论文中文题名: | 土质影响下压实黄土剪切特性与波速响应研究 |
姓名: | |
学号: | 22209226119 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085700 |
学科名称: | 工学 - 资源与环境 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2025 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 岩土物理力学特征 |
第一导师姓名: | |
第一导师单位: | |
第二导师姓名: | |
论文提交日期: | 2025-06-11 |
论文答辩日期: | 2025-06-04 |
论文外文题名: | Study on Shear Characteristics and Wave Velocity Response of Compacted Loess under Soil Influence |
论文中文关键词: | |
论文外文关键词: | Longitudinal wave velocity ; Shear strength ; Loess ; Correlation analysis ; Model Updating |
论文中文摘要: |
随着我国基础设施建设脚步的加快,黄土地区的工程建设中由于土质影响导致的工程地质问题愈发频繁。泾阳县地处黄土高原南部的黄土地区,大型工程建设频繁、密集,由于该处台塬厚度大,纵断面上孔隙比变化大,水盐迁移路径复杂,导致区域地质灾害频发。本研究以泾阳南塬Q2黄土为研究对象,通过纵波波速测定试验、三轴剪切试验和理论分析,查明不同干密度、含水率、预制节理倾角条件下波速与抗剪强度及参数的变化规律,厘清各因素对波速和抗剪强度及参数的影响权重,建立抗剪强度参数与波速的定量关系,为黄土地区工程建设提供一定的参考意义。主要研究成果如下: (1)纵波波速测定试验结果表明,含水率对波速影响最大,随着含水率的增大,波速逐渐降低;干密度次之,随着干密度的增大,波速逐渐增大;预制节理倾角影响呈非线性变化,随着节理倾角的增大,波速先减小后增大,预制节理倾角为45°时波速最小; (2)三轴剪切试验结果表明,随着干密度的增大,土颗粒间接触面积增大,试样结构性强度提升,试样的抗剪强度及参数逐渐增大,干密度对抗剪强度和黏聚力的影响最大;随着含水率的增大,土颗粒间相互摩擦力减小,剪应力作用下容易发生滑动,试样的抗剪强度及参数逐渐减小,含水率对内摩擦角的影响最大;随着预制节理倾角的增大,试样的抗剪强度及参数先减小后增大。土颗粒更容易沿着节理面发生滑动,原本颗粒间稳定状态受到影响,节理倾角超过45°后,土颗粒结构在垂直方向上相对稳定,摩擦力和结构性强度提升,抗剪强度、黏聚力和内摩擦角逐渐增大; (3)随着含水率增大,颗粒表面的水膜逐渐增厚,小孔隙内的气体被排出,水的占比提高,此时传播介质为固-液-气三种,同时胶结物质吸水溶胀,传播环境逐渐复杂,纵波能量损耗增大,波速下降。同时根据纵波在弹性介质中的传播速度公式得知,波速逐渐减小;干密度增大使颗粒排列愈发紧密,孔隙尺寸减小,颗粒间接触面积逐渐增大,提供更多的固-固传播通道,减少了能量损耗,波速逐渐增大;预制节理倾角增大,节理面与波的传播方向形成一定角度,此时节理面的闭合程度变差,试样内部结构相对松散,折射和反射现象更加明显,纵波能量损耗增大,波速减小。倾角为45°时试样的完整性最差,波速最小。倾角为90°时,纵波传播方向与节理面平行,此时节理面对纵波传播的影响最小,波速最大; (4)利用纵波波速测定试验和三轴剪切试验结果,采用回归分析方法确定了波速与抗剪强度参数之间的关系式;以Brutsaert土壤声波传输理论模型为基础,引入干密度和含水率作为修正参数,建立纵波计算修正模型,带入数据验证发现模型效果良好。最后通过带入含水率、干密度与抗剪强度参数回归公式,得到以纵波计算修正模型为基础的波速-抗剪强度参数计算模型。 本研究成果为超声波探测技术在黄土地区的工程应用提供了一定的理论依据。通过系统性的试验验证和理论分析,对保障黄土地区工程建设的长期安全与可持续发展提供了借鉴意义。 |
论文外文摘要: |
With the accelerated pace of infrastructure construction in China, the engineering geological problems caused by the influence of soil quality in the engineering construction in loess area are becoming more and more obvious. Jingyang County is located in the loess region in the southern part of the Loess Plateau, where large-scale engineering construction is frequent and intensive, resulting in frequent regional geologic disasters due to the large thickness of the plateau plateau there, the large variation of pore ratios in the longitudinal section, and the complex path of water and salt migration. This study takes the Q2 loess of Jingyang South Plateau as the research object, through the longitudinal wave speed determination test, triaxial shear test and theoretical analysis, identifies the changing rules of wave speed and shear strength and parameters under the conditions of different dry densities, moisture content, and prefabricated joints inclination, clarifies the influence weights of each factor on the wave speed and shear strength and parameters, establishes quantitative relationship between shear strength parameters and wave speed, and provides certain reference significance for the construction of loess areas. The main research results are as follows. The main research results are as follows: (1) longitudinal wave wave speed measurement test results show that the water content has the greatest impact on wave speed, with the increase of water content, wave speed gradually decreased; dry density is second, with the increase of dry density, wave speed gradually increased; prefabricated joints inclination angle impact was nonlinear change, with the increase of joints inclination angle, wave speed first decreased and then increased, prefabricated joints inclination angle of 45 ° when the wave speed is the smallest. (2) The results of triaxial shear test show that, with the increase of dry density, the contact area between soil particles increases, the structural strength of the specimen is improved, the shear strength and parameters of the specimen gradually increase, and the dry density has the greatest influence on the shear strength and cohesion; with the increase of water content, the mutual friction between soil particles decreases, and sliding is easy to occur under the action of shear stress, the shear strength and parameters of the specimen gradually decrease, and the effect of moisture content on internal friction angle is the greatest; and the effect of water content on internal friction angle is the greatest; and the effect of water content on internal friction angle is the greatest. The effect on the internal friction angle is the largest; with the increase of the inclination angle of prefabricated joints, the shear strength and parameters of the specimens first decrease and then increase. Soil particles are more likely to slide along the joint surface, and the original inter-particle stable state is affected. After the joint inclination angle exceeds 45°, the structure of soil particles is relatively stable in the vertical direction, the friction and structural strength are improved, and the shear strength, cohesion and internal friction angle gradually increase. (3) With the increase of water content, the water film on the particle surface gradually thickens, the gas in the small pores is discharged, and the proportion of water is increased, at this time, the propagation medium is three kinds of solid-liquid-gas, and at the same time, the cemented material absorbs water and dissolves, and the propagation environment is gradually complicated, and the energy loss of longitudinal wave increases, and the wave speed decreases. At the same time, according to the longitudinal wave propagation velocity formula in elastic medium, the wave speed gradually decreases; dry density increases so that the particles are arranged more and more closely, the pore size decreases, the contact area between the particles gradually increases, providing more solid-solid propagation channel, reducing the energy loss, the wave speed gradually increases; prefabricated joints inclination increases, the joint surface and the direction of propagation of the wave to form a certain angle, the closure degree of the joint surface deteriorates, the internal structure of the specimen is relatively loose, and the wave velocity decreases. The internal structure of the sample is relatively loose, the refraction and reflection phenomenon is more obvious, the longitudinal wave energy loss increases, and the wave speed decreases. When the inclination angle is 45°, the integrity of the specimen is the worst, and the wave speed is the smallest. When the inclination angle is 90°, the longitudinal wave propagation direction is parallel to the nodal surface, at this time, the influence of the nodal surface on the longitudinal wave propagation is minimum, and the wave speed is maximum. (4) Using the results of longitudinal wave velocity measurement test and triaxial shear test, the relationship between wave velocity and shear strength parameters was determined by regression analysis; based on Brutsaert soil acoustic wave transmission theory model, dry density and moisture content were introduced as correction parameters to establish the longitudinal wave calculation correction model, and the model was found to be effective by bringing in data for verification. Finally, a wave speed-shear strength parameter calculation model based on the longitudinal wave calculation correction model was obtained by bringing in the regression formula of water content, dry density and shear strength parameters. This research result provides some theoretical basis for the engineering application of ultrasonic detection technology in loess areas. Through systematic experimental verification and theoretical analysis, it provides a reference for guaranteeing the long-term safety and sustainable development of engineering construction in loess areas. |
参考文献: |
[3] 郭富赟,张龙生,王信等.甘肃黑方台罗家坡滑坡演化过程及运动机制分析[J].中国地质灾害与防治学报, 2023,34(02):11-20. [4] 亓星,许强,朱星等.甘肃黑方台陈家8~#静态液化型黄土滑坡变形特征及成因机理[J].地质科技情报, 2018,37(05):234-239. [7] 董震,巨玉文.山西黄土地质灾害的特性及治理研究[J].科学技术与工程, 2015,15(07):138-141+145. [8] 王兰民,柴少峰,薄景山等.黄土地震滑坡的触发类型、特征与成灾机制[J].岩土工程学报, 2023,45(08):1543-1554. [9] 周昌,黄顺.新疆伊犁黄土工程地质特征及致灾机理研究综述[J].工程地质学报, 2023,31(04):1247-1260. [10] 肖刚.岩土工程勘察中物探技术及数字化发展[J].大众标准化, 2024,(04):169-171. [11] 卜永宁.电法勘探方法在水文和工程地质中的应用[J].世界有色金属, 2022,(24):178-180. [12] 杨富强,陈康,龙永锋等.低阻屏蔽地区深部电法勘探试验研究[J].矿产勘查, 2022,13(01):61-73. [13] 王珂琰.电法勘探技术在宿州市西部水源地水文地质勘查中的应用[J].地下水, 2021,43(05):130-131+145. 2021-05-045. [14] 郑启孝.磁法勘探在铁矿勘探中的应用研究[J].中国金属通报, 2019,(11):212+214. [17] 张丽艳,李昂,于常青.低频可控震源“两宽一高”地震勘探的应用[J].石油地球物理勘探, 2017,52(06):1236-1245+1121. [21] 邹明,陈晓.超声波检测技术研究进展[J].世界科技研究与发展, 2010,32(02):198-199. [22] 文志祥,刘方文.声波CT无损检测技术在混凝土质检中的应用[J].中国三峡建设, 2002(07):18-19+46-47. [23] 周正干,孙广开.先进超声检测技术的研究应用进展[J].机械工程学报, 2017,53(22):1-10. [24] 毕贵权,李宁,李国玉.非贯通裂隙介质中波传播特性试验研究[J].岩石力学与工程学报, 2009,28(S1):3116-3123. [25] 赵宇,张玉贵,于弘奕.煤岩吸水率对声波速度各向异性影响的实验研究[J].石油地球物理勘探, 2017,52(05):999-1004+880. [26] 马中高,朱立华,张卫华等.雷州半岛南部玄武岩岩石物理特征[J].石油学报, 2020, 41(6):702-710. [27] 伍宇明,兰恒星,黄为清.不饱和黄土的波速与质量含水率关系[J].地球物理学报, 2021,64(10):3766-3773. [28] 李君,潘丽敏,潘翠敏等.干湿交替下基于超声波速度的土壤含水率估算模型[J].农业工程学报, 2020,36(08):114-119. [30] 潘殿琦,张祖培,潘殿彩等.人工冻土纵波波速与温度和含水率的关系[J].吉林大学学报(地球科学版), 2006,(04):588-591. [31] 胡玮锋,王明照,李昕航.含水率对红砂岩纵波波速影响规律研究[J].四川建材, 2023,49(10):80-81+84. [32] Kahraman S, Yeken T. Determination of physical properties of carbonate rocks from P-wave velocity[J]. Bulletin of Engineering Geology and the Environment, 2008,67:277-281. [33] 孟庆生,曹国林,刘圣彪等.粉土液化再固结过程中的波速特征及物理性质试验研究[J].中国海洋大学学报(自然科学版), 2017,47(10):21-27. [34] 王嘉敏,王守光,李向上等.热冲击花岗岩力学响应及损伤特征显微CT试验研究[J].煤炭科学技术, 2023,51(08):58-72. [37] 刘鹏,刘斌,刘雄等.膨胀土纵波波速变化规律研究[J].交通科学与工程, 2016,32(03):30-34. [38] 张敏,苑成旺,王占.孔隙环境特征对高岭土超声波波速影响机理研究[J].水文地质工程地质, 2023,50(5): 89-95. [39] 陆卫东,李祥春,李梅生等.水分对煤岩体声波波速影响实验研究[J].中国矿业, 2020, 29(8):178-182. [40] 杨泽良,吕庆,沈佳轶等.考虑节理影响的岩体基本质量指标定量评价[J].岩石力学与工程学报, 2023,42(S1):3219-3225. [41] 秦辉,刘鑫,兰恒星.用波速评价冻融循环作用下压实黄土强度特性的试验研究[J].工程地质学报, 2023,31(05):1507-1515. [42] 韦秉旭,龚树,刘斌等.膨胀土细观结构变化及与声波波速的关系[J].长江科学院院报, 2016,33(09):93-97+106. [45] 金解放, 王杰, 郭钟群, 等. 围压对红砂岩应力波传播特性的影响[J].煤炭学报, 2019(2):435-444. [48] 贾蓬,祝鹏程,李博等.单轴压缩过程中岩石的实时超声波特性[J].中南大学学报:自然科学版, 2022,53(10):3967-3977. [49] 侯迪,彭俊.热损伤大理岩三轴力学特性及强度模型[J].岩石力学与工程学报, 2019,38(S1):2603-2613. [50] 王大雁,朱元林,赵淑萍等.超声波法测定冻土动弹性力学参数试验研究[J].岩土工程学报, 2002,(05):612-615. [51] 黄星,李东庆,明锋等.冻结粉质黏土声学特性与物理力学性质试验研究[J].岩石力学与工程学报, 2015,34(07):1489-1496. [52] 赵修成,赵晓彦,郭佳奇.断续节理岩体声学力学特性试验研究[J].岩石力学与工程学报, 2020,39(07):1408-1419. [54] 石志奇,何晓,刘琳等.毛细管压力作用下的非饱和双重孔隙介质中弹性波传播[J].物理学报, 2023,72(06):382-392. [55] 赵辉伟,邴慧.基于超声波速的冻融盐渍土强度预测模型构建[J].冰川冻土, 2024,46(02):612-624. [56] 李志恒,谢俊举,李柯苇等.山东地区场地剪切波速经验外推模型及其适用性[J].地震地质, 2024,46(04):934-954. [57] 姚姜森,王珏,李圣等.昆明盆地常规土类剪切波速与埋深的关系研究[J].华南地震, 2024,44(03):40-50. [58] 张卫东,刘永军,任韶然等.水合物沉积层声波速度模型[J].中国石油大学学报(自然科学版), 2008,(04):60-63. [59] 宋丽莉,葛洪魁,王宝善.疏松砂岩弹性波速模型的研究[J].石油大学学报(自然科学版), 2004,(06):38-40. [60] 郑健,解威威,凌干展等.考虑不确定性影响的管内混凝土超声波速概率预测模型[J].公路, 2024,69(03):215-220. [61] 程爱平,董福松,张玉山等.胶结充填体波速-密度双参数强度预测模型研究[J].金属矿山, 2019,(07):26-31. [71] 管钧,王维刚,张全旭.NM-4A非金属超声检测分析仪研究[J].市政技术,2002,(01):33-39. [73] 邢鲜丽,李同录,李萍等.黄土抗剪强度与含水率的变化规律[J].水文地质工程地质, 2014,41(03):53-59+97. [74] 李艳琴.超声波专题实验开展及其传播特性研究[J].大学物理实验, 2014,27(3):87-90. [78] 魏亚妮.水作用下黄土三维微结构演化及湿陷机理研究[D].长安大学, 2019. [79] 高国瑞.黄土湿陷变形的结构理论[J].岩土工程学报, 1990(04):1-10. [80] Van Olphen H. An introduction to clay colloid chemistry[J]. Soil Science, 1964,97(4):290. [85] 赵明阶,徐蓉.岩石损伤特性与强度的超声波速研究[J].岩土工程学报, 2000(06):720-722. [86] 王如江,任猛,刘劲松等.岩石波速与强度参数的相关性研究[J].矿业研究与开发, 2021,41(09):87-91. [87] 邓华锋,原先凡,李建林等.饱水度对砂岩纵波波速及强度影响的试验研究[J].岩石力学与工程学报, 2013,32(08):1625-1631. [88] 应崇福,张守玉,沈建中,谭建伟.超声波在固体中传播和散射的研究.中国科学院院刊 1990,(01),56-59. [90] 程净净,傅命佐,孟祥梅等.南黄海中部沉积物物理性质与压缩波速相关性分析[J].中国海洋大学学报(自然科学版), 2011,41(S1):331-336. [91] 刘鹏,韦秉旭,欧阳运清等.膨胀土纵波波速与裂隙率关系试验[J].长沙理工大学学报(自然科学版), 2016,13(03):12-18. [92] 王大雁,朱元林,马巍等.冻土超声波波速与冻土物理力学性质试验研究[J].岩石力学与工程学报, 2003,(11):1837-1840. [97] 方祥位,申春妮,李春海等.重塑Q2黄土微观结构研究[J].地下空间与工程学报, 2014, 10(6):1231-1236. [98] 王宇,李同录,雷雨露等.压实黄土土水特征对其孔隙结构的响应[J].岩石力学与工程学报, 2022, 41(6):1246-1255. [99] 马亚维,谌文武,毕骏,郭桂红,焦贵德.干密度对黄土渗透系数的影响[J].岩土工程学报, 2018,40(S1):165-170. [104] 段钊,彭建兵,冷艳秋.泾阳南塬Q2黄土物理力学特性[J].长安大学学报(自然科学版), 2016,36(05):60-66+109. |
中图分类号: | P642.13 |
开放日期: | 2025-06-11 |