论文中文题名: |
注N2/CO2对含瓦斯煤解吸动力学特性影响的研究
|
姓名: |
白杨
|
学号: |
17120089015
|
保密级别: |
保密(4年后开放)
|
论文语种: |
chi
|
学科代码: |
083700
|
学科名称: |
工学 - 安全科学与工程
|
学生类型: |
博士
|
学位级别: |
工学博士
|
学位年度: |
2021
|
培养单位: |
西安科技大学
|
院系: |
安全科学与工程学院
|
专业: |
安全科学与工程
|
研究方向: |
矿井瓦斯防治
|
第一导师姓名: |
李树刚
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2021-06-17
|
论文答辩日期: |
2021-06-03
|
论文外文题名: |
Effect of N2/CO2 injection on desorption kinetics of coal containing gas
|
论文中文关键词: |
解吸动力学 ; 注N2/CO2促进解吸 ; 含瓦斯煤构型 ; 分子模拟 ; 扩散系数
|
论文外文关键词: |
Desorption kinetics ; N2/CO2 injection to promote desorption ; Coal model containing adsorbed methane ; Molecular simulation ; Diffusion coefficient
|
论文中文摘要: |
︿
我国大部分矿区煤层渗透率较低,使得采用常规钻孔预抽煤层瓦斯效果不理想,为提高煤层瓦斯预抽率、缩短预抽时间,强化增透抽采瓦斯是瓦斯治理的重要方向。注气驱替是强化抽采瓦斯的有效方法,注气促进解吸过程中气体分子与含瓦斯煤的相互作用机制及瓦斯解吸扩散动力学效应有待于进一步完善。论文通过理论分析、实验研究和数值模拟结合的方法,研究了注N2/CO2作用下含瓦斯煤解吸动力学机理。
采用工业分析、显微组分分析、氮吸附实验,对煤样基本组成及孔隙分布特征进行测定,应用PCTPro髙压吸附仪和Trace 1300型气相色谱仪实验平台,对含瓦斯煤开展不同温度、注气压力条件下煤体瓦斯解吸实验,实时监测气体成分、解吸量、解吸时间,分析了注CO2、N2过程中瓦斯解吸扩散动力学特性及规律,注入CO2和N2对CH4解吸速率的影响程度不同,注入CO2后CH4解吸速率更高。明确了准一级解吸动力学模型更适合描述煤对瓦斯的解吸动力学过程,Elovich动力学模型更适合描述注N2、CO2过程中瓦斯解吸动力学特性。揭示了N2、CO2注气过程中煤体瓦斯解吸规律的温度及压力效应,明确了温度及注气压力因素影响下注N2/CO2对CH4气体解吸动力学特性。
基于分子动力学模拟方法,运用Materials Studio分子模拟软件,构建反映实际结构的煤分子模型,采用巨正则蒙特卡洛方法模拟不同温度、注气组分、注气压力条件下含瓦斯煤结构中CH4解吸扩散行为,从微观角度研究注气过程中气体分子间相互作用特征及规律,重点分析了解吸构型中气体分子相对浓度、扩散系数、速度分布的差异。含瓦斯煤结构中注入CO2/N2后,随着温度/注气压力升高,真空层中CH4相对浓度和速度均升高,温度/注气压力与CH4扩散系数均呈线性正相关关系。
综合实验及模拟结果,确定了最佳注气气体、温度及压力。在本文实验和模拟条件范围内,N2最佳注气温度范围为40~50℃,最佳注气压力为瓦斯吸附饱和压力的3倍,CO2最佳注气温度范围为30~50℃,最佳注气压力为瓦斯吸附饱和压力的2~3倍,注CO2促解效果优于N2。结合注气作用下瓦斯扩散系数随时间变化规律,分析了注气过程中瓦斯扩散时效特性,构建了注气促解条件下煤体瓦斯扩散动力学修正模型,明晰了注CO2、N2条件下含瓦斯煤解吸动力学效应。
论文研究成果为明确注气对瓦斯解吸的作用机制提供一定理论依据,对注气驱替现场应用有较大的工程实践意义,可缩短煤层瓦斯预抽时间,大幅提高煤层瓦斯预抽率。
﹀
|
论文外文摘要: |
︿
The permeability of coal seam in most coal mines in our country is low, so it is not ideal to use conventional drilling to pre-extract gas from coal seam. To improve the pre-drainage rates of coal seam gas and shorten the pre-drainage time, gas injection flooding technology is an effective method to strengthen gas drainage. The interaction mechanism between gas and coal and the kinetic effect of gas desorption and diffusion in gas injection process need further exploration. By means of theoretical analysis, experimental study and numerical simulation, this paper studied the desorption kinetics mechanism of coal containing gas under the action of N2/CO2 injection.
The basic physical properties and pore distribution characteristics of the coal samples were determined by using industrial analysis, micro-component analysis and nitrogen adsorption experiments. The PCTPro high-pressure adsorption instrument and Trace 1300 gas chromatograph were used to carry out gas desorption experiments under different temperature and gas injection pressure conditions, and the gas composition, desorption amount and desorption time were monitored. The kinetic characteristics and laws of gas desorption and diffusion during CO2 and N2 injection were quantified. The effect of N2/CO2 injection on the desorption rate of CH4 is different, and the desorption rate of CH4 is higher after CO2 injection. And the desorption kinetic model applicable to the process of N2 and CO2 injection was clarified. The quasi-first-order desorption kinetic model is more suitable for describing the gas desorption process, and the Elovich kinetic model is more suitable for describing the gas desorption kinetic characteristics in the process of N2/CO2 injection. And revealing the temperature-pressure effect of the gas desorption pattern of coal body during N2 and CO2 injection, and the kinetic characteristics of CH4 gas desorption by N2/CO2 injection under the influence of temperature and injection pressure.
Based on the molecular dynamics simulation method, the molecular model of coal reflecting the actual coal structure was constructed by using Materials Studio molecular simulation software. The GCMC method was utilized to simulate the desorption and diffusion behavior of CH4 in the gas-bearing coal structure under different conditions of temperature, gas injection components and gas injection pressure. The microscopic interaction between gas molecules during the gas injection process was studied from a microscopic perspective. The analysis focused on the differences between the relative concentrations, diffusion coefficients and velocity distribution of gas molecules in desorption configurations. The relative concentration and velocity of CH4 in the vacuum layer increase with the increase of temperature/gas injection pressure after the injection of CO2/N2 into the coal structure containing gas. There is a positive linear correlation between temperature/gas injection pressure and the diffusion coefficient of CH4.
The optimum gas, temperature and pressure for gas injection were determined based on the results of experiment and simulation. Within the range of experimental and simulated conditions in this paper, the optimal temperature range of N2 injection is 40~50℃, and the optimal gas injection pressure is 3 times of the gas adsorption saturation pressure. The optimal temperature range of CO2 injection is 30~50℃, and the optimal gas injection pressure is 2~3 times of the saturation pressure of gas adsorption. The effect of CO2 injection is better than that of N2. Combined with the change law of gas diffusion coefficient with time under the effect of gas injection, the aging characteristics of gas diffusion during gas injection were analyzed, and the modified model of gas diffusion kinetics of coal bodies under the conditions of gas injection and gas promotion was constructed to clarify the gas kinetics effect of gas-bearing coal during the process of CO2 and N2 injection and promotion.
The research results of this paper provide a theoretical basis for clarifying the mechanism of gas injection on gas desorption. The research results have engineering practical significance for the field application of gas injection displacement. It can also shorten the pre-drainage time of coal seam gas and greatly improve the pre-drainage rate of coal seam gas.
﹀
|
参考文献: |
︿
[1] 谢和平, 李存宝, 高明忠, 等. 深部原位岩石力学构想与初步探索[J]. 岩石力学与工程学报, 2021, 40(2): 217-232. [2] 袁亮. 我国深部煤与瓦斯共采战略思考[J]. 煤炭学报, 2016, 41(1): 1-6. [3] 何满潮. 深部的概念体系及工程评价指标[J]. 岩石力学与工程学报, 2005,24(16):2854-2858. [4] 谢和平, 周宏伟, 薛东杰, 等. 我国煤与瓦斯共采:理论、技术与工程[J]. 煤炭学报,2014, 39(8): 1391-1397. [5] Gale J J, Freund P. Coalbed Methane Enhancement with CO2 Sequestration Worldwide Potential[J]. Environmental Geosciences, 2010, 8(3):210-217. [6] 袁亮. 我国煤炭资源高效回收及节能战略研究[J]. 中国矿业大学学报(社会科学版),2018, 20(1): 3-12. [7] 林海飞, 李树刚, 赵鹏翔, 等. 我国煤矿覆岩采动裂隙带卸压瓦斯抽采技术研究进展[J]. 煤炭科学技术, 2018, 46(1): 28-35. [8] 王伟, 程远平, 袁亮, 等. 深部近距离上保护层底板裂隙演化及卸压瓦斯抽采时效性[J]. 煤炭学报, 2016, 41(1): 138-148. [9] 周红星, 程远平, 刘洪永, 等. 突出煤层穿层钻孔群增透增流作用机制[J]. 采矿与安全工程学报, 2011, 28(4): 618-622. [10] 翟成, 李贤忠, 李全贵. 煤层脉动水力压裂卸压增透技术研究与应用[J]. 煤炭学报,2011, 36(12): 1996-2001. [11] 李波, 张路路, 孙东辉,等. 水力冲孔措施研究进展及存在问题分析[J]. 河南理工大学学报, 2016, 35(1): 16-22. [12] 宋维源, 王忠峰, 唐巨鹏. 水力割缝增透抽采煤层瓦斯原理及应用[J]. 中国安全科学学报, 2011, 21(4): 78-82. [13] 李胜, 罗明坤, 范超军,等. 基于核磁共振和低温氮吸附的煤层酸化增透效果定量表征[J]. 煤炭学报, 2017, 42(7): 1748-1756. [14] 刘健, 刘泽功, 高魁,等. 深孔定向聚能爆破增透机制模拟试验研究及现场应用[J].岩石力学与工程学报, 2014, 33(12): 2490-2496. [15] 张永民, 邱爱慈, 秦勇. 电脉冲可控冲击波煤储层增透原理与工程实践[J]. 煤炭科学技术, 2017, 45(9): 79-85. [16] 李守国, 吕进国, 贾宝山,等. 高压空气爆破低透气性煤层增透技术应用研究[J]. 中国安全科学学报, 2016, 26(4): 119-125. [17] Bilz M, Uhlmann E. Dry and residue-free cutting with high-pressure CO2 blasting[J].Advanced Materials Research, 2014, 1018:115-122. [18] 马丕梁, 蔡成功. 我国煤矿瓦斯综合治理现状及发展战略[J]. 煤炭科学技术, 2007,35(12):7-11. [19] Taylor R S, Lestz R S, Wilson L, et al. Liquid petroleum gas fracturing fluids for unconventional gas reservoirs[J]. Journal of Canadian Petroleum Technology, 2007,46(12): 68-72. [20] 蔡承政, 李根生, 黄中伟,等. 液氮对页岩的致裂效应及在压裂中应用分析[J]. 中国石油大学学报:自然科学版, 2016, 40(1): 79-85. [21] 毛金成, 张照阳, 赵家辉, 等. 无水压裂液技术研究进展及前景展望[J]. 中国科学:物理学、力学、天文学, 2017,47(11) :48-54. [22] 杨宏民, 冯朝阳, 陈立伟. 煤层注氮模拟实验中的置换-驱替效应及其转化机制分析[J]. 煤炭学报, 2016, 41(9):2246-2250. [23] Aksu Z. Biosorption of reactive dyes by dried activated sludge: equilibrium and kinetic modeling[J].Biochemical Engineering Journal, 2001, 7(1): 79-84. [ 24 ] Ho Y, McKay G. Pseudo-second order model for sorption processes[J]. Process Biochemist, 1999, 34: 451-453. [25] 贾海红, 韩宝平, 马卫兴, 等. 壳聚糖吸附溴酚蓝的动力学及热力学研究[J].环境科学与技术, 2011, 34(5): 43-60. [26] 张继义,王利平,常玉枝. 麦草对水中苯胺的吸附平衡、热力学和动力学研究[J].农业系统科学与综合研究, 2011, 27(3): 335-343. [27] 王英英, 温华, 史小云,等. 土壤矿质胶体对镉的吸附解吸热力学与动力学研究[J].安全与环境学报, 2006, 6(3): 72-76. [28] 聂百胜, 杨涛, 李祥春,等. 煤粒瓦斯解吸扩散规律实验[J]. 中国矿业大学学报,2013,42(6): 975-981. [29 ] 李树刚, 白杨, 林海飞, 等. 温度对煤吸附瓦斯的动力学特性影响实验研究[J].西安科技大学学报, 2018, 38(2): 181-186+272. [30] 姜永东, 宋晓, 崔悦震, 等. 声场作用下煤中甲烷解吸扩散的特性[J].煤炭学报, 2015, 40(3): 623-628. [31] 姜永东, 宋超, 王苏健, 等. 超声波激励下煤层气解吸扩散特性的研究[J]. 煤炭科学技术, 2020, 48(3): 174-179. [32 ] 杨明, 柳磊, 刘佳佳, 等. 围压对高阶煤瓦斯吸附规律影响的LNMR 实验研究[J].采矿与安全工程学报, 2020, 37(6): 1274-1281. [33 ] 杨涛, 顾勇攀, 戴林超, 等. 铁磁流体对煤粒瓦斯解吸性能影响实验研究[J]. 中国安全生产科学技术, 2020, 16(11): 117-122. [34] 李志强, 王登科, 宋党育. 新扩散模型下温度对煤粒瓦斯动态扩散系数的影响[J].煤炭学报, 2015, 40(5): 1055-1064. [35 ] 陈向军, 程远平. 注水对煤层吸附瓦斯解吸影响的试验研究[J]. 煤炭科学技术, 2014, 42(6): 96-99. [36 ] 陈向军, 赵伞, 司朝霞, 等. 不同变质程度煤孔隙结构分形特征对瓦斯吸附性影响[J]. 煤炭科学技术, 2020, 48(2): 118-124. [37] 高正, 马东民, 陈跃, 等. 含水率对不同宏观煤岩类型甲烷吸附/解吸特征的影响[J].煤炭科学技术, 2020, 48(8): 97-105. [38 ] 张遵国, 赵丹, 陈毅. 不同含水率条件下软煤等温吸附特性及膨胀变形特性[J]. 煤炭学报, 2020, 45(11): 3817-3824. [39] 赵东, 冯增朝, 赵阳升. 基于吸附动力学理论分析水分对煤体吸附特性的影响[J].煤炭学报, 2014, 39(3):518-523. [40] 郭俊庆, 康天合, 张惠轩. 电化学强化无烟煤瓦斯解吸特性及其机理[J]. 煤炭学报,2018, 43(S1): 210-218. [41] 刘彦伟, 刘明举. 粒度对软硬煤粒瓦斯解吸扩散差异性的影响[J]. 煤炭学报, 2015,40(3): 579-587. [42] 刘彦伟, 魏建平, 何志刚, 等. 温度对煤粒瓦斯扩散动态过程的影响规律与机理[J].煤炭学报, 2013, 38(S1): 100-105. [43] 李祥春, 李忠备, 张良, 等. 不同煤阶煤样孔隙结构表征及其对瓦斯解吸扩散的影响[J]. 煤炭学报, 2019, 44(S1): 142-156. [44] 李相臣, 康毅力, 尹中山, 等. 川南煤层甲烷解吸动力学影响因素实验研究[J]. 煤田地质与勘探, 2013, 49(4): 31-34. [45] 韩恩光, 刘志伟, 冉永进, 等. 不同粒度煤的瓦斯解吸扩散规律实验研究[J]. 中国安全生产科学技术, 2019, 15(12): 83-87. [46] 王登科, 王洪磊, 魏建平. 颗粒煤的多扩散系数瓦斯解吸模型及扩散参数反演研究[J]. 中国安全生产科学技术, 2016, 7(12): 10-15. [47] 秦跃平, 郝永江, 刘鹏, 等. 煤屑瓦斯菲克扩散的数值模拟[J]. 辽宁工程大学学报,2014, 7(33): 871-876. [48] Alexeev A D, Feldman E P, Vasilenko T A. Methane desorption from a coal-bed[J]. Fuel,2007, 86(16): 2574-2580. [49 ] 程远平, 雷杨. 构造煤和煤与瓦斯突出关系的研究[J]. 煤炭学报, 2021, 46(1): 180-198. [50] 陈昌国, 鲜晓红, 杜云贵, 等. 煤吸附与解吸甲烷的动力学规律[J]. 煤炭转化, 1996,19(1): 68-71. [51] Douglas M S, Frank L W. Direct method of determining the methane content of coal -a modification [J]. Fuel, 1984, 63(3): 425-427. [52] 易俊, 姜永东, 鲜学福. 煤层微孔中甲烷的简化双扩散数学模型[J]. 煤炭学报, 2009,34(3): 355-366. [53] 李育辉, 崔永君, 钟玲文, 等. 煤基质中甲烷扩散动力学特性研究[J]. 煤田地质与勘探, 2005, 33(6): 31-34. [54] 徐继发, 王升辉, 孙婷婷, 等. 世界煤层气产业发展概况[J]. 中国矿业, 2012, 21(9):24-28. [55] Li X Y, Wang Z M, Wan X, et al. Numerical Simulation of Gas Injection for CBM Openhole Cavity Completion Considering the Coal Vertical Fracture System[J]. Applied Mechanics and Materials, 2011, 101-102: 298-301. [56] 徐鑫, 梁萌. 提高煤层气采收率的方法和技术进展[J]. 中国煤层气, 2016, 13(3):3-6. [57] Wang L, Wang Z, Li K, et al. Comparison of enhanced coalbed methane recovery by pure N2 and CO2 injection: Experimental observations and numerical simulation[J]. Journal of Natural Gas Science and Engineering, 2015, 23: 363-372. [58] 康志勤, 李翔, 李伟, 等. 煤体结构与甲烷吸附/解吸规律相关性实验研究及启示[J].煤炭学报, 2018, 43(5): 1400-1407. [59] 陶云奇, 冯丹, 马耕, 等. 水力冲孔物理模拟试验及其卸压增透效果研究[J]. 煤炭科学技术, 2017, 45(6): 55-60. [60] Tu Y, Xie C L, Li R M, et al. The Contrast Experimental Study of Displacing Coalbed Methane by Injecting Carbon Dioxide or Nitrogen[J]. Advanced Materials Research, 2012,616-618: 778-785. [61] 范超军, 李胜, 罗明坤, 等. 基于流-固-热耦合的深部煤层气抽采数值模拟[J]. 煤炭学报, 2016, 41(12): 3076-3085. [62] 方志明, 李小春, 李洪, 等. 混合气体驱替煤层气技术的可行性研究[J]. 岩土力学,2010, 31(10): 3223-3229. [63] Wang L, Wang Z, Li K, et al. Comparison of enhanced coalbed methane recovery by pure N2 and CO2 injection: Experimental observations and numerical simulation[J]. Journal of Natural Gas science & Engineering, 2015, 23: 363-372. [64] 吴世跃, 郭勇义. 关于注气开发煤层气机理的探讨[J]. 太原理工大学学报. 2000,31(4): 361-363. [65] Zhang L, Ye Z, Tang J, et al. Comparative Experiment Study on Nitrogen Injection and Free Desorption of Methane-Rich Bituminous Coal Under Triaxial Loading[J]. Archives of Mining Sciences, 2017, 62(4):911-928. [66] Irfan M F, Usman M R, Kusakabe K. Coal gasification in CO2, atmosphere and its kinetics since 1948: A brief review[J]. Energy, 2011, 36(1):12-40. [67] 吴世跃, 郭勇义. 关于注气开采煤层气增产机制的研究[J]. 煤炭学报, 2001, 26(2):199-203. [68] 吴世跃, 赵文. 自然降压开采和注气开采煤层气的效果评价[J]. 中国矿业, 2004,13(10): 76-79. [69] 李祥春, 郭勇义, 吴世跃, 等. 煤体有效应力与膨胀应力之间关系的分析[J]. 辽宁工程技术大学学报, 2007, 26(4): 535-537. [70] 李祥春, 郭勇义, 吴世跃. 煤吸附膨胀变形与空隙率、渗透率关系的分析[J]. 太原理工大学学报, 2005, 36(3): 264-266. [71] 牛煜, 吴世跃, 郭勇义, 等. CO2地下处置与煤层气开采的数值模拟[J]. 太原理工大学学报, 2009, 40(6): 621-624. [72] 张美红, 吴世跃, 李川田. 煤系地层注入CO2开采煤层气质交换的机理[J]. 煤炭学报, 2013, 38(7): 1197-1200. [73] 马志宏, 郭勇义, 吴世跃. 注入二氧化碳及氮气驱替煤层气机理的实验研究[J].太原理工大学学报, 2001, 32(4): 335-338. [74] Han F, Busch A, Krooss B M, et al. CH4 and CO2 sorption isotherms and kinetics for different size fractions of two coals[J]. Fuel, 2013,108(6):137-142. [75] Wang K, Zang J, Feng Y, et al. Effects of moisture on diffusion kinetics in Chinese coals during methane desorption[J]. Journal of Natural Gas Science and Engineering, 2014, 21(12):1005-1014. [76] Wang Z, Tang X, Yue G, et al. Physical simulation of temperature influence on methane sorption and kinetics in coal: Benefits of temperature under 273.15 K[J]. Fuel, 2015,158(2): 207-216. [77] 张子戌, 刘高峰, 张小东, 等. CH4/CO2不同浓度多组分气体的吸附-解吸实验[J]. 煤炭学报, 2009, 33(4): 551-555. [78] 刘高峰, 张子戌, 张小东, 等. 气肥煤与焦煤的孔隙分布规律及其吸附解吸特征[J].岩石力学与工程学报, 2009, 28(8): 1587-1592. [79] 高莎莎, 王延斌, 贾立龙, 等. 温度及压力对CO2置换CH4的影响[J]. 中国矿业大学学报, 2013, 42(5): 801-805+837. [80] 吴迪, 孙可明. 不同温度条件下型煤吸附CH4/CO2混合气的实验研究[J].岩石力学与工程学报, 2013, 32(S2): 3291-3296. [81] 涂乙, 谢传礼, 李武广,等. 煤层对CO2、CH4和N2吸附/解吸规律研究[J]. 煤炭科学技术, 2012, 40(2): 70-72. [82] Syed A, Durucan S, Shi J Q, et al. Flue Gas Injection for CO2 Storage and Enhanced Coalbed Methane Recovery: Mixed Gas Sorption and Swelling Characteristics of Coals[J]. Energy Procedia, 2013, 37(2): 6738-6745. [83] Wu D , Liu X , Liang B , et al. Experiments on Displacing Methane in Coal by Injecting Supercritical Carbon Dioxide[J]. Energy & Fuels, 2018, 32(12):12766-12771. [84] Wang Q, Li W, Zhang D, et al. Influence of high-pressure CO2, exposure on adsorption kinetics of methane and CO2, on coals[J]. Journal of Natural Gas Science & Engineering,2016, 34: 811-822. [85] Huo P, Zhang D, Yang Z, et al. CO2 geological sequestration: Displacement behavior of shale gas methane by carbon dioxide injection[J]. International Journal of Greenhouse Gas Control, 2017, 66(9):48-59. [86] 陈立伟, 杨天鸿, 杨宏民, 等. 煤层注N2促排瓦斯时效性实验研究[J]. 东北大学学报(自然科学版), 2017, 38(7):1026-1030. [87] 杨天鸿, 陈立伟, 杨宏民, 等. 注二氧化碳促排煤层瓦斯机制转化过程实验研究[J]. 东北大学学报(自然科学版), 2020, 41(5): 623-628. [88] Yu H , Yuan J , Guo W , et al. A preliminary laboratory experiment on coalbed methane displacement with carbon dioxide injection[J]. International Journal of Coal Geology, 2008, 73(2):156-166. [89] Jia Lin, Ren T, Wang G, et al. Experimental investigation of N2 injection to enhance gas drainage in CO2-rich low permeable seam[J]. Fuel, 2018, 215: 665-674. [90] 李凤龙. 弱吸附性氮气对煤中甲烷的置换效应[D]. 河南理工大学, 2015. [91] Bhowmik S, Dutta P. Investigation into the Methane Displacement Behavior by Cyclic,Pure Carbon Dioxide Injection in Dry, Powdered, Bituminous Indian Coals[J].Energy & Fuels, 2011, 25(6): 2730-2740. [92] 郭辉, 李想, 曾云, 等. CO2驱替提高煤层气开采效果注入参数的实验研究[J]. 当代化工, 2016, 45(11): 2585-2588. [93] 谢启红, 邵先杰, 战南, 等. 注CO2驱替煤层气过程的影响因素分析[J]. 辽宁石油化工大学学报, 2015, 35(6): 38-41+48. [94] 陈新忠, 张丽萍. 温度场对注气驱替煤层气运移影响的数值分析[J]. 采矿与安全工程学报, 2014, 31(5): 803-808. [95] Wang L ,Cheng Y ,Wang Y .Laboratory Study of the Displacement Coalbed CH4 Process and Efficiency of CO2 and N2 Injection[J]. The Scientific World Journal, 2014, 5: 242947. [96] Zhou B, Xu J, Han F, et al. Pressure of different gases injected into large-scale coal matrix: Analysis of time–space dependence and prediction using light gradient boosting machine[J]. Fuel, 2020, 279:118448. [97] 郝定溢, 叶志伟, 方树林. 我国注气驱替煤层瓦斯技术应用现状与展望[J]. 中国矿业, 2016, 25(7): 78-81. [98] Kumar H, Elsworth D, Mathews J P, et al. Effect of CO2 injection on heterogeneously permeable coalbed reservoirs[J]. Fuel, 2014, 135: 509-521. [99] Wang L, He Y, Wang Q, et al. Multiphase flow characteristics and EOR mechanism of immiscible CO2 water-alternating-gas injection after continuous CO2 injection: A microscale visual investigation[J]. Fuel, 2020, 282:118689. [100] 王伟, 方志明, 李小春. 煤样尺度的二氧化碳驱替煤层气数值模拟[J]. 中国矿业,2019, 28(2): 121-125. [101] Kan J Y, Sun Y F, Dong B C, et al. Numerical simulation of gas production from permafrost hydrate deposits enhanced with CO2/N2 injection[J]. Energy, 2021, 221:119919. [102] 马波, 许江, 刘龙荣, 等. 抽采长度对煤层气开采效果的影响分析[J]. 岩石力学与工程学报, 2017, 36(1): 175-185. [103] Zhou L, Feng Q, Chen Z, et al. Modeling and Upscaling of Binary Gas Coal Interactions in CO2 Enhanced Coalbed Methane Recovery[J]. Procedia Environmental Sciences, 2012,4(12): 926-939. [104] 吴金涛, 侯健, 陆雪皎, 等. 注气驱赶煤层气数值模拟[J]. 计算物理,2014,31(6):681-689. [105] Jessen K, Tang G Q, Kovscek A R. Laboratory and simulation investigation of enhanced coalbed methane recovery by gas injection[J]. Transport in Porous Media, 2008,73(2):141-159. [106] 杨宏民, 魏晨慧, 王兆丰, 等. 基于多物理场耦合的井下注气驱替煤层甲烷的数值模拟[J]. 煤炭学报, 2010, 35(S1): 109-114. [107] 杨宏民, 冯朝阳, 陈立伟. 煤层注氮模拟实验中的置换-驱赶效应及其转化机制分析[J]. 煤炭学报, 2016, 41(9):2246-2250. [108] 王公达, Tingxiang, 齐庆新, 等. 二氧化碳/氮气驱赶煤层瓦斯过程的数学模型[J].岩石力学与工程学报, 2016, 35(S2):3930-3936. [109] Kong L, Zou R, Bi W, et al. Selective adsorption of CO2/CH4 and CO2/N2 within a charged metal-organic framework[J]. Journal of Materials Chemistry A, 2014, 2(42): 139–142. [110] Topolnicki J, Kudasik M, Dutka B. Simplified model of the CO2/CH4 exchange sorption process[J]. Fuel Processing Technology, 2013, 113: 67-74. [111] Eshkalak M O, Alshalabi E W, Sanaei A, et al. Simulation study on the CO2-driven enhanced gas recovery with sequestration versus the refracturing treatment of horizontal wells in the U.S. unconventional shale reservoirs[J]. Journal of Natural Gas Science & Engineering, 2014, 21: 1015-1024. [112] Sun X, Zhang Y, Li K, et al. A new mathematical simulation model for gas injection enhanced coalbed methane recovery[J]. Fuel, 2016, 183(12): 478-488. [113] 程君, 周安宁, 李建伟. 煤结构研究进展[J]. 煤炭转化, 2001, 24(4): 1-6. [114] Given P H. The distribution of hydroxyl in coal and its relation to coal structure[J]. Fuel, 1960, 39: 147. [115] 朱培之, 高晋升. 煤化学[M]. 上海: 上海科学技术出版社, 1984. [116] Shinn J H. Towards an understanding of the coal structure [J]. Fuel,1984,63:483-497. [117] 陈昌国, 鲜学福. 煤结构的研究及其发展[J]. 煤炭转化, 1998, 21(2): 7-13. [118] 陈文敏, 张自勋. 煤化学基础[M]. 北京: 煤炭工业出版社, 1993: 212. [119] Matranga K R, Myers A L, Glandt E D. Storage of natural gas by adsorption on activated carbon[J]. Chemical Engineering Science, 1992, 47(7):1569-1579. [120] 王擎, 李础安, 潘朔, 等. CH4和CO2在油页岩中矿物质结构内部吸附的分子模拟 [J]. 燃料化学学报, 2017, 45(11):1310-1316. [121] Liu Y Y, Wilcox J. Effects of surface heterogeneity on the adsorption of CO2 in microporous carbons[J]. Environmental Science & Technology, 2012, 46(3):1940-1947. [122] Mosher, K, He J, Liu Y, et al. Molecular simulation of methane adsorption in micro- and mesoporous carbons with applications to coal and gas shale systems[J]. International Journal of Coal Geology, 2013, 109(2): 36-44. [123] Li S G, Bai Y, Lin H F, et al. Molecular simulation of adsorption of gas in coal slit model under the action of liquid nitrogen[J]. Fuel, 2019, 255:115775. [124] 李树刚, 白杨, 林海飞, 等. CH4, CO2 和N2 多组分气体在煤分子中吸附热力学特性的分子模拟[J]. 煤炭学报, 2018, 43(9):2476-2483. [125 ] 李树刚, 白杨, 林海飞, 等. N2/CO2 注入压力对含瓦斯煤岩中甲烷解吸的影响[J].天然气工业, 2021, 41(3): 80-89. [126] Bai Y, Lin H F, Li S G, et al. Molecular simulation of N2 and CO2 injection into a coal model containing adsorbed methane at different temperatures[J]. Energy, 2021, 219:119686. [127] Hu H, Du L, Xing Y, et al. Detailed study on self- and multicomponent diffusion of CO2-CH4, gas mixture in coal by molecular simulation[J]. Fuel, 2017, 187(1): 220-228. [128] You J, Tian L, Zhang C, et al. Adsorption behavior of carbon dioxide and methane in bituminous coal: a molecular simulation study[J]. Chinese Journal of Chemical Engineering, 2016, 24(9): 1275-1282. [129] 王宝俊, 章丽娜, 凌丽霞, 等. 煤分子结构对煤层气吸附与扩散行为的影响[J].化工学报, 2016, 67(6):2548-2557. [130] Liu Y, Zhu Y, Liu S, et al. Temperature effect on gas adsorption capacity in different sized pores of coal: Experiment and numerical modeling[J]. Journal of Petroleum Science & Engineering, 2018, 165: 821–830. [131] Ju Y, He J, Chang E, et al. Quantification of CH4 adsorption capacity in kerogen-rich reservoir shales: An experimental investigation and molecular dynamic simulation[J]. Energy, 2018, 170: 411-422. [132] Tao H, Zhang L, Liu Q, et al. Competitive Adsorption and Selective Diffusion of CH4 and the Intruding Gases in Coal Vitrinite[J]. Energy & Fuels, 2019, 33(8):6971-6982. [133] Liu X Q, Li M J, Zhang C H, et al. Mechanistic insight into the optimal recovery efficiency of CBM in sub-bituminous coal through molecular simulation[J]. Fuel, 2020,266: 117137. [134] 相建华, 曾凡桂, 梁虎珍, 等. 兖州煤大分子结构模型构建及其分子模拟[J]. 燃料化学学报, 2011, 39(7): 481-488. [135] 曹达鹏, 高广图, 汪文川. 巨正则系综Monte Carlo方法模拟甲烷在活性炭孔中的吸附存储[J]. 化工学报, 2000, 51(1): 23-30. [136] 周婧, 邵长金, 杨振清, 等. 含液态水情况下碳纳米管吸附煤层气的分子动力学研究[J]. 中国煤层气, 2012, 9(2): 44-47. [137 ] 郭德勇, 郭晓洁, 陈培红, 等. 构造煤分子结构的动力损伤对瓦斯吸附的影响[J].煤炭学报, 2020, 45(7): 2610-2618. [138 ] Roxana M, Alipio G, RaúlEspejel M, et al. Adsorption of CO2 on graphene surface modified with defects[J]. Computational Condensed Matter, 2018, 16: e00315. [139] 唐书恒, 汤达祯, 杨起. 二元气体等温吸附-解吸中气分的变化规律[J]. 中国矿业大学学报, 2004, 33(4): 86-90. [140] 陈刘瑜, 李希建, 毕娟, 等. 黔北构造煤与原生结构煤解吸初期特征研究[J]. 煤炭科学技术, 2019, 47(2): 107-113. [141] Ho Y S, McKay G. Pseudo-second order model for sorption processes[J]. Process Biochemist, 1999, 34: 451-453. [142] 孔黎明, 张婷, 王佩德, 等. 活性炭纤维吸附石化废水中苯酚的吸附平衡及动力学[J]. 化工学报, 2015, 66(12): 4874-4882. [143] Plazinski W, Rudzinski W, Plazinska A. Theoretical models of sorption kinetics including a surface reaction mechanism: a review[J]. Advances in Colloid & Interface Science, 2009,152(1-2): 2-13. [144] Aksu Z. Biosorption of reactive dyes by dried activated sludge: equilibrium and kinetic modeling[J].Biochemical Engineering Journal, 2001, 7(1): 79-84. [145] 左罗, 胡志明, 崔亚星, 等. 页岩高温高压吸附动力学实验研究[J]. 煤炭学报, 2016, 41(8): 2017-2023. [146] Zuo L, Hu Z M, Cui Y X, et al. High temperature and pressure methane adsorption characteristics and adsorption kinetics of shale[J]. Journal of China Coal Society, 2016,41(8): 2017-2023. [147 ] 周尊隆, 卢媛, 孙红文, 等. 菲在不同性质黑炭上的吸附动力学和等温线研究[J].农业环境科学学报, 2010, 29(3): 476-480. [148] 聂百胜, 郭勇义. 煤粒瓦斯扩散的数学物理模型[J]. 辽宁工程技术大学学报:自然科学版, 1999, 18(6):582-585. [149] Xu H, Tang D Z, Zhao J L, et al. A new laboratory method for accurate measurement of the methane diffusion coefficient and its influencing factors in the coal matrix[J]. Fuel,2015, 158: 239-247. [150] Gao D, Hong L, Wang J. Molecular simulation of gas adsorption characteristics and diffusion in micropores of lignite[J]. Fuel, 2020, 269:117443. [151 ] 周西华, 韩明旭, 白刚, 等. CO2 注气压力对瓦斯扩散系数影响规律实验研究[J].煤田地质与勘探, 2021, 49(2): 1-7. [152] Allen M P, Tildesley D J. Computer Simulation of Liquids[M]. New York: Oxford University Press, 1987: 110-112. [153] 阳庆元, 刘大欢, 仲崇立. 金属-有机骨架材料的计算化学研究[J]. 化工学报, 2009,4(60): 805-819. [154] 殷开梁. 分子动力学模拟的若干基础应用和理论[D]. 浙江: 浙江大学, 2006. [155] 王刚, 程卫民, 潘刚. 温度对煤体吸附瓦斯性能影响的研究[J].安全与环境学报,2012, 12(5): 231-234. [156] Tang X, Wang Z, Ripepi N, et al. Adsorption Affinity of Different Types of Coal: Mean Isosteric Heat of Adsorption[J]. Energy & Fuels, 2015, 29(6): 3609-3615. [157] 赵东, 冯增朝, 赵阳升. 煤层瓦斯解吸影响因素的试验研究[J]. 煤炭科学技术, 2010, 38(5): 43-46. [158] 曾社教, 马东民, 王鹏刚. 温度变化对煤层气解吸效果的影响[J]. 西安科技大学学报, 2009, 29(4): 449-453. [159] Kelemen S R, Kwiatek L M. Physical properties of selected block Argonne Premium bituminous coal related to CO2, CH4, and N2 adsorption[J]. International Journal of Coal Geology, 2009, 77(1): 2-9. [160] Wei Z, Cheng Y, Jiang H, et al. Modeling and experiments for transient diffusion coefficients in the desorption of methane through coal powders[J]. International Journal of Heat and Mass Transfer, 2017, 110(7): 845-854. [161] Saghafi A, Faiz M, Roberts D. CO2 storage and gas diffusivity properties of coals from Sydney Basin, Australia [J]. International Journal of Coal Geology, 2007, 70(1–3): 240-254. [162 ] 杨宏民, 冯朝阳, 陈立伟. 煤层注氮模拟实验中的置换-驱替效应及其转化机制分析[J]. 煤炭学报, 2016, 41(9):2246-2250. [163] Zhong Y, She J, Zhang H, et al. Experimental and numerical analyses of apparent gas diffusion coefficient in gas shales[J]. Fuel, 2019, 258: 116123. [164 ] 桑树勋, 朱炎铭, 张井, 等. 煤吸附气体的固气作用机理(Ⅱ)——煤吸附气体的物理过程与理论模型[J]. 天然气工业, 2005,25(1):16-18. [165] 杨其銮, 王佑安. 煤屑瓦斯扩散理论及其应用[J]. 煤炭学报, 1986, 9(3):89-96. [166] 袁军伟. 颗粒煤瓦斯扩散时效特性研究[D]. 中国矿业大学(北京), 2014. [167] 李志强, 刘勇, 许彦鹏, 等. 煤粒多尺度孔隙中瓦斯扩散机理及动扩散系数新模型[J]. 煤炭学报, 2016, 41(3):633-643.
﹀
|
中图分类号: |
TD712
|
开放日期: |
2025-06-16
|