70.

[70]石金龙,马宏伟,毛清华,等. “惯导+里程计”的采煤机定位方法研究 [J]. 煤炭工程, 2021, 53 (10): 143-147.

[71]吴淼,沈阳,吉晓冬,等. 悬臂式掘进机行走轨迹及偏差感知方法 [J]. 煤炭学报, 2021, 46 (07): 2046-2056.

[72]李明锋,刘用.基于5G+UWB和惯导技术的井下人员定位系统 [J]. 工矿自动化, 2024, 50 (01): 25-34.

[73]吴叶丽,行鸿彦,侯天浩,等. 基于改进自适应扩展卡尔曼滤波的高精度姿态解算 [J]. 探测与控制学报, 2023, 45 (06): 69-76.

[74]张旭辉,陈鑫,杨文娟,等.基于单激光束信息的掘锚装备视觉定位方法研究 [J]. 煤炭科学技术, 2024, 52 (01): 311-322.

[75]贾少毅.基于双目立体视觉的综采工作面目标位置信息测量[J].智能矿山,2023, 4 (05):72-75.

[76]万科,黎荆梅,韩启金,等. “句芒号”激光光斑质心提取方法与稳定性分析 [J]. 光学学报, 2024, 44 (06): 370-381.

[77]赵鹏飞,马健,郭海利,等. 基于中心定位算法的激光光斑检测系统研究 [J]. 电子设计工程, 2023, 31 (06): 6-9+14.

[78]高万兵.锂电池系统充电技术优化现状[J].客车技术与研究, 2023, 45 (05): 14-18.

[79]杨俊伟.煤矿井下可充电无线传感网络充电策略研究[D].徐州:中国矿业大学, 2020.

中图分类号:

 TD524    

开放日期:

 2024-06-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式