- 无标题文档
查看论文信息

论文中文题名:

 再生玻璃纤维粉体反应活性调控及其混凝土性能研究    

姓名:

 谭一兵    

学号:

 22211225033    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0856    

学科名称:

 工学 - 材料与化工    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2025    

培养单位:

 西安科技大学    

院系:

 材料科学与工程学院    

专业:

 材料科学与工程    

研究方向:

 再生资源循环利用    

第一导师姓名:

 彭龙贵    

第一导师单位:

 西安科技大学    

论文提交日期:

 2025-06-18    

论文答辩日期:

 2025-05-29    

论文外文题名:

 Research on the Reactivity Regulation of Recycled Glass Fiber Powder and the Performance of its Concrete    

论文中文关键词:

 再生玻璃纤维粉体 ; 热处理 ; 反应活性 ; 混凝土性能    

论文外文关键词:

 Recycled glass fiber powder ; Heat treatment ; Reactive activity ; Concrete performance    

论文中文摘要:

玻璃纤维增强复合材料(Glass Fiber Reinforced Plastic,GFRP)凭借高强度、耐腐蚀和绝缘性好等优异性能,在建筑、交通、风电等领域被广泛应用,但在其生产和使用过程中产生大量的边角料和服役期满的GFRP废弃物,已成为亟待解决的环境与资源问题。GFRP再生料中的玻璃纤维粉体作为一种典型的硅铝质材料,具有潜在的反应活性,经过一定工艺处理后有望成为水泥的替代材料。为了提高再生玻璃纤维粉体的反应活性,从而提高其在混凝土的替代量。本文通过改变GFRP热处理回收工艺对再生玻璃纤维粉体的反应活性进行了调控,研究了热处理工艺对再生玻璃纤维粉体结构和反应活性的影响。选用活性较高的一种再生玻璃纤维粉体按不同量替代水泥制备了混凝土,并对该混凝土拌合物的坍落度与扩展度以及混凝土的抗压强度、耐磨性能、抗渗性能和抗冻性能等进行了系统而深入的研究。为GFRP废弃物的资源化利用提供了理论依据与技术路径,对推动绿色建材发展具有重要意义。本文主要结论如下:

(1)随着热处理温度的升高和热处理时间的延长,再生玻璃纤维的直径逐渐收缩,SiO2的晶体结构发生了转变,结晶度逐渐变高;再生玻璃纤维粉体主要由O、Si、Ca、Mg、Al五种元素组成,且这五种元素在其表面均匀分布不存在成分差异,Al元素和Si元素主要以硅氧四面体[SiO4]4-和铝氧四面体[AlO4]5-的形式存在,少量以氧化物的形式存在。

(2)再生玻璃纤维粉体在碱溶液中Si元素和Al元素的溶出量与热处理温度和热处理时间以及碱溶液浓度有关。其随热处理温度升高和热处理时间延长呈现出逐渐降低的趋势,增加碱溶液浓度有助于提升Si元素和Al元素的溶出量。再生玻璃纤维粉体对砂浆强度的贡献不仅取决于其表面活性SiO2和活性Al2O3的含量,还与再生纤维粉体的物理填充作用和短棒状再生玻璃纤维粉体的桥接作用有关。600 ℃下热处理1.0 h得到的再生玻璃纤维粉体对砂浆强度提升最大,相较于基准砂浆,其28 d抗折强度和抗压强度分别提升了20.90%、27.34%。

(3)再生玻璃纤维粉体替代量增加会导致混凝土拌合物的坍落度与扩展度出现下降的趋势,替代量为50 kg/m3时会出现上升的现象。替代量为30 kg/m3及以下时,混凝土各项性能明显改善;替代量在50 kg/m3及以上时,混凝土的各项性能开始明显下降;替代量为70 kg/m3时,除耐磨性能略高于基准混凝土外,其余性能均劣于基准混凝土。综合混凝土性能与环境因素考虑,再生玻璃纤维粉体的最大替代量为50 kg/m3

 

论文外文摘要:

Glass Fiber Reinforced Plastic (GFRP) is widely used in construction, transportation, wind power and other fields due to its excellent properties such as high strength, corrosion resistance, and good insulation. However, a large amount of scraps and end-of-life GFRP waste generated during its production and use has become an urgent environmental and resource issue. As a typical siliceous-aluminous material, the glass fiber powder in GFRP recycled materials has potential reactive activity and is expected to become a substitute for cement after certain process treatments. To enhance the reactive activity of recycled glass fiber powder and thereby increase its substitution ratio in concrete, this study regulated the reactive activity of recycled glass fiber powder by altering the heat treatment recycling process of GFRP, and investigated the effects of heat treatment processes on the structure and reactive activity of the powder. A highly active recycled glass fiber powder was selected to prepare concrete by replacing cement in different contents. Systematic and in-depth studies were conducted on the slump and spread of the concrete mixture, as well as the compressive strength, abrasion resistance, impermeability, and freeze-thaw resistance of the concrete. This provides a theoretical basis and technical path for the resource utilization of GFRP waste, and is of great significance for promoting the development of green building materials. The main conclusions of this paper are as follows:

(1) With the increase in heat treatment temperature and the prolongation of heat treatment time, the diameter of recycled glass fibers gradually shrinks, the crystal structure of SiO₂ transforms, and the crystallinity gradually increases. The recycled glass fiber powder is primarily composed of five elements: O, Si, Ca, Mg, and Al, which are uniformly distributed on its surface without compositional differences. Aluminum and silicon elements mainly exist in the form of silicate tetrahedrons [SiO₄]⁴⁻ and aluminate tetrahedrons [AlO₄]⁵⁻, with a small amount existing as oxides.

(2) The dissolution amount of Si and Al elements from recycled glass fiber powder in alkaline solution is related to heat treatment temperature, heat treatment time, and alkaline solution concentration. It shows a gradual decreasing trend with the increase in heat treatment temperature and time, while increasing the alkaline solution concentration helps to enhance the dissolution of Si and Al elements. The contribution of recycled glass fiber powder to mortar strength depends not only on the content of surface-active SiO₂ and active Al₂O₃ but also on the physical filling effect of the powder and the bridging effect of short rod-shaped recycled glass fibers. The recycled glass fiber powder obtained by heat treatment at 600 ℃ for 1.0 h has the greatest improvement on the mortar strength. Compared with the reference mortar, its 28-day flexural strength and compressive strength are increased by 20.90% and 27.34% respectively.

(3) An increase in the substitution amount of recycled glass fiber powder leads to a downward trend in the slump and spread of concrete, with an upward trend observed at a substitution amount of 50 kg/m³. When the substitution amount is 30 kg/m³ or lower, the various properties of the concrete are significantly improved; when it is 50 kg/m³ or higher, the properties begin to decline significantly. At 70 kg/m³, except for slightly higher wear resistance than the reference concrete, all other properties are inferior. Considering the comprehensive performance of concrete and environmental factors, the maximum substitution amount of recycled glass fiber powder is 50 kg/m³.

参考文献:

[1] 白玫. 中国水泥工业碳达峰、碳中和实现路径研究[J]. 价格理论与实践, 2021, 41(04): 4-11+53.

[2] 王奕仁. 锂渣的火山灰活性评价及其复合胶凝材料微结构特性研究[D]. 北京: 中国矿业大学, 2019.

[3] 陈康, 贾桓, 雷文, 等. 废旧玻璃钢的回收与利用[J]. 河南化工, 2018, 35(05): 3-5.

[4] 游敏, 肖琴. 玻璃钢废弃物机械回收现状研究[J]. 资源再生, 2020, 19(06): 52-57.

[5] 刘永慧. 玻璃钢复合材料的行业发展探讨[J]. 工程技术研究, 2021, 6(03): 113-114.

[6] 吴秀华, 黄兴裕, 严文晖. 纤维增强塑料在体育器材中的应用进展[J]. 塑料科技, 2021, 49(11): 106-109.

[7] 王福海, 杨永刚, 杨张杰, 等. 新型高强玻璃钢锚杆研究及应用[J]. 煤炭技术, 2022, 41(11): 78-81.

[8] 党奇志, 李莉. 公路大孔径玻璃钢夹砂管涵应用[J]. 公路, 2022, 67(01): 79-84.

[9] Cao Y, Li Z, Gan L, et al. Mechanical properties study of fiberglass reinforced flexible pipeline in marine applications[J/OL]. Ships and Offshore Structures, 2024: 1-17.

[10] Benzerga A L, Amieur M, Rabehi R. Reinforcement of concrete with composite materials based on fiberglass[C]//International Conference on Contemporary Academic Research, 2023: 42-47.

[11] Lichtenegger G, Rentizelas A A, Trivyza N, et al. Offshore and onshore wind turbine blade waste material forecast at a regional level in Europe until 2050[J]. Waste Management, 2020, 106: 120-131.

[12] Liu P, Barlow C Y. Wind turbine blade waste in 2050[J]. Waste Management, 2017, 62: 229-240.

[13] 魏博. 机械活化钒尾渣制备地聚物及机理研究[D]. 武汉: 武汉理工大学, 2017.

[14] 陈敏, 王超, 黄俊玮, 等. 机械力活化对蛇纹石晶体结构与反应活性的影响研究[J/OL]. 矿产保护与利用, 2025: 1-15.

[15] 申宏栋, 高升, 葛亚丽, 等 机械力活化高炉矿渣机理研究[J]. 水泥, 2024, 45(08): 34-37.

[16] Luo Y, Bao S, Liu S, et al. Enhancing reactivity of granite waste powder toward geopolymer preparation by mechanical activation[J]. Construction and Building Materials, 2024, 414: 134981.

[17] 李茂辉, 陆有军, 楚京军, 等. 钢渣胶凝活性激发的研究进展[J]. 混凝土与水泥制品, 2025, 52(02): 112-116.

[18] 熊志鹏, 胡凯建, 柯愈贤, 等. 锂渣的活性激发技术与机理研究进展[J]. 现代矿业, 2024, 40(08): 208-213.

[19] 谭盐宾, 李林香, 杨珍珍, 等. 化学活化方法对磨细火山岩弃渣-水泥复合胶凝体系的影响[J]. 材料导报, 2024, 38(22): 75-81.

[20] 刘军, 孟书灵, 王玉娟, 等. 机械活化和化学激发剂对粉煤灰活性的影响[J]. 混凝土, 2018, 40(03): 79-82.

[21] Hu Z, Gu X, Cheng B, et al. The role of chemical activation in strengthening iron ore tailings supplementary cementitious materials[J]. Buildings, 2024, 14(04): 963.

[22] 马鹏传, 李兴, 温振宇, 等. 粉煤灰的活性激发与机理研究进展[J]. 无机盐工业, 2021, 53(10): 28-35.

[23] 唐诗洋, 张玥, 杨光, 等. 石墨尾矿的热活化及活性分析[J]. 化学与粘合, 2024, 46(06): 584-588.

[24] 邱军付, 张瑞峰, 章银祥, 等. 建筑垃圾分离渣土热活化研究及其在盾构注浆料中的应用[J]. 新型建筑材料, 2024, 51(03): 1-5+28.

[25] Wu C, Zhuang X, Vigor J E, et al. Pozzolanic reactivity of recycled powders from waste wind turbine blades[J]. Journal of Materials in Civil Engineering, 2024, 36(09): 04024267.

[26] 孙振平, 闫珠华, 张挺, 等. 火山灰质材料的火山灰活性检测方法综述[J]. 材料导报, 2024, 38(01): 117-122.

[27] 胡维扬, 郭育霞, 白晨阳, 等. 物化耦合激发煤气化渣活性研究[J]. 矿业研究与开发, 2024, 44(11): 283-290.

[28] 解悦,龚英, 丁建彤, 等. 巴基斯坦巴沙大坝天然火山灰长龄期真实活性评定及提升研究[J].中国农村水利水电, 2025, 67(03): 142-147.

[29] Gao R, Zhou Z, Yang J, et al. Innovative assessment of reactivity in fly ash: The role of particle size distribution characteristics[J]. Open Ceramics, 2024, 20: 100680.

[30] 郑述芳, 李华影, 陈祥花, 等. 粉煤灰掺量对全再生自密实混凝土工作性能与力学性能的影响[J]. 硅酸盐通报, 2024, 43(04): 1445-1454.

[31] 杨军平, 孙文. S105级矿渣粉掺量对混凝土工作性能和力学性能的影响[J]. 混凝土, 2024, 46(11): 126-128+133.

[32] 卜娜蕊, 刘睿, 方炜, 等. 建筑用粉煤灰再生混凝土的力学性能和抗冻性能研究[J]. 功能材料, 2023, 54(05): 5223-5229.

[33] 宿辉, 袁乐忠, 刘世伟, 等. 复合盐冻侵蚀下玻璃粉对混凝土孔隙结构影响分析[J]. 水电能源科学, 2024, 42(09): 80-83.

[34] Ghani A, Khan F A, Khan S W, et al. Experimental study on the mechanical behavior of concrete incorporating fly ash and marble powder waste[J]. Scientific Reports, 2024, 14(01): 19147.

[35] Chen Z, Li M, Guan L J. Safety and effect of fly ash content on mechanical properties and microstructure of green low-carbon concrete[J]. Applied Sciences, 2024, 14(07): 2796.

[36] Ribeiro M C S, Fiúza A, Ferreira A, et al. Recycling approach towards sustainability advance of composite materials’ industry[J]. Recycling, 2016, 1(01): 178-193.

[37] 胡晨光, 苏航, 封孝信, 等 废弃玻璃钢粉改性沥青材料制备与性能研究[J]. 中国塑料, 2022, 36(08): 119-126.

[38] Zhao T, Song P, Dong G, et al. Experimental research and theoretical prediction on mechanical properties for recycled GFRP fiber reinforced concrete[J]. Journal of Building Engineering, 2024, 91: 109643.

[39] Zhang Y, Pontikes Y, Lessard L, et al. Recycling and valorization of glass fibre thermoset composite waste by cold incorporation into a sustainable inorganic polymer matrix[J]. Composites Part B: Engineering, 2021, 223: 109120.

[40] 李良钰, 熊小鹤, 冯敬武, 等. 不同气氛下废弃风机叶片热转化产物研究[J]. 热力发电, 2023, 52(03): 94-101.

[41] 杨佳亮, 朱维强, 呼和涛力, 等. 废弃风机叶片微波热解制取酚类化学品及再生纤维[J]. 新能源进展, 2024, 12(04): 448-458.

[42] Cheng G, Yang S, Wang X, et al. Study on the recycling of waste wind turbine blades[J]. Journal of Engineering Research, 2023, 11(3): 13-17.

[43] Ma C, Sánchez-Rodríguez D, Kamo T. A comprehensive study on the oxidative pyrolysis of epoxy resin from fiber/epoxy composites: Product characteristics and kinetics[J]. Journal of Hazardous Materials, 2021, 412: 125329.

[44] 安文丽, 李俊彦, 刘雪辉, 等. 不饱和聚酯树脂水解回收制备可循环利用的水溶性薄膜[J]. 中国科学:化学, 2023, 53(08): 1610-1618.

[45] 周成龙, 于腾, 张益盟, 等. 风机叶片绿色再生纤维钎增强水工混凝土力学性能研究[J/OL]. 水利水电技术(中英文), 2025: 1-17

[46] 杨晓凤, 唐帅, 彭龙贵, 等. 再生玻璃纤维增强混凝土抗冻性能研究[J]. 混凝土, 2024, 47(12): 84-88.

[47] 康伟鑫, 冯艳蓉. 再生纤维增强混凝土的应用研究[J]. 合成材料老化与应用, 2024, 53(03): 77-79.

[48] Cheng C S, Xu Y B, Xiao C Y, et al. Behavior of confined concrete with recycled glass fiber-reinforced polymer needles as coarse aggregates under axial compression[J]. Journal of Building Engineering, 2023, 71: 106453.

[49] Tao Y, Hadigheh S A, Wei Y. Recycling of glass fibre reinforced polymer (GFRP) composite wastes in concrete: A critical review and cost benefit analysis[C]//Structures. Elsevier, 2023, 53: 1540-1556..

[50] 腾银见, 吕淑珍, 李军, 等. 玻璃钢再生料对RPC工作性及力学性能影响试验研究[J]. 混凝土与水泥制品, 2020, 47(05): 92-95.

[51] Zhao T, Lv Y, Chen J, et al. Effect of glass fiber-reinforced plastic waste on the mechanical properties of concrete and evaluation of its feasibility for reuse in concrete applications[J]. Materials, 2023, 16(20): 6772.

[52] Qin X, Zehan L, Shixiong L, et al. The synergistic effect of recycled glass fiber reinforced plastic and silica fume on cement mortar properties[J]. Journal of Building Engineering, 2024, 94: 110055.

[53] Liu S, Guo J, Wu C. Improving the pozzolanic reactivity of recycled powders from retired wind turbine blades by removing the polymer phase through thermal treatment[J]. Journal of Building Engineering, 2024, 96: 110387.

[54] 许仁辞. 退役风机叶片回收利用技术方法分析[J]. 内蒙古电力技术, 2022, 40(05): 34-38.

[55] 张星楠, 李颖, 郭穆骞, 等. 废弃风机叶片回收技术的研究进展[J]. 化工新型材料, 2024, 52(04): 264-267.

[56] Naqvi S, Prabhakara H M, Bramer E, et al. A critical review on recycling of end-of-life carbon fibre/glass fibre reinforced composites waste using pyrolysis towards a circular economy[J]. Resources, Conservation and Recycling, 2018, 136: 118-129.

[57] 中国国家标准化管理委员会. 水泥胶砂强度检验方法(ISO法): GB/T 17671-2021[S]. 北京: 中国标准出版社, 2021.

[58] Haha M B, De Weerdt K, Lothenbach B, et al. Quantification of the degree of reaction of fly ash[J]. Cement and Concrete Research, 2010, 40(11): 1620-1629.

[59] 贾耀东, 阎培渝. 粉煤灰中SiO2在不同碱性条件下的溶出量及与火山灰活性指数的关系[J]. 硅酸盐学报, 2009, 37(07): 1073+1075-1078.

[60] 住房和城乡建设部.混凝土物理力学性能试验方法标准: GB/T 50081-2019[S]. 北京: 中国建筑工业出版社, 2019.

[61] 住房和城乡建设部. 普通混凝土拌合物性能试验方法标准: GB/T 50080-2016[S]. 北京: 中国建筑工业出版社, 2016.

[62] 全国水泥制品标准化技术委员会. 混凝土及其制品耐磨性试验方法标准: GB/T 16925-1997[S]. 北京: 中国标准出版社, 1997.

[63] 住房和城乡建设部. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082-2009[S]. 北京: 中国建筑工业出版社, 2009.

[64] 赵璞. 基于GFRP再生玻璃纤维相态重构与碱-骨料反应研究[D]. 西安: 西安科技大学, 2022.

[65] 唐帅. 再生玻璃纤维表面调控与水泥基复合材料耐久性能研究[D]. 西安: 西安建筑科技大学, 2024.

[66] 荣迪, 贾志欣, 刘立君, 等. 环氧树脂/碳纤维复合材料模压制品冲击强度影响因素分析[J]. 中国塑料, 2024, 38(01): 55-61.

[67] 余奕发, 许加阳, 金鑫霞. 几种典型无机纤维针刺毡的耐温性研究[J]. 高科技纤维与应用, 2022, 47(01): 32-36.

[68] 张昊, 胡相明, 王伟, 等. 黄原胶和氧化镁改性黏土-水泥基新型喷涂堵漏风材料的制备及特征[J]. 煤炭学报, 2021, 46(06): 1768-1780.

[69] 代吉祥, 沙建军, 王首豪, 等. 纤维表面状态对C/C-SiC复合材料微观组织和相成分的影响[J]. 航空学报, 2015, 36(05): 1704-1712.

[70] Wang F, Yu J, Liang X, et al. Effect of heat treatment on the morphology, diameter and mesoporous of superfine glass fiber[J]. The Journal of The Textile Institute, 2021, 112(01): 123-131.

[71] 陈和生, 孙振亚, 邵景昌. 八种不同来源二氧化硅的红外光谱特征研究[J]. 硅酸盐通报, 2011, 30(04): 934-937.

[72] 曹娟, 徐灿, 朱莉芳, 等. (SiO2)_nO2H4的红外振动光谱的理论研究[J]. 光谱学与光谱分析, 2007, 45(09): 1715-1718.

[73] 葛敦世. 玻璃纤维碱侵蚀机理和耐碱性的探讨[J]. 玻璃纤维, 2007, 30(01): 1-9+14.

[74] 庞博, 肖力光. 硅藻土的火山灰活性试验研究[J]. 硅酸盐通报, 2017, 36(08): 2781-2786.

[75] Li L, Ren H, Liu Y, et al. Facile construction of hierarchical porous ultrafine alumina fibers (HPAFs) and its application for dye adsorption[J]. Microporous and Mesoporous Materials, 2020, 308: 110544.

[76] 曹艳霞, 沈纲, 马辉. 玻璃纤维增强水泥基充填砂浆的力学特性及机理研究[J/OL]. 矿产综合利用, 2025: 1-7.

[77] 罗发胜, 李彬, 杜俊朋, 等. 骨料种类与级配对路面混凝土耐磨性能的影响[J]. 硅酸盐通报, 2022, 41(06): 1963-1972+2006.

[78] Khatri R, Sirivivatnanon V, Kin Yu L. Effect of curing on water permeability of concretes prepared with normal Portland cement and with slag and silica fume[J]. Magazine of Concrete Research, 1997, 49(180): 167-172.

[79] 杨钱荣 朱蓓蓉. 混凝土渗透性的测试方法及影响因素[J]. 低温建筑技术, 2003, 25(05): 7-10.

[80] 邢世海. 超掺粉煤灰混凝土耐久性研究与应用[J]. 混凝土, 2004, 26(07): 48-49+57.

[81] 刘鹏, 刘梦路, 陈颖, 等. 水泥基渗透结晶型防水材料研究进展综述[J]. 混凝土, 2023, 45(09): 168-172.

[82] 韩慧超, 赵同峰, 李磊, 等. 活性物质对混凝土表面抗渗性能影响研究[J]. 混凝土, 2024, 46(11): 122-125.

[83] 张巧伟, 安晓燕, 杨涛, 等. 不同掺量粉煤灰替代水泥对混凝土性能的影响[J]. 建材发展导向, 2024, 22(23): 5-7.

[84] Xie C, Cao M, Yin H, et al. Effects of freeze-thaw damage on fracture properties and microstructure of hybrid fibers reinforced cementitious composites containing calcium carbonate whisker[J]. Construction and Building Materials, 2021, 300: 123872.

[85] Ebrahimi K, Daiezadeh M J, Zakertabrizi M, et al. A review of the impact of micro-and nanoparticles on freeze-thaw durability of hardened concrete: Mechanism perspective[J]. Construction and Building Materials, 2018, 186: 1105-1113.

[86] 刘成成. 寒区公路构筑物加固工程喷射混凝土性能研究[D]. 西安: 长安大学, 2011.

[87] Powers T C. A working hypothesis for further studies of frost resistance of concrete[C]//Journal Proceedings, 1945: 245-272.

[88] Powers T C, Helmuth R. Theory of volume changes in hardened portland-cement paste during freezing[C]//Highway Research Board Proceedings, 1953.

[89] Setzer M J, Science I. Micro-ice-lens formation in porous solid[J]. Journal of Colloid and Interface Science, 2001, 243(01): 193-201.

[90] Setzer M J, Science I. Mechanical stability criterion, triple-phase condition, and pressure differences of matter condensed in a porous matrix[J]. Journal of Colloid and Interface Science, 2001, 235(01): 170-182.

[91] Setzer M J. Development of the micro-ice-lens model[C]//International RILEM Workshop on Frost Resistance of Concrete, 2002: 133-145.

[92] Wang D, Zhou X, Meng Y, et al. Durability of concrete containing fly ash and silica fume against combined freezing-thawing and sulfate attack[J]. Construction and Building Materials, 2017, 147: 398-406.

[93] Zobal O, Padevět P, Plachy T, et al. Destructive and nondestructive evaluation of frost resistance of cement pastes with fly ash[J]. Applied Mechanics and Materials, 2016, 827: 296-299.

[94] 宋贺月, 丁一宁. 钢纤维在混凝土基体中空间分布的研究方法评述[J]. 材料科学与工程学报, 2015, 33(05): 768-775.

中图分类号:

 TU528.581    

开放日期:

 2025-06-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式