论文中文题名: | 矿用挖掘机驾驶空间人机界面布局优化方法研究 |
姓名: | |
学号: | 19214109010 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 130500 |
学科名称: | 艺术学 - 设计学 |
学生类型: | 硕士 |
学位级别: | 艺术学硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 工业设计 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2022-06-16 |
论文答辩日期: | 2022-06-06 |
论文外文题名: | Research on the optimization method of human-machine interface layout of mining excavator driving space |
论文中文关键词: | |
论文外文关键词: | Industrial design ; layout optimization ; ergonomics ; man-machine interface ; mining excavator ; NSGA-Ⅱ algorithtm |
论文中文摘要: |
随着我国工业化进程的不断推进,矿用挖掘机等工程机械的工作性能在过去几十年实现了质的飞跃,矿机开采效率不断提升。但在性能提升过程中,驾驶空间作为投入大产出小的影响因素往往被忽视,其中人机界面的布局也常照搬套用已有设计,对驾驶人员和整机的操作性能考量较少。新时代,我国对工程机械设计有了新的期待和要求,人机界面作为操作人员和大型机械交互的唯一通道,其布局不仅影响着操作人员的舒适性也制约着机械性能的突破。合理有效的人机界面设计,同时也代表着我国在工程机械领域的真实水平。因此对人机界面设计方法的探索,迫在眉睫。 矿用挖掘机驾驶空间人机界面布局的优劣,将直接影响操作者操作过程的准确性及有效性。而矿用挖掘机作为复杂工程机械,往往承载着作业、行走等多项功能,人机界面布局需考量的设计因素颇多,需要同时兼顾人机工程学原则和矿用挖掘机的真实工作情景,求解过程极为复杂。如何有效承接布局设计的多目标优化,产出有效的人机界面布局是当下急需解决的问题。 基于前人关于人机界面和布局优化的相关理论,结合矿用挖掘机的工作情景,提出以下方法应用于人机界面布局优化: (1)对驾驶空间人机界面进行功能区域划分,以显示界面和控制界面两类功能界面为基准,分别提出各类界面及显控元件的布局原则,指导布局方法产出。 (2)借鉴汽车人机工程学中人体尺寸模型的相关理论,在矿用挖掘机驾驶空间中确定驾驶人员的位置,并依据人体模型的关键点,即H点(胯点)、眼点、手伸及界面等确定显示界面和控制界面在驾驶空间中的布局范围,保证人机界面与驾驶人员的协调性。 (3)应用NSGA-Ⅱ算法及布局优化相关理论,求解数量庞杂的控制元件在人机界面中的布局。引入能量法的思想,对待布空间和待布元件进行几何化处理。依据重要性原则、操作频率原则、空间相容性原则,构建布局优化目标函数,保证人机界面布局满足驾驶人员的操作需求。最终引用NSGA-Ⅱ算法对布局优化模型进行求解,降低布局模型多目标优化难度,提升求解速度。 以某大型矿用挖掘机驾驶空间人机界面为例,对以上提出的布局优化方法进行可行性验证,并应用模糊数学评价法对输出方案进行有效性验证。最终结果表明,该人机界面布局优化方法可有效输出布局方案,且最终产出的布局方案能够满足复杂人机界面布局的多目标需求,兼顾驾驶人员的操作需求及矿用挖掘机的工作需求。且该方法具有通用性,可扩展至类似工程机械驾驶空间人机界面的布局优化中,辅助设计人员进行复杂人机界面的设计。 |
论文外文摘要: |
With the continuous advancement of my country's industrialization process, the working performance of mining excavators and other construction machinery has achieved a qualitative leap in the past few decades, and the mining efficiency of mining machines has been continuously improved. In the process of performance improvement, the driving space is often ignored as a factor affecting the large input and the small output. The design of the human-machine interface is often copied and applied to the existing design, and less consideration is given to the operating performance of the driver and the whole machine. In the new era, my country has new expectations and requirements for the design of construction machinery. As the only way for operators to interact with large-scale machinery, human-machine interface not only affects the comfort of operators, but also restricts breakthroughs in mechanical performance. The machine interface design also represents the real level of my country in the field of construction machinery. Therefore, the exploration of human-machine interface design methods is imminent. The advantages and disadvantages of the layout of man-machine interface in the cab of mining excavator will directly affect the accuracy and effectiveness of the operator's operation process. As a complex engineering machinery, mining excavators often carry a number of functions such as operation and walking. There are many design factors that need to be considered in the layout of man-machine interface. It is necessary to take into account the principles of ergonomics and the real working situation of mining excavators, so the solution process is very complicated. How to effectively undertake multi-objective optimization of layout design and produce effective human-machine interface layout is an urgent problem to be solved at present. After sorting out previous theories on human-machine interface and layout optimization, combined with the working situation of mining excavators, the following methods are proposed to apply the man-machine interface layout scheme output: (1) Divide the functional areas of the human-machine interface of the cab. Based on the two functional interfaces of display interface and control interface, put forward the layout principles of various interfaces and display control components respectively to guide the output of layout methods.
(2) reference to the relevant theories of human body size in man-machine engineering model, determine the position of the drivers in mine excavator cab, and according to the key points of human body model, or H point (hip), eyespots, hand and interface display and control interface in the driving room layout, drive man-machine interface and coordination. (3) NSGA-Ⅱ algorithm and layout optimization theory are applied to solve the layout of a large number of control components in the human-machine interface. The idea of energy method is introduced to geometrize cloth space and elements to be distributed. According to the importance principle, operation frequency principle and spatial compatibility principle, the layout optimization objective function is constructed to ensure that the human-machine interface layout meets the operation requirements of drivers. Finally, NSGA-Ⅱ algorithm was used to solve the layout optimization model, which reduced the difficulty of multi-objective optimization of the layout model and improved the solving speed. Taking the man-machine interface of a large mining excavator cab as an example, the feasibility of the proposed layout optimization method was verified, and the validity of the output scheme was verified by fuzzy mathematical evaluation method. The final results show that the HMI layout optimization method can effectively output the layout scheme, and the final output layout scheme can meet the multi-objective needs of complex HMI layout, and take into account the operation needs of drivers and the work needs of mining excavators. The method has universality and can be extended to the layout optimization of the human-machine interface of similar construction machinery cab to assist designers in the design of complex human-machine interface. |
参考文献: |
[1] 贾海筠.国产矿用挖掘机在黑岱沟露天煤矿的应用[J].露天采矿技术,2009(3):48-49. [3] 郝万军.大型矿用挖掘机设计关键技术研究[D].长春:吉林大学,2014. [4] 国家中长期科学和技术发展规划纲要(2006-2020年)[R].北京.中华人民共和国国务院.2006 [5] 中华人民共和国国民经济和社会发展第十一个五年规划纲要[R].北京.中华人民共和国国务院.2006 [6] 国务院关于加快振兴装备制造业的若干意见[N].新华社.2006年 [7] 郝万军. 大型矿用挖掘机设计关键技术研究[D].吉林大学,2014. [8] 苏可心.矿用挖掘机驾驶室布局优化设计研究[D].辽宁工程技术大学,2020. [9] 贾志艳.工程机械驾驶室的安全舒适性设计研究[D].南京航空航天大学,2014. [10] 丁玉兰.人机工程学[M].北京理工大学出版社:2017.1 [11] 陈睿欣.特种车辆人机界面布局优化与评估方法研究[D].大连理工大学,2019. [12] 王川,徐胜航,冉令华,经纬,刘李娜.船舶操控台显示界面人机工程设计标准研究[J].中华航海医学与高气压医学杂志,2020,27(05):601-603,634+601-603,634. [13] 马军超,周琦,张益林.核电人因工程与软件工程共融设计[J].核电子学与探测技术,2017,37(09):876-880. [14] 丁传锋.基于人机工程学工程车辆驾驶室结构优化分析[J].机械设计与制造,2018(10):176-179. [15] 王一甲,王余锐,金立生.基于人机工程的驾驶室舒适性设计与仿真研究[J].农机化研究,2016,38(12):247-253. [21] 宗立成,叶聪,余隋怀,等.载人潜水器舱室设备智能布局设计方法研究[J].中国造船,2013,54(3):147-154. [22] 宗立成,余隋怀,孙晋博,等.基于鱼群算法的舱室布局优化问题关键技术研究[J].机械科学与技术,2014,33(2):257-262. [23] 范文,余隋怀,王文军,等.蚁群算法求解人机布局优化问题[J].机械科学与技术,2013,32(7):956-961. [24] 颜声远,张晶玲,王帅旗.基于多操作规程和原则的操纵器排列优化[J].沈阳工业大学学报,2012,34(2):169-173. [25] 颜声远,陈玉,梁龙远.基于模拟退火算法的操纵器排列优化[J].核动力工程,2014,35:67-70. [28] 刘海悦,农机装备驾驶操纵舒适性试验平台的设计[D],华中农业大学,2018 [29] 魏秀洁,手指操作器的形态认知研究[D],江苏大学,2012 [30] 罗坚.人机工程学在工业产品设计中的应用[J].机电工程技术,2004(03):9-11+80. [31] 王旭辉,人本设计方法在汽车前仪表盘设计中的运用[J].机械管理开发,2010,25(5),100-105 [32] 颜声远,张晶玲,王帅旗,基于多操作规程和原则的操纵器排列优化.[J].沈阳工业大学学报,2012,34(2),169-173. [33] 宋小青,沈玺.基于人机工程学的控制面板设计研究[J].装备制造技术,2006(04):67-69. [34] 呼慧敏 , 晁储芝 , 赵朝义等.中国成年人人体尺寸数据相关性研究 [J].人类工效 学,2014,03:49-53. [35] GB/T 3730.1-2001,汽车和挂车类型的术语和定义[S].北京:中国标准出版社,2001 [36] GB/T15089-2001,机动车辆及挂车分类[S].北京:中国标准出版社,2001 [37] 陈青阳,吴志军,那成爱.基于H点的大型工程车辆驾驶室操作装置的布局设计[J].机械工程师,2014(10):7-9. [38] 赵树椿.装载机驾驶室关键参数设计及人机工程仿真[D].济南:山东大学,2010. [41] 王运龙,王晨,纪卓尚,赵学国.船舶居住舱室智能布局优化设计方法研究[J].中国造船,2013,54(03):139-146. [42] 杨海元. 固体力学的数值方法[M].天津:天津大学出版社,1991. [44] 路艳雪. NSGA-Ⅱ多目标优化算法的改进及应用研究[D].太原理工大学,2017. [45] 李辉,张淑红,陈金周.感性工学方法论及其在产品设计过程中的应用研究进展[J].湖南包装,2016,31(04):23-27. [46] 康慧,杨随先,邓淑文,王波.产品操作界面元素布局多目标优化设计[J].包装工程,2020,41(08):149-153+172. [50] 谢涛,陈火旺.多目标优化与决策问题的演化算法.中国工程科学,2002.4(2) [51] 钱辉仲,顾克秋,彭迪,周成.基于NSGA-II算法的超轻型火炮摇架多目标优化设计[J].机械设计,2012,29(06):36-40. |
中图分类号: | TB472 |
开放日期: | 2022-06-20 |