- 无标题文档
查看论文信息

论文中文题名:

 碳达峰视角下煤炭物流网络演变规律研究    

姓名:

 吕俊峰    

学号:

 20202097013    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 120100    

学科名称:

 管理学 - 管理科学与工程(可授管理学、工学学位) - 管理科学与工程    

学生类型:

 硕士    

学位级别:

 管理学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 管理学院    

专业:

 管理科学与工程    

研究方向:

 能源资源开发利用战略    

第一导师姓名:

 邹绍辉    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-16    

论文答辩日期:

 2023-06-03    

论文外文题名:

 Research on Evolution Law of Coal Logistics Network from the Perspective of Carbon Peak    

论文中文关键词:

 碳达峰 ; 煤炭供需 ; 物流网络:时空演变 ; 演变规律    

论文外文关键词:

 Carbon peaks ; Coal supply and demand ; Logistics network ; Space-time evolution ; Evolutionary law    

论文中文摘要:

我国区域资源禀赋不平衡现象与经济发展差异带来了煤炭流动,国家建设各类运输通道来满足煤炭资源调度需求,产需逆向分布造就煤炭物流“西煤东运、北煤南运”的运输格局,由此形成了我国的煤炭物流网络。2021年10月我国出台的《2030年前碳达峰行动方案》要求全国进行能源结构调整、产业结构变革、技术创新,对能源产业发展提出了新要求,我国煤炭物流网络也产生新的特征。近年来煤炭物流网络密度呈现出下降趋势,供给中心朝我国西北地区转移,煤炭消耗地点不断集中,这对我国不同区域的运输通道的运输能力提出了新的要求。研究碳达峰视角下煤炭物流网络演变规律,能够分析我国煤炭物流网络运力瓶颈,优化煤炭物流基础设施,保障煤炭稳定供应与能源安全。

本文首先使用社会网络分析研究了我国煤炭物流网络现状,进一步讨论碳达峰对煤炭物流网络影响机理,然后根据省域煤炭产业集中程度构建碳达峰异质情景,使用系统动力学与灰度预测相结合的方法预测我国煤炭物流需求,最后使用复杂网络理论模拟网络结构演变。结果表明:(1)碳达峰目标提出之前,我国煤炭消费水平整体呈现出上升趋势,煤炭整体供需平衡,但存在区域煤炭供需矛盾;(2)2016-2020年间,我国煤炭物流网络规模变小,煤炭资源运输总量没有下降,省域煤炭物流量上升,煤炭物流网络抗风险能力有一定下降,煤炭物流网络社团划分特点更加明确,煤炭物流网络轴辐式特点明显;(3)碳达峰目标提出之后,2021-2025年间,煤炭消耗向中西部转移,西部煤炭消耗集中度提升,煤炭跨省供给中心逐步往“三西”地区集中,资源丰富地区煤炭生产能力有待加强,煤炭区域间供需矛盾逐渐缓和,煤炭长线运输压力减小,省内煤炭运输压力增大;(4)“三西”地区依旧是我国最大的煤炭供给基地,江西、广西、安徽可能会成为较大的煤炭中转基地,需要重点关注这些地区周边的煤炭运输能力能否满足需求。通过以上研究,可为我国煤炭生产和运输部门调整煤炭产能与物流运输能力安排提供参考,对保障煤炭稳定供应及能源安全具有一定价值。

论文外文摘要:

The imbalanced regional resource endowment and economic development differences in China have led to the flow of coal. The country has built various transportation channels to meet the demand for coal resource scheduling, and the reverse distribution of production and demand has created a transportation pattern of "coal transportation from the west to the east, and coal transportation from the north to the south" in coal logistics, thus forming China's coal logistics network. In October 2021, China issued the "Action Plan for Carbon Peak before 2030", which requires the country to carry out energy structure adjustment, industrial structure transformation, and technological innovation, posing new requirements for the development of the energy industry. China's coal logistics network also has new characteristics. In recent years, the density of coal logistics network has shown a downward trend, with the supply center shifting towards the northwest region of China, and the coal consumption locations continuously concentrating. This has put forward new requirements for the transportation capacity of transportation channels in different regions of China. Studying the evolution law of coal logistics network from the perspective of carbon peak can analyze the bottleneck of transportation capacity in China's coal logistics network, optimize coal logistics infrastructure, and ensure stable coal supply and energy security. It can also fully optimize the allocation and application of coal resources, improve the efficiency of coal resource allocation, and help achieve the dual carbon goal.

This research uses social network analysis to study the current situation of China's coal logistics network, discusses the impact mechanism of carbon peaking on the coal logistics network, constructs a heterogeneous scenario of carbon peaking based on the concentration level of the provincial coal industry, uses a combination of system dynamics and grayscale prediction to predict China's coal logistics demand, and uses complex network theory to simulate the evolution of network structure. The research results indicate that: (1) the overall level of coal consumption in China has shown an upward trend in recent years, with an overall balance between coal supply and demand, but there are regional coal supply and demand contradictions; (2) From 2016 to 2020, China's coal logistics network showed a trend of decreasing in scale, with no decrease in the total transportation of coal resources, an increase in provincial coal volume, and a certain decrease in the risk resistance ability of the coal logistics network. The characteristics of the division of coal logistics network communities are more clear, and the characteristics of the coal logistics network are obvious in terms of axis and spoke; (3) During 2021-2025, coal consumption will shift to the central and western regions, the concentration ratio of coal consumption in the western regions will increase, the trans provincial coal supply center will gradually concentrate in the "three western" regions, the coal production capacity of resource rich regions needs to be strengthened, the contradiction between supply and demand among coal regions will gradually ease, the pressure of long-term coal transportation will decrease, and the pressure of coal transportation in the province will increase; (4) The "Three West" region is still the largest coal supply base in China, and Jiangxi, Guangxi, and Anhui may become larger coal transfer bases. It is necessary to focus on whether the coal transportation capacity around these regions can meet demand. Through the research, it can provide reference for China's coal production and transportation departments to adjust coal production capacity and logistics transportation capacity arrangements, and has certain value in ensuring stable coal supply and energy security.

参考文献:

[1] 王晓芳.电能替代战略下能源物流绿色发展研究[J].物流工程与管理,2014,36(12):1-2.

[2] 夏丹,王向前.煤炭井下采选充一体化生产物流系统效率仿真[J].中国矿业,2020,29(08):75-81.

[3] Bui V D, Vu H P, Nguyen H P, et al. Techno-economic assessment and logistics management of biomass in the conversion progress to bioenergy[J]. Sustainable Energy Technologies and Assessments, 2023, 55: 102-113.

[4] Barykin S, Provotorov V, Kapustina I, et al. Modeling of transport flows of energy resources in digital logistics based on the methodology of multidimensional network structures[J]. Transportation Research Procedia, 2022, 63: 628-638.

[5] Wei X, Liang Y, Qiu R, et al. Assessing benefits in the flexibility of refined oil logistics from pipeline network integration reform: A case from South China[J]. Chemical Engineering Science, 2022, 253: 117-126.

[6] 朱粤,曹智慧,刘崇献.京津冀港口石油、天然气物流效率研究[J].时代经贸,2019,478(17):69-71.

[7] Górecka A K, Pavlić Skender H, Zaninović P A. Assessing the Effects of Logistics Performance on Energy Trade[J]. Energies, 2022, 15(1): 191-192.

[8] Turhollow A, Kanhouwa S. Factors affecting the market penetration of biomass-derived liquid transportation fuels[J]. Applied biochemistry and biotechnology, 1993, 39: 61-70.

[9] Oke O, Huppmann D, Marshall M, et al. Multimodal transportation flows in energy networks with an application to crude oil markets[J]. Networks and Spatial Economics, 2019, 19: 521-555.

[10] Poulsen T, Lema R. Is the supply chain ready for the green transformation? The case of offshore wind logistics[J]. Renewable and sustainable energy reviews, 2017, 73: 758-771.

[11] Yu Z, Khan A R, Thomas G, et al. Nexuses between international trade, renewable energy, and transport services: Leading toward practical implications and trade policies[J]. Frontiers in Environmental Science, 2022: 1313.47-58.

[12] 吴东隆,王向前.基于Flexsim模型的煤炭主生产物流系统仿真与优化[J].中国矿业,2020,29(09):76-81.

[13] 张文东,魏东.面向复杂环境的电厂煤炭接卸系统物流仿真研究[J].水运工程,2021(02):115-120.

[14] Sadeghi J, Haapala K R. Optimizing a sustainable logistics problem in a renewable energy network using a genetic algorithm[J]. Opsearch, 2019, 56(1): 73-90.

[15] Shamsi M, Babazadeh R, Solimanpur M. Optimization of biomass-to-bioenergy logistics network design problem: A case study[J]. International Journal of Chemical Reactor Engineering, 2018, 16(11).293-298

[16] Guo C, Wang Z, Hou T. A mixed integer programming model based on Biomass Straw Energy Utilization Engineering warehouse logistics site selection[C]//Journal of Physics: Conference Series. IOP Publishing, 2021, 1972(1): 450-472.

[17] 高学明,陈金勇.沿江火电企业“海进江”煤炭物流成本优化探讨[J].会计之友,2021,655(07):67-71.

[18] Poulsen T, Hasager C B. How expensive is expensive enough? opportunities for cost reductions in offshore wind energy logistics[J]. Energies, 2016, 9(6): 437-438.

[19] Harris T M, Devkota J P, Khanna V, et al. Logistic growth curve modeling of US energy production and consumption[J]. Renewable and Sustainable Energy Reviews, 2018, 96: 46-57.

[20] Hammad M A, Elgazzar S, Sternad M. A Conceptual Framework to Establish and Operate a Global Logistics Energy Hub[J]. Sustainability, 2021, 13(19): 19-27.

[21] Sun K, Li K J, Zhang Z, et al. An integration scheme of renewable energies, hydrogen plant, and logistics center in the suburban power grid[J]. IEEE Transactions on Industry Applications, 2021, 58(2): 2771-2779.

[22] Razi M, Komijan A R, Afzal P, et al. Multi-product and multi-period maritime oil logistics model with a cooperative approach among hubs[J]. International Journal of Oil, Gas and Coal Technology, 2023, 32(3): 273-290.

[23] 王亮,焦中良,朱锋等.油气“全国一张网”构建所存在问题及方法论探讨[J].油气储运,2022,41(11):1260-1268.

[24] 张晓艳.皖北地区生物质能回收的物流网络建设[J].洛阳师范学院学报,2021,40(11):53-57.

[25] Muerza V, Urciuoli L, Habas S Z. Enabling the circular economy of bio-supply chains employing integrated biomass logistics centers-A multi-stage approach integrating supply and production activities[J]. Journal of Cleaner Production, 2023, 384: 128-135.

[26] 刘宁,蒋国璋.煤炭运输绿色物流优化研究[J].物流科技,2022,45(18):85-87+91.

[27] 毕梅宝.低碳经济下煤炭物流的发展趋势[J].内蒙古煤炭经济,2022,352(11):82-84.

[28] Zhang Lixiao,Yang Min,Zhang Pengpeng,Hao Yan,Lu Zhongming,Shi Zhimin. De-coal process in urban China: What can we learn from Beijing's experience?[J]. Energy,2021,230: 120-158.

[29] 王长建,汪菲,叶玉瑶,张新林,苏泳娴,姜璐,李增,张虹鸥.基于供需视角的中国煤炭消费演变特征及其驱动机制[J].自然资源学报,2020,35(11):2708-2723.

[30] 蔡流.我国天然气供需格局演变及影响因素分析[J].地域研究与开发,2014,33(02):41-45.

[31] 戚昊天.我国煤炭供需结构体系分析及节能问题研究[J].中国集体经济,2022(13):138-140.

[32] 袁惊柱.“十四五”时期,我国能源发展趋势与挑战研究[J].中国能源,2021,43(07):34-40.

[33] Yang Qing,Zhang Lei,Zhang Jinsuo,Zou Shaohui. System simulation and policy optimization of China's coal production capacity deviation in terms of the economy, environment, and energy security[J]. Resources Policy,2021,74: 23-41.

[34] Heerma van Voss Bas,Rafaty Ryan. Sensitive intervention points in China's coal phaseout[J]. Energy Policy,2022,163: 79-112.

[35] 郭建利,孙春升.基于DID方法的煤炭产能调控政策影响效应分析[J].煤炭经济研究,2020,40(10):4-13.

[36] 刘满芝,张琳琳,温纪新.双碳背景下减排政策对煤炭行业发展的影响及启示[J].煤炭经济研究,2021,41(07):21-26.

[37] 王宜强,赵媛.世界天然气流动节点格局演化及其资源效应[J].资源科学,2020,42(08):1630-1642.

[38] 叶春.能源转型下的电力燃料供需格局[J].中国电力企业管理,2022(04):50-52.

[39] 龙涛,陈其慎,陈程,于汶加,陈升立,邢佳韵,郑国栋,王琨,张硕.后疫情时代全球石油供需格局研究[J].地球学报,2021,42(02):273-278.

[40] 单葆国,冀星沛,姚力,马捷,吴陈锐,段金辉.能源高质量发展下中国电力供需格局演变趋势[J].中国电力,2021,54(11):1-9+18.

[41] 牛皓玮,刘达,陈广娟.双碳及能源安全背景下电煤供需策略演化博弈研究[J].智慧电力,2022,50(09):8-15.

[42] 孙超,姜琳,袁广玉.“十四五”期间我国煤炭供需趋势分析[J].煤炭工程,2021,53(05):193-196.

[43] 韩超,车永才,王继波.改进的BP神经网络煤炭需求预测模型[J].辽宁工程技术大学学报,2005(S1):290-292.

[44] 赵冠一,叶旭东,梁壮,曾维刚.河南省能源供需现状及未来煤炭供需预测[J].煤炭工程,2022,54(08):180-185.

[45] 徐国政.碳约束下我国煤炭供需研究[J].中国煤炭,2016,42(03):9-14.

[46] 赵柳榕,田立新.西部能源结构的Logistic模型及其预测[J].管理学报,2008(05):678-681.

[47] 何则,周彦楠,刘毅.2050年中国能源消费结构的系统动力学模拟——基于重点行业的转型情景[J].自然资源学报,2020,35(11):2696-2707.

[48] Di Wang,Rui Nie,Ruyin Long,Ruyi Shi,Yueying Zhao. Scenario prediction of China’s coal production capacity based on system dynamics model[J]. Resources, Conservation & Recycling, 2018, 129: 432-442.

[49] Jixiang Liu, Shu Tian, Qingsong Wang, Yue Xu, Yujie Zhang, Xueliang Yuan, Qiao Ma, Haichao Ma, Chengqing Liu,The regulation path of coal consumption based on the total reduction index—a case study in Shandong Province, China[J]. Energy, 2023, 262:125-130.

[50] 盛玉奎,熊斌辉.“双碳”战略下的中国特色公路货运运力供给体系规划建设[J].重庆交通大学学报(社会科学版),2023,23(02):53-60.

[51] 黄有方,魏明晖,王煜,郭晓燕,黄明中.“双碳”目标导向下我国绿色航运物流发展现状与趋势[J].大连海事大学学报,2023,49(01):1-16.

[52] 肖瑶. “双碳”目标背景下数字物流对流通业碳减排的影响研究[J].商业经济研究,2023(04):85-88.

[53] 李宇鹏. “双碳”背景下电商企业绿色物流对环境绩效的影响机制分析[J].商业经济研究,2023(07):145-148.

[54] 闫述丽. “双碳”目标下绿色物流对流通企业绩效的影响[J].商业经济研究,2022(20):136-139.

[55] 闫妍.我国沿线区域物流动态效率测度及其影响因素研究——基于双碳视角[J].商业经济研究,2022(13):93-97.

[56] 李健,白子毅,李柏桐.双碳背景下京津冀物流业碳排放脱钩及影响因素研究[J].城市问题,2022(05):69-76.

[57] 张珺,邹乔.目标视角下物流业绿色转型对流通业高质量发展的影响[J].商业经济研究,2022(05):113-116.

[58] 刘琦,范鑫坤.碳中和目标下物流业低碳转型发展路径研究[J].商业经济研究,2023(08):80-84.

[59] 杨川.碳中和趋势下产业集聚对物流业碳排放水平的作用机制[J].商业经济研究,2022(13):103-106.

[60] 赵国智,王喜富,张仲义.煤炭物流网络的复杂性分析及优化方法研究[J].物流技术,2008,08:117-119.

[61] 武云亮,黄少鹏.我国煤炭物流网络体系优化及其政策建议[J].中国煤炭,2008,10,:27-29+33.

[62] 杨丽,刘子方.煤炭供应链网络构建及关键节点分析[J].物流工程与管理,2022,44(04):41-46.

[63] 陆秋琴,靳超.煤炭运输公路网络可靠性仿真分析[J].计算机应用,2019,39(01):292-297.

[64] JinSuo Qiao et al. Analysis on China's Coal Transportation Network Complexity[J]. Applied Mechanics and Materials, 2013, 2594(373-375) : 1670-1673.

[65] JinSuo Qiao et al. Optimization of Coal Transportation Network Robust Control[J]. Advanced Materials Research, 2014, 3149(919-921) : 1128-1133.

[66] Li Na Sun and Hong Sheng Sun and Ya Long Zhao. Analysis on Coal Transportation Network Invulnerability Based on Edge Failure[J]. Advanced Materials Research, 2014, 3149(919-921) : 1075-1078.

[67] 段宏海,韩杨,孔祥胜,刘荣杰.基于时空网络的煤炭铁路运输重车调度优化研究[J].中国煤炭,2023,49(01):51-57.

[68] 王文雅,李振福.轴辐式中国国内煤炭运输网络构建[J].大连海事大学学报,2020,46(01):75-88.

[69] Guan Wang et al. Coal Transportation Network Optimization Model Based on Power Source Distribution[J]. Applied Mechanics and Materials, 2015, 3822(740): 918-921.

[70] Wei Niu and Xifu Wang. Risk Evaluation of Railway Coal Transportation Network Based on Multi Level Grey Evaluation Model[J]. IOP Conference Series: Earth and Environmental Science, 2018, 108(4) : 42-58.

[71] Ahmady M, Eftekhari Yeghaneh Y. Optimizing the cargo flows in multi-modal freight transportation network under disruptions[J]. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2021: 1-20.

[72] Mahmoud Masoud et al. A new constraint programming approach for optimising a coal rail system[J]. Optimization Letters, 2017, 11(4) : 725-738.

[73] Mitra S, Avittathur B. Application of linear programming in optimizing the procurement and movement of coal for an Indian coal-fired power-generating company[J]. Decision, 2018, 45: 207-224.

[74] Belov G, Boland N L, Savelsbergh M W P, et al. Logistics optimization for a coal supply chain[J]. Journal of Heuristics, 2020, 26(2): 269-300.

[75] 谭存爱,钱颖.基于复杂网络的中国煤炭铁路运输网络研究[J].物流科技,2022,45(15):89-94.

[76] 朱孟珏,庄大昌,李涛.1990—2014年中国煤炭运输网络的时空特征研究[J].自然资源学报,2018,33(03):454-466.

[77] Wang W, Li Z. The evolution of China’s interregional coal trade network, 1997–2016[J]. Physica A: Statistical Mechanics and its Applications, 2019, 536: 120-147.

[78] Wang Wei and Wang Chengjin and Jin Fengjun. Spatial evolution of coal transportation at coastal ports in China[J]. Journal of Geographical Sciences, 2018, 28(2) : 238-256.

[79] Creamer G G, Creamer B. Emissions abating technology adoption in a coal trading network[J]. Social Network Analysis and Mining, 2018, 8: 1-12.

[80] Watts D J, Strogatz S H. Collective dynamics of ‘small-world’networks[J]. Nature, 1998, 393(6684): 440-442.

[81] Barabasi A L, Albert R. Emergence of scaling in random networks[J]. Science 1999, 286,5439: 509-512.

[82] 田立新,贺莹环,黄益.一种新型二分网络类局域世界演化模型[J].物理学报,2012,61(22):558-564.

[83] 胡一竑,朱道立,李阳,粟斌,朱冰心.成本驱动的加权网络演变模型[J].复杂系统与复杂性科学,2009,6(02):26-32.

[84] 苏凯,汪李峰,张卓.一种灵活的加权复杂网络演化模型及其仿真[J].系统仿真学报,2009,21(01):266-271.

[85] 孙梅,田立新,张培培,左继伟,曾长燕.一个能源供需网络演化模型[J].管理学报,2008(05):685-687+707.

[86] 王文雅,李振福.中国煤炭运输网络空间演化[J].交通运输工程学报,2019,19(03):166-177.

[87] An H, Zhong W, Chen Y, et al. Features and evolution of international crude oil trade relationships: A trading-based network analysis[J]. Energy, 2014, 74: 254-259.

[88] Du R, Wang Y, Dong G, et al. A complex network perspective on interrelations and evolution features of international oil trade, 2002–2013[J]. Applied Energy, 2017, 196: 142-151.

[89] Gao C, Sun M, Shen B. Features and evolution of international fossil energy trade relationships: A weighted multilayer network analysis[J]. Applied energy, 2015, 156: 542-554.

[90] Zhong W, An H, Shen L, et al. The roles of countries in the international fossil fuel trade: An emergy and network analysis[J]. Energy Policy, 2017, 100: 365-376.

[91] 和聪贤.世界大豆贸易网络格局演变及影响机制研究[J].世界农业,2022(08):27-40.

[92] 牟敦果,王沛英.中国能源价格内生性研究及货币政策选择分析[J].金融研究,2017(11):81-95.

[93] 荀玺蓉.传统能源价格与中国碳排放权交易价格的相关性研究[D].南京信息工程大学,2022.

[94] 易学睿,王强,田华,陶怡,步学朋,柯彦,刘蕾.我国现代煤化工产业“十四五”发展布局展望[J].现代化工,2022,42(08):16-21.

[95] 孙帅帅,白永平,车磊,乔富伟,杨雪荻.中国环境规制对碳排放影响的空间异质性分析[J].生态经济,2021,37(02):28-34.

[96] 董会忠,辛佼,韩沅刚.环境规制、技术创新与工业煤耗强度的互动效应[J].华东经济管理,2021,35(07):37-45.

[97] 李红霞,陈磊,连亚伟.基于去产能政策下我国煤炭产业战略分析[J].煤炭工程,2020,52(06):184-190.

[98] 张新芝,孔凡斌.东中西部区域产业转移发展态势及对策建议[J].南昌大学学报(人文社会科学版),2015,46(06):73-80.

[99] 林燕,张衡,白秀佳,叶泽宇.我国煤炭矿产资源产业转移态势的产业梯度系数视角分析[J].地质论评,2020,66(S1):139-142.

[100] 李跃,王艺臻,孙瑞琦,王霄飞.煤炭产能空间集聚有利于区域产业转型升级吗?——基于中国30个省份的实证研究[J].资源开发与市场,2022,38(07):784-791.

[101] 张寅浩.能源消费强度的区域差异及其影响因素分析[J].宏观经济研究,2022(10):129-142.

[102] 李虎威,孔晓妮,管伟明,赵红超.中国能源消费强度地区差异分解及影响因素分析[J].中国矿业,2016,25(08):31-37.

[103] 赵莎,胡最,郑文武.中国“胡焕庸线”东西两侧能源消耗空间格局的系统动力学模拟[J].地理科学进展,2021,40(08):1269-1283

[104] 王喜莲,金青.煤炭产业绿色低碳发展政策情景模拟研究[J].生态经济,2022,38(04):60-67.

[105] 邹绍辉,李梦嘉.碳达峰目标下中国煤炭价格预测研究[J].价格月刊,2022(02):20-27.

[106] 徐跃.煤炭市场供需失衡因素分析及政策建议[J].中国煤炭,2022,48(10):26-31.

中图分类号:

 F259.2    

开放日期:

 2024-06-16    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式