论文中文题名: | SiO负极材料表面碳修饰及电化学性能 |
姓名: | |
学号: | 21211025011 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 080502 |
学科名称: | 工学 - 材料科学与工程 - 材料学 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2021 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 新能源材料与器件 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2024-06-18 |
论文答辩日期: | 2024-06-04 |
论文外文题名: | Surface Carbon Modification and Electrochemical Performance of SiO Negative Electrode Materials |
论文中文关键词: | |
论文外文关键词: | silicon monoxide ; carbon coating ; conductive network ; lithiation |
论文中文摘要: |
在锂离子电池中,一氧化硅(SiO)负极材料具有较高的理论比容量,低的电压平台以及比硅(Si)低的体积膨胀率,是一种具有商业化潜力的负极材料。然而,SiO仍存在两大重要问题:第一是在首次嵌锂过程中,SiO会形成大量的不可逆产物,造成首次库伦效率低;第二是在循环过程中,体积膨胀引起的循环性能衰减。使用了化学气相沉积法(CVD)对商业微米级SiO进行了碳包覆,并探究了不同碳包覆时间、不同碳包覆温度、不同碳源以及碱洗对碳包覆的影响。 以石油醚为碳源,在包覆温度为750℃、包覆时间为1.5 h时碳包覆效果最佳,所制备的碳包覆SiO的首次放电比容量为2615.3 mAh/g,首次充电比容量为1925.7 mAh/g,首次库伦效率为73.6%,相较于未处理的SiO(51%)提升了22.6%,倍率性能和循环性能也得到了提升,具有最佳的综合电化学性能;甲苯作为碳源时碳包覆效果提升并不显著;对SiO进行碱洗可以促进碳层在材料表面的沉积,有助于构建高质量碳层。 其次,针对SiO循环性能以及倍率性能,对SiO材料进行了结构设计。利用化学气相沉积法在商业微米级SiO表面原位合成出了导电网络,成功合成了SiO@CNT材料。这种导电网络增强了颗粒间的连接性,从而提高了整体电极的导电性,因此提升了材料的倍率性能。此外,它为颗粒间提供了膨胀空间,减轻了电极的体积膨胀造成的损伤,增强了材料的循环稳定性。该复合材料在电流密度为1 A/g时仍保持高可逆比容量506 mAh/g,在100 mA/g的电流密度下循环100次后仍保留了991.3 mAh/g的高可逆容量。 最后,针对SiO首次库伦效率不佳的问题,使用了气相法对SiO进行了预锂化,并对预锂化SiO进行了碳包覆。结果表明预锂化并碳包覆后的SiO首次库伦效率得到了很大的提升,其中预锂化比例为Li/SiO=0.08时效果最佳,所制备的008Li-C材料具有78.3%的首次库伦效率,相比于未处理的SiO (51%)有了显著提高。其次,在一次热处理中实现预锂化和碳包覆,一步法制备了SiO。电化学测试结果表明,一步法工艺对SiO材料首次库伦效率的提升和普通预锂化碳包覆工艺相近。一步法工艺节省了二次热处理的能源损耗并节省了时间,更适合工业推广。 |
论文外文摘要: |
In lithium-ion batteries, silicon monoxide (SiO) as a negative electrode material possesses a higher theoretical specific capacity, lower voltage platform, and lower volume expansion rate compared to silicon (Si), making it considered the most commercially viable negative electrode material. However, SiO still faces two significant issues: firstly, during the initial lithium insertion process, SiO forms a large amount of irreversible products, leading to low initial Coulombic efficiency; secondly, during cycling, volume expansion causes performance degradation. Chemical vapor deposition (CVD) was employed to carbon-coat commercial micrometer-scale SiO, and the effects of different carbon coating times, temperatures, carbon sources, and alkaline washing on carbon coating were investigated. The following conclusions were drawn: carbon coating was most effective at a coating temperature of 750°C and a coating time of 1.5 hours, resulting in a first discharge specific capacity of 2615.3 mAh/g, a first charge specific capacity of 1925.7 mAh/g, and a first Coulombic efficiency of 73.6%, an improvement of 22.6% compared to untreated SiO (51%). Rate performance and cycling performance were also improved, showing optimal comprehensive electrochemical performance. The effect of toluene as a carbon source on carbon coating was not significant. Alkaline washing of SiO promoted the deposition of carbon layers on the material surface, aiding in the construction of high-quality carbon layers. Furthermore, for the cycling performance and rate capability of SiO, structural design was carried out. Using chemical vapor deposition, a conductive network was synthesized in situ on the surface of commercial SiO, successfully synthesizing SiO@CNT material. This conductive network enhanced interparticle connectivity, thereby improving the overall electrode conductivity and hence the material's rate performance. Additionally, it provided expansion space between particles, alleviating damage caused by electrode volume expansion and enhancing the material's cycling stability. The composite material maintained a high reversible capacity of 506 mAh/g at a current density of 1 A/g and retained a high reversible capacity of 991.3 mAh/g after 100 cycles. Finally, to address the issue of poor initial Coulombic efficiency of SiO, we employed a vapor-phase lithiation method to prelithiate SiO, followed by carbon coating of the prelithiated SiO. The results showed a significant improvement in the initial Coulombic efficiency of SiO after prelithiation and carbon coating. Among various prelithiation ratios tested, the optimal ratio was found to be Li/SiO=0.08, resulting in a first Coulombic efficiency of 78.3% for the prepared 008Li-C material, a substantial improvement over untreated SiO (51%). Furthermore, to enhance the industrial application capability of this method, we optimized the preparation process to achieve prelithiation and carbon coating in a single heat treatment step, thereby developing a one-step SiO fabrication process. Electrochemical testing results demonstrated that the one-pot process led to a similar improvement in the initial Coulombic efficiency of SiO materials compared to conventional prelithiation and carbon coating processes. The one-pot process saved energy consumption from secondary heat treatments and reduced processing time, showing potential for industrial application. |
参考文献: |
[24]金秋宇. 锂离子电池氧化亚硅负极材料的制备及改性研究[D]. 天津师范大学, 2022.. [25]邢楷, 杨扬, 朱恂, 等. 基于水凝胶固态电解质的燃料/电解液储供一体化微型燃料电池[J]. 科学通报, 2022, 67(Z2): 3487-3496. [75]张慎然, 徐立环, 苏畅. 不同碳含量对SiO/C负极电化学性能的影响[J]. 储能科学与技术, 2023,1 2(06): 1784-1793. [85]郭晓蒙, 青芳竹, 李雪松. 石墨烯在金属表面防腐中的应用. 物理学报, 2021, 70(9): 098102. |
中图分类号: | TM191 |
开放日期: | 2024-06-18 |