- 无标题文档
查看论文信息

论文中文题名:

 SiO负极材料表面碳修饰及电化学性能    

姓名:

 余家傲    

学号:

 21211025011    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080502    

学科名称:

 工学 - 材料科学与工程 - 材料学    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 材料科学与工程学院    

专业:

 材料科学与工程    

研究方向:

 新能源材料与器件    

第一导师姓名:

 段晓波    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-18    

论文答辩日期:

 2024-06-04    

论文外文题名:

 Surface Carbon Modification and Electrochemical Performance of SiO Negative Electrode Materials    

论文中文关键词:

 一氧化硅 ; 碳包覆 ; 导电网络 ; 预锂化    

论文外文关键词:

 silicon monoxide ; carbon coating ; conductive network ; lithiation    

论文中文摘要:

在锂离子电池中,一氧化硅(SiO)负极材料具有较高的理论比容量,低的电压平台以及比硅(Si)低的体积膨胀率,是一种具有商业化潜力的负极材料。然而,SiO仍存在两大重要问题:第一是在首次嵌锂过程中,SiO会形成大量的不可逆产物,造成首次库伦效率低;第二是在循环过程中,体积膨胀引起的循环性能衰减。使用了化学气相沉积法(CVD)对商业微米级SiO进行了碳包覆,并探究了不同碳包覆时间、不同碳包覆温度、不同碳源以及碱洗对碳包覆的影响。

以石油醚为碳源,在包覆温度为750℃、包覆时间为1.5 h时碳包覆效果最佳,所制备的碳包覆SiO的首次放电比容量为2615.3 mAh/g,首次充电比容量为1925.7 mAh/g,首次库伦效率为73.6%,相较于未处理的SiO(51%)提升了22.6%,倍率性能和循环性能也得到了提升,具有最佳的综合电化学性能;甲苯作为碳源时碳包覆效果提升并不显著;对SiO进行碱洗可以促进碳层在材料表面的沉积,有助于构建高质量碳层。

其次,针对SiO循环性能以及倍率性能,对SiO材料进行了结构设计。利用化学气相沉积法在商业微米级SiO表面原位合成出了导电网络,成功合成了SiO@CNT材料。这种导电网络增强了颗粒间的连接性,从而提高了整体电极的导电性,因此提升了材料的倍率性能。此外,它为颗粒间提供了膨胀空间,减轻了电极的体积膨胀造成的损伤,增强了材料的循环稳定性。该复合材料在电流密度为1 A/g时仍保持高可逆比容量506 mAh/g,在100 mA/g的电流密度下循环100次后仍保留了991.3 mAh/g的高可逆容量。

最后,针对SiO首次库伦效率不佳的问题,使用了气相法对SiO进行了预锂化,并对预锂化SiO进行了碳包覆。结果表明预锂化并碳包覆后的SiO首次库伦效率得到了很大的提升,其中预锂化比例为Li/SiO=0.08时效果最佳,所制备的008Li-C材料具有78.3%的首次库伦效率,相比于未处理的SiO (51%)有了显著提高。其次,在一次热处理中实现预锂化和碳包覆,一步法制备了SiO。电化学测试结果表明,一步法工艺对SiO材料首次库伦效率的提升和普通预锂化碳包覆工艺相近。一步法工艺节省了二次热处理的能源损耗并节省了时间,更适合工业推广。

论文外文摘要:

In lithium-ion batteries, silicon monoxide (SiO) as a negative electrode material possesses a higher theoretical specific capacity, lower voltage platform, and lower volume expansion rate compared to silicon (Si), making it considered the most commercially viable negative electrode material. However, SiO still faces two significant issues: firstly, during the initial lithium insertion process, SiO forms a large amount of irreversible products, leading to low initial Coulombic efficiency; secondly, during cycling, volume expansion causes performance degradation. Chemical vapor deposition (CVD) was employed to carbon-coat commercial micrometer-scale SiO, and the effects of different carbon coating times, temperatures, carbon sources, and alkaline washing on carbon coating were investigated. The following conclusions were drawn: carbon coating was most effective at a coating temperature of 750°C and a coating time of 1.5 hours, resulting in a first discharge specific capacity of 2615.3 mAh/g, a first charge specific capacity of 1925.7 mAh/g, and a first Coulombic efficiency of 73.6%, an improvement of 22.6% compared to untreated SiO (51%). Rate performance and cycling performance were also improved, showing optimal comprehensive electrochemical performance. The effect of toluene as a carbon source on carbon coating was not significant. Alkaline washing of SiO promoted the deposition of carbon layers on the material surface, aiding in the construction of high-quality carbon layers.

Furthermore, for the cycling performance and rate capability of SiO, structural design was carried out. Using chemical vapor deposition, a conductive network was synthesized in situ on the surface of commercial SiO, successfully synthesizing SiO@CNT material. This conductive network enhanced interparticle connectivity, thereby improving the overall electrode conductivity and hence the material's rate performance. Additionally, it provided expansion space between particles, alleviating damage caused by electrode volume expansion and enhancing the material's cycling stability. The composite material maintained a high reversible capacity of 506 mAh/g at a current density of 1 A/g and retained a high reversible capacity of 991.3 mAh/g after 100 cycles.

Finally, to address the issue of poor initial Coulombic efficiency of SiO, we employed a vapor-phase lithiation method to prelithiate SiO, followed by carbon coating of the prelithiated SiO. The results showed a significant improvement in the initial Coulombic efficiency of SiO after prelithiation and carbon coating. Among various prelithiation ratios tested, the optimal ratio was found to be Li/SiO=0.08, resulting in a first Coulombic efficiency of 78.3% for the prepared 008Li-C material, a substantial improvement over untreated SiO (51%). Furthermore, to enhance the industrial application capability of this method, we optimized the preparation process to achieve prelithiation and carbon coating in a single heat treatment step, thereby developing a one-step SiO fabrication process. Electrochemical testing results demonstrated that the one-pot process led to a similar improvement in the initial Coulombic efficiency of SiO materials compared to conventional prelithiation and carbon coating processes. The one-pot process saved energy consumption from secondary heat treatments and reduced processing time, showing potential for industrial application.

参考文献:

[1]Yu G, Jing J, Li C, et al. A review on recent progress of non-stoichiometric SiOx anodes based on lithium ion batteries[J]. Progress in Natural Science: Materials International, 2023, 33(1): 47-54.

[2]Xia X, Qian X, Chen C, et al. Recent progress of Si-based anodes in the application of lithium-ion batteries[J]. Journal of Energy Storage, 2023, 72: 108715-107824.

[3]Mei Y, He Y, Zhu H, et al. Recent advances in the structural design of silicon/carbon anodes for lithium ion batteries: A review[J]. Coatings, 2023, 13(2): 436-445.

[4]Man Q, An Y, Liu C, et al. Interfacial design of silicon/carbon anodes for rechargeable batteries: A review[J]. Journal of Energy Chemistry, 2023, 76: 576-600.

[5]Li Z, Du M, Guo X, et al. Research progress of SiOx-based anode materials for lithium-ion batteries[J]. Chemical Engineering Journal, 2023: 145294-145311.

[6]Kong X, Xi Z, Wang L, et al. Recent progress in silicon-based materials for performance-enhanced lithium-ion batteries[J]. Molecules, 2023, 28(5): 2079-2085.

[7]Kawaura H, Suzuki R, Kondo Y, et al. Scalable Synthesis of Porous Silicon by Acid Etching of Atomized Al–Si Alloy Powder for Lithium-Ion Batteries[J]. ACS Applied Materials & Interfaces, 2023, 15(29): 34909-34921.

[8]Al Ja’farawy M S, Hikmah D N, Riyadi U, et al. A review: the development of SiO2/C anode materials for lithium-ion batteries[J]. Journal of Electronic Materials, 2021:1-21.

[9]Nana Y, Yu Z, Xianhui R, et al. A review on the critical challenges and progress of SiOx-based anodes for lithium-ion batteries[J]. International Journal of Minerals, Metallurgy and Materials,2022, 29(4): 876-895.

[10]Wang W, Wang Y, Yuan L, et al. Recent advances in modification strategies of silicon-based lithium-ion batteries[J]. Nano Research, 2023, 16(3): 3781-3803.

[11]Huang J, Zhu Y, Feng Y, et al. Research progress on key materials and technologies for secondary batteries[J]. Acta Phys. Chim. Sin, 2022, 38: 2208008-2208016.

[12]Lee T, Kim N, Lee J, et al. Suppressing Deformation of Silicon Anodes via Interfacial Synthesis for Fast‐Charging Lithium‐Ion Batteries[J]. Advanced Energy Materials, 2023, 13(41): 2301139-2301149.

[13]Yan M Y, Liu Z, Lu Z Y, et al. Stable Li storage in micron-sized SiOx particles with rigid-flexible coating[J]. Journal of Energy Chemistry, 2022, 64: 309-314.

[14]Liu D, Han Z, Yang X, et al. Preparation of SiOx@TiO2@N-doped carbon composite using chitin as carbon precursor for high-performance lithium storage[J]. Journal of Alloys and Compounds, 2022, 891: 162076-162082.

[15]Lai G, Wei X, Zhou B, et al. Engineering High-Performance SiOx Anode Materials with a Titanium Oxynitride Coating for Lithium-Ion Batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(44): 49830-49838.

[16]Wei H, Niu L, Zhou X, et al. Nanostructured SiOx/Si composite confined by carbon layer as anode materials for high-performance lithium-ion battery[J]. Journal of Alloys and Compounds, 2023, 969: 172462-172471.

[17]Liu X, Liu H, Cao Y, et al. Silicon nanoparticles embedded in chemical-expanded graphite through electrostatic attraction for high-performance lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2023, 15(7): 9457-9464.

[18]Szczech J R, Jin S. Nanostructured silicon for high capacity lithium battery anodes[J]. Energy & Environmental Science, 2011, 4(1): 56-72.

[19]Li J, Wang L, Liu F, et al. In Situ Wrapping SiO with Carbon Nanotubes as Anode Material for High-Performance Li-Ion Batteries[J]. ChemistrySelect, 2019, 4(10): 2918-2925.

[20]Liang Y, Gao Y, Shi Q, et al. Constructing three-dimensional Carbon nanotubes/Carbon bifunctional conductive network by in situ chemical vapor deposition for SiOx anode in high-energy lithium-ion batteries[J]. Journal of Alloys and Compounds, 2023, 960: 171022-171036.

[21]Duan H, Xu H, Wu Q, et al. Silicon/graphite/amorphous carbon as anode materials for lithium secondary batteries[J]. Molecules, 2023, 28(2): 464-474.

[22]Meng L, Hou C, Hou J, et al. Preparation and performance of in situ carbon-coated silicon monoxide@C@carbon microspheres composite anode material for lithium-ion batteries[J]. Engineered Science, 2022, 20: 134-143.

[23]Whittingham M S. Lithium batteries and cathode materials[J]. Chemical reviews, 2004, 104(10): 4271-4302.

[24]金秋宇. 锂离子电池氧化亚硅负极材料的制备及改性研究[D]. 天津师范大学, 2022..

[25]邢楷, 杨扬, 朱恂, 等. 基于水凝胶固态电解质的燃料/电解液储供一体化微型燃料电池[J]. 科学通报, 2022, 67(Z2): 3487-3496.

[26]Pan Q, Wang H, Jiang Y. Natural graphite modified with nitrophenyl multilayers as anode materials for lithium ion batteries[J]. Journal of Materials Chemistry, 2007, 17(4): 329-334.

[27]Park Y S, Lee T W, Shin M S, et al. Modification for improving the electrochemical performance of spherically-shaped natural graphite as anode material for lithium-ion batteries[J]. Journal of The Electrochemical Society, 2016, 163(14): A3078-A3086.

[28]Jiao M, Wang Y, Ye C, et al. High-capacity SiOx (0≤ x≤ 2) as promising anode materials for next-generation lithium-ion batteries[J]. Journal of Alloys and Compounds, 2020, 842: 155774-155782.

[29]Wang Y, Dang D, Li D, et al. Effects of polymeric binders on the cracking behavior of silicon composite electrodes during electrochemical cycling[J]. Journal of Power Sources, 2019, 226938-226947.

[30]Li H, Li H, Yang Z, et al. SiOx anode: from fundamental mechanism toward industrial application[J]. Small, 2021, 17(51): 210264-210272.

[31]Feng X, Yang J, Lu Q, et al. Facile approach to SiOx/Si/C composite anode material from bulk SiO for lithium ion batteries[J]. Physical Chemistry Chemical Physics, 2013, 15(34): 14420-14426.

[32]Guo C, Mao J, Wang D. A three-dimensional multilayered SiO–graphene nanostructure as a superior anode material for lithium-ion batteries[J]. RSC Advances, 2014, 4(69): 36502-36506.

[33]Yue C, Liu Y, Guan S, et al. Optimising hollow-structured silicon nanoparticles for lithium-ion batteries[J]. Materials, 2023, 16(17): 5884-5893.

[34]Zhang L, Liu Y, Guo F, et al. Optimal Microstructure of Silicon Monoxide as the Anode for Lithium-Ion Batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(46): 51965-51974.

[35]Tang J, Hou L, Hu T, et al. Influence of oxygen content on the electrochemical behavior of SiOx@C anodes for Li-ion battery[J]. Composites Communications, 2021, 23: 100544-100555.

[36]Pan K, Zou F, Canova M, et al. Systematic electrochemical characterizations of Si and SiO anodes for high-capacity Li-Ion batteries[J]. Journal of Power Sources, 2019, 413: 20-28.

[37]Akihiko H, Shinji K, Toshihiro A, et al. Atomic-scale disproportionation in amorphous silicon monoxide[J]. Nature communications, 2016, 7(1): 11591-11602.

[38]Hohl A, Wieder T, Aken V P, et al. An interface clusters mixture model for the structure of amorphous silicon monoxide(SiO)[J]. Journal of Non-Crystalline Solids, 2003, 320(1): 255-280.

[39]Akihiko H, Shinji K, Toshihiro A, et al. Atomic-scale disproportionation in amorphous silicon monoxide[J]. Nature communications, 2016, 7(1): 11591-11595.

[40]Yasuda K, Kashitani Y, Kizaki S, et al. Thermodynamic analysis and effect of crystallinity for silicon monoxide negative electrode for lithium ion batteries[J]. Journal of Power Sources, 2016, 329: 462-472.

[41]Jung S C, Kim H J, Kim J H, et al. Atomic-level understanding toward a high-capacity and high-power silicon oxide (SiO) material[J]. The Journal of Physical Chemistry C, 2015, 120(2): 886-892.

[42]Yu B C, Hwa Y, Kim J H, et al. A new approach to synthesis of porous SiOx anode for Li-ion batteries via chemical etching of Si crystallites[J]. Electrochimica acta, 2014, 117: 426-430.

[43]Kim J, Park C, Kim H, et al. Electrochemical behavior of SiO anode for Li secondary batteries[J]. Journal of Electroanalytical Chemistry, 2011, 661(1): 245-249.

[44]Wang X, Sun L, Hu X, et al. Ni–Si nanosheet network as high performance anode for Li ion batteries[J]. Journal of Power Sources, 2015, 280: 393-396.

[45]Wang K, Pei S, He Z, et al. Synthesis of a novel porous silicon microsphere@ carbon core-shell composite via in situ MOF coating for lithium ion battery anodes[J]. Chemical Engineering Journal, 2019, 356: 272-281.

[46]Li W, Peng J, Li H, et al. Architecture and performance of Si/C microspheres assembled by nano-Si via electro-spray technology as stability-enhanced anodes for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2022, 903: 163940-163951.

[47]Liu Z, Zhao Y, He R, et al. Yolk@ Shell SiOx/C microspheres with semi-graphitic carbon coating on the exterior and interior surfaces for durable lithium storage[J]. Energy Storage Materials, 2019, 19: 299-305.

[48]Dou F, Shi L, Chen G, et al. Silicon/carbon composite anode materials for lithium-ion batteries[J]. Electrochemical Energy Reviews, 2019, 2: 149-198.

[49]Lee J, Park S. High-performance porous silicon monoxide anodes synthesized via metal-assisted chemical etching[J]. Nano Energy, 2013, 2(1): 146-152.

[50]Shen X, Tian Z, Fan R, et al. Research progress on silicon/carbon composite anode materials for lithium-ion battery[J]. Journal of Energy Chemistry, 2018, 27(4): 1067-1090.

[51]Shuchen Z, Lixing K, Xiao W, et al. Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts[J]. Nature, 2017, 543(7644): 234-238.

[52]Shoukat R, Khan M I. Carbon nanotubes/nanofibers(CNTs/CNFs): a review on state of the art synthesis methods[J]. Microsystem Technologies, 2022, 28(4): 885-901.

[53]ByeongIl Y, HanMin K, MinJae C, et al. Synergetic Effect of Hybrid Conductive Additives for High-Capacity and Excellent Cyclability in Si Anodes[J]. Nanomaterials,2022, 12(19): 3354-3354.

[54]Wang R, Li H, Wu Y, et al. How to promote the industrial application of SiOx anode prelithiation: capability, accuracy, stability, uniformity, cost, and safety[J]. Advanced Energy Materials, 2022, 12(48): 2202342-2202354.

[55]Li Y, Fitch B. Effective enhancement of lithium-ion battery performance using SLMP[J]. Electrochemistry Communications, 2011, 13(7): 664-667.

[56]Pan Q, Zuo P, Mu T, et al. Improved electrochemical performance of micro-sized SiO-based composite anode by prelithiation of stabilized lithium metal powder[J]. Journal of Power Sources, 2017, 347: 170-177.

[57]Vanaphuti P, Su L, Manthiram A. Effect of Electrochemical Pre‐Lithiation on Layered Oxide Cathodes for Anode‐Free Lithium‐metal Batteries[J]. Small Methods, 2024, 8(1): 2301159-2301168.

[58]Yu Z, Zhou L, Cheng Y, et al. Preset lithium source electrolyte boosts SiO anode performance for lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(31): 10351-10360.

[59]Li Y, Qian Y, Zhou J, et al. Molten-LiCl induced thermochemical prelithiation of SiOx: Regulating the active Si/O ratio for high initial Coulombic efficiency[J]. Nano Research, 2022, 15(1): 230-237.

[60]Choi J, Jeong H, Jang J, et al. Weakly solvating solution enables chemical prelithiation of graphite-SiOx anodes for high-energy Li-ion batteries[J]. Journal of the American Chemical Society, 2021, 143(24): 9169-9176.

[61]Fitch B B, Yakovleva M, Li Y, et al. An overview on stabilized lithium metal powder (SLMP), an enabling material for a new generation of Li-ion batteries[J]. ECS transactions, 2007, 3(27): 15-17.

[62]Zhao H, Wang Z, Lu P, et al. Toward practical application of functional conductive polymer binder for a high-energy lithium-ion battery design[J]. Nano letters, 2014, 14(11): 6704-6710.

[63]Nguyen Q A, Haridas A K, Terlier T, et al. Prelithiation effects in enhancing silicon-based anodes for full-cell lithium-ion batteries using stabilized lithium metal particles[J]. ACS Applied Energy Materials, 2023, 6(10): 5567-5579.

[64]Shellikeri A, Watson V, Adams D, et al. Investigation of pre-lithiation in graphite and hard-carbon anodes using different lithium source structures[J]. Journal of The Electrochemical Society, 2017, 164(14): A3914-A3928.

[65]Shen C, Fu R, Xia Y, et al. New perspective to understand the effect of electrochemical prelithiation behaviors on silicon monoxide[J]. RSC advances, 2018, 8(26): 14473-14478.

[66]Wang H, Zhang M, Jia Q, et al. Exploiting the capacity merits of Si anodes in the energy-dense prototypes via a homogeneous prelithiation therapy[J]. Nano Energy, 2022, 95: 107026-107038.

[67]Kim H J, Choi S, Lee S J, et al. Controlled prelithiation of silicon monoxide for high performance lithium-ion rechargeable full cells[J]. Nano letters, 2016, 16(1): 282-288.

[68]Chung D J, Youn D, Kim J Y, et al. Topology Optimized Prelithiated SiO Anode Materials for Lithium-Ion Batteries[J]. Small, 2022, 18(27): 2202209-2202219.

[69]Zhang X, Qu H, Ji W, et al. An electrode-level prelithiation of SiO anodes with organolithium compounds for lithium-ion batteries[J]. Journal of Power Sources, 2020, 478: 229067-229074.

[70]Cho J H, Xiao X, Verbrugge M W, et al. Influence of Oxygen Content on the Structural Evolution of SiOx Thin-Film Electrodes with Subsequent Lithiation/Delithiation Cycles[J]. ACS Applied Energy Materials, 2022, 5(11): 13293-13306.

[71]Li Y, Zhou H, Lin N, et al. Revealing the size-dependent electrochemical Li-storage behaviors of SiO-based anodes[J]. Journal of Materials Chemistry A, 2022, 10(44): 23770-23779.

[72]Gu L, Han J, Chen M, et al. Enabling robust structural and interfacial stability of micron-Si anode toward high-performance liquid and solid-state lithium-ion batteries[J]. Energy Storage Materials, 2022, 52: 547-561.

[73]Azam S, Mehmood S, Tabassam L, et al. Structural and electrochemical characteristics of o-LiMnO2-MWCNTs nanocomposites[J]. Physica B: Condensed Matter, 2019, 575: 411695-411704.

[74]Joe Y C, Prasanna K, Kang S H, et al. Preparation and characterization of the LiNi0.8Co0.1Mn0.1O2 cathode active material by electrophoretic deposition[J]. Journal of Nanoscience and Nanotechnology, 2018, 18(9): 6494-6498.

[75]张慎然, 徐立环, 苏畅. 不同碳含量对SiO/C负极电化学性能的影响[J]. 储能科学与技术, 2023,1 2(06): 1784-1793.

[76]Ali Z, Mehmood M, Ahmad J, et al. Formation of carbon nanostructures on nickel acetate alcogel by CVD method and its OER electrocatalytic study in alkaline media[J]. Applied Physics A, 2021, 127: 1-10.

[77]Venezia A M, Bertoncello R, Deganello G. X‐ray photoelectron spectroscopy investigation of pumice-supported nickel catalysts[J]. Surface and interface analysis, 1995, 23(4): 239-247.

[78]Amaya Á A, González C A, Niño-Gómez M E, et al. XPS fitting model proposed to the study of Ni and La in deactivated FCC catalysts[J]. Journal of Electron Spectroscopy and Related Phenomena, 2019, 233: 5-10.

[79]Sun Y Y, Jiang M Y, Wu L K, et al. Ultra-thin NiFeSe nanosheets as a highly efficient bifunctional electrocatalyst for overall water splitting[J]. Sustainable Energy & Fuels, 2020, 4(2): 582-588.

[80]Yi S, Yan Z, Li X, et al. Insights into the effect of SiO particle size on the electrochemical performance between half and full cells for Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2023, 15(20): 24377-24386.

[81]Zhao H, Ding X, Zhang N, et al. Improved electrochemical performance of silicon monoxide anode materials prompted by macroporous carbon[J]. Journal of Porous Materials, 2022, 29(4): 1191-1198.

[82]Liu Q, Wang F, Hu E, et al. Nickel-iron nanoparticles encapsulated in carbon nanotubes prepared from waste plastics for low-temperature solid oxide fuel cells[J]. IScience, 2022, 25(8): 104855-104855.

[83]Kim N S, Lee Y T, Park J, et al. Dependence of the vertically aligned growth of carbon nanotubes on the catalysts[J]. The Journal of Physical Chemistry B, 2002, 106(36): 9286-9290.

[84]Zhao M, Zhang Z, Shi W, et al. Enhanced copper anticorrosion from Janus-doped bilayer graphene[J]. Nature Communications, 2023, 14(1): 7447-7451.

[85]郭晓蒙, 青芳竹, 李雪松. 石墨烯在金属表面防腐中的应用. 物理学报, 2021, 70(9): 098102.

[86]Cui G, Bi Z, Zhang R, et al. A comprehensive review on graphene-based anti-corrosive coatings[J]. Chemical engineering journal, 2019, 373: 104-121.

[87]Yang Y, Li Z, Xu Y, et al. Boosting fast electrode reaction kinetics of silicon suboxide anodes by fluoroethylene carbonate-based electrolyte[J]. Journal of Power Sources, 2023, 577: 233261-233275.

[88]Qian G, Li Y, Chen H, et al. Revealing the aging process of solid electrolyte interphase on SiOx anode[J]. Nature Communications, 2023, 14(1): 6048-6059.

[89]Liu G, Xia M, Gao J, et al. Dual-salt localized high-concentration electrolyte for long cycle life silicon-based lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2023, 15(2): 3586-3598.

[90]Miyachi M, Yamamoto H, Kawai H, et al. Analysis of SiO anodes for lithium-ion batteries[J]. Journal of the electrochemical society, 2005, 152(10): A2089-A2105.

[91]Tan J, Matz J, Dong P, et al. A growing appreciation for the role of LiF in the solid electrolyte interphase[J]. Advanced Energy Materials, 2021, 11(16): 2100046-2100054.

[92]Zhang L, Sun B, Liu Q, et al. Construction of a dense and N-rich solid electrolyte interface for dendrite-free lithium metal batteries[J]. Journal of Power Sources, 2023, 580: 233391-233402.

[93]Wood K N, Teeter G. XPS on Li-battery-related compounds: analysis of inorganic SEI phases and a methodology for charge correction[J]. ACS Applied Energy Materials, 2018, 1(9): 4493-4504.

[94]Palchan I, Crespin M, Estrade-Szwarckopf H, et al. Graphite fluorides: an XPS study of a new type of CF bonding[J]. Chemical Physics Letters, 1989, 157(4): 321-327.

[95]Pereira-Nabais C, Światowska J, Chagnes A, et al. Interphase chemistry of Si electrodes used as anodes in Li-ion batteries[J]. Applied Surface Science, 2013, 266: 5-16.

[96]Madec L, Xia J, Petibon R, et al. Effect of sulfate electrolyte additives on LiNi1/3Mn1/3Co1/3O2/graphite pouch cell lifetime: correlation between XPS surface studies and electrochemical test results[J]. The Journal of Physical Chemistry C, 2014, 118(51): 29608-29622.

[97]Yu C, Lin X, Chen X, et al. Suppressing the side reaction by a selective blocking layer to enhance the performance of Si-based anodes[J]. Nano Letters, 2020, 20(7): 5176-5184.

[98]Keefe A S, Weber R, Hill I G, et al. Studies of the SEI layers in Li (Ni0.5Mn0.3Co0.2) O2/artificial graphite cells after formation and after cycling[J]. Journal of The Electrochemical Society, 2020, 167(12): 120507-120521.

[99]Song J, Guo S, Kou L, et al. Controllable synthesis Honeycomb‐like structure SiOx/C composites as anode for high-performance lithium-ion batteries[J]. Vacuum, 2021, 186: 110044-110052.

[100]Nandan R, Takamori N, Higashimine K, et al. Confronting the Issues Associated with the Practical Implementation of Zinc Blende-type SiC Anodes for Efficient and Reversible Storage of Lithium Ions[J]. ACS Applied Energy Materials, 2024, 7(6): 2088-2100.

[101]Lin Y, Zha Z, Hui X, et al. Bio-template induced SiOx nanoparticles dispersed in carbon with enhanced Li storage performance[J]. Materials Today Chemistry, 2024, 36: 101925-101955.

[102]Han W, Wu S, Xu X, et al. Constructing flexible carbon-graphite network for enhancing durability of silicon anodes in Li-ion battery[J]. Journal of Electroanalytical Chemistry, 2024, 953: 117951-117968.

[103]Kong X, Xi Z, Jiang Y, et al. Fe-NC decorated fibrous network-wrapped biomass SiOx/C with gradient conductive structure for high performance Li-ion battery anodes[J]. Chemical Engineering Journal, 2023, 477: 147178-147188.

[104]Thapa A, Gao H. Silicon-Based Anode and Its Full-Cell Performance Test Using a High-Capacity Pouch Cell[J]. Journal of The Electrochemical Society, 2024, 171(1): 010504-010524.

中图分类号:

 TM191    

开放日期:

 2024-06-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式