论文中文题名: | 四轮独立驱动矿用电动车主动后轮转向/驱动协同控制策略研究 |
姓名: | |
学号: | 21205016042 |
保密级别: | 保密(1年后开放) |
论文语种: | chi |
学科代码: | 0802 |
学科名称: | 工学 - 机械工程 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2024 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 智能矿用车辆 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2024-06-17 |
论文答辩日期: | 2024-06-01 |
论文外文题名: | Research on Active Rear Wheel Steering/Drive Cooperative Control Strategy for Four-Wheel Independent Drive Mining Electric Vehicle |
论文中文关键词: | |
论文外文关键词: | Mining electric vehicles ; Four-wheel independent drive ; Active rear-wheel steering ; Cooperative control ; Hardware-in-the-loop |
论文中文摘要: |
燃油矿用无轨胶轮车具有污染重、噪声大、效率低等缺点,对井下人员职业健康形成严重危害,矿用电动车研究成为行业发展必然趋势。本文以四轮独立驱动矿用电动车(Four-wheel independent drive mine electric vehicle, 4WIDMEV)为研究对象,针对其在井工煤矿行驶低速机动灵活性差、高速稳定性低和主动安全性低等问题,提出一种主动后轮转向/驱动协同控制策略,从而实现在不过多干预驾驶员行为的情况下提升4WIDMEV的主动安全性、高速稳定性和低速机动性。 首先,对4WIDMEV非线性系统在特定条件下作出假设并简化,完成4WIDMEV动力学模型的构建。并与Carsim中相同参数的车辆动力学模型进行对比,完成4WIDMEV动力学模型准确性和合理性的验证。 其次,针对4WIDMEV低速机动灵活性差、高速稳定性低和主动安全性低等问题,以车辆理想侧向动力学特性为理想控制状态,采用模型预测算法优化滑模控制方法,设计一种4WIDMEV主动后轮转向控制器,实现4WIDMEV对目标横摆角速度和目标质心侧偏角的跟踪控制,及在不干预驾驶员行为情况下对车辆灵活性、操纵稳定性和主动安全性的提升,并通过离线仿真实验验证其控制策略的可行性。 然后,针对极限工况下由于轮胎侧向力发生饱和导致主动后轮转向控制器控制能力受限问题,制定主动后轮转向/驱动协同控制策略,实现横摆控制和后轮转角的控制权重系数分配,并设计一种基于二次规划算法的4WIDMEV驱动力矩分配控制器,将决策层输出的横摆力矩和总的纵向驱动力合理分配给4个驱动车轮,以期提升4WIDMEV在井下极限工况下的操纵稳定性。最后通过离线仿真实验验证协同控制策略的可行性。 最后,采用硬件在环实验平台和实车测试平台,通过阶跃和正弦两个工况下的硬件在环实验以及实车测试,完成对4WIDMEV主动后轮转向/驱动协同控制策略实时性和有效性的验证。 |
论文外文摘要: |
Fuel mine trackless rubber-tyred vehicles have the shortcomings of heavy pollution, high noise and low efficiency, which pose a serious hazard to the occupational health of underground personnel, and the research of mining electric vehicles has become an inevitable trend. In this paper, taking the four-wheel independent drive mine electric vehicle (4WIDMEV) as the research object, aiming at the problems of poor low-speed maneuverability, low high-speed stability and low active safety under the driving conditions of underground coal mines, an active rear-wheel steering is proposed. Drive cooperative control strategy to improve the active safety, high-speed stability and low-speed maneuverability of 4WIDMEV without interfering too much with driver behavior. Firstly, the assumptions and simplifications of the 4WIDMEV nonlinear system were made under specific conditions, and the construction of the 4WIDMEV dynamic model was completed. The accuracy and rationality of the 4WIDMEV dynamic model were verified by comparing the vehicle dynamics model with the same parameters in the commercial software Carsim. Secondly, in order to solve the problems of poor flexibility of low-speed maneuvering, low high-speed stability and low active safety of 4WIDMEV, taking the ideal lateral dynamics characteristics of the vehicle as the ideal control state, a 4WIDMEV active rear-wheel steering controller was designed by using the model prediction algorithm to optimize the sliding mode control, so as to realize the tracking control of the target yaw rate and the target side slip angle of the target by 4WIDMEV, and the flexibility of the vehicle, The control stability and active safety are improved, and the feasibility of the control strategy is verified by offline simulation experiments. Then, in order to solve the problem of limited control ability of the active rear-wheel steering controller due to the saturation of the lateral force of the tire under extreme conditions, a cooperative control strategy of active rear-wheel steering and drive was formulated to realize the distribution of the control weight coefficient of the yaw control and the rear wheel rotation angle, and a 4WIDMEV driving torque distribution controller based on quadratic programming algorithm was designed, and the yaw torque output by the decision-making layer and the total longitudinal driving force were reasonably distributed to the four driving wheels, in order to improve the handling stability of 4WIDMEV under underground extreme working conditions. At last, the feasibility of the cooperative control strategy is verified by offline simulation experiments. Finally, the hardware-in-the-loop experimental platform and the real vehicle test platform were used to complete the real-time and effective verification of the 4WIDMEV active rear-wheel steering/drive cooperative control strategy through the hardware-in-the-loop experiments and real vehicle tests under step and sine conditions. |
参考文献: |
[1] 宋刚刚.碳中和背景下中国煤炭能源产业的转型升级战略研究[J].内蒙古煤炭经济,2022(07):118-120.DOI:10.13487/j.cnki.imce.021966. [2] 国家统计局,2022年国民经济和社会发展统计公报[R],2023年2月28日发布. [3] 方良才.加快煤炭产业数字化转型,为煤炭企业高质量发展提供新动能[J].中国煤炭工业,2021(11):10-13. [4] 杜波.推动煤矿智能化建设 赋能企业高质量发展[J].中国煤炭工业,2023(07):12-14. [5] 康红普.新时代煤炭工业高质量发展的战略思考[N].中国煤炭报,2021-07-27(004). [6] 董衡. 全国矿山智能化建设和安全发展推进视频会经验摘登[N]. 中国煤炭报,2023-01-10(003). [7] 王海波.煤矿智能辅助运输系统现状与展望[J].智能矿山,2021,2(01):50-54. [8] 杨鑫.关于新能源防爆无轨胶轮车在煤矿井下的应用[J].矿业装备,2023(02):146-147. [9] 张军军.煤矿无轨胶轮车排放有害气体的管控措施研究[J].内蒙古煤炭经济,2021(03):38-39.DOI:10.13487/j.cnki.imce.019357. [10] 刘志更.矿用无轨胶轮车的发展瓶颈与对策分析[J].煤炭工程,2019,51(05):37-39. [12] 王登怡.中国新能源汽车的研发现状及未来展望[J].中国新通信,2019,21(17):236. [13] 黄嘉南.四轮独立驱动电动汽车直接横摆力矩控制方法研究[D].长春工业大学,2023.DOI:10.27805/d.cnki.gccgy.2023.000365 [18] 周密林,代立明,于建华.矿用防爆电驱车多档位变速节能技术研究[J].煤炭工程,2020,52(11):171-174. [20] 冯庆东,帅健,尹永晶等.国外六大矿用汽车制造商及其产品综述[J].矿山机械,2011,39(07):5-12.DOI:10.16816/j.cnki.ksjx.2011.07.002. [21] 刘廷安.国外大型矿用汽车现状及新趋势[J].矿业装备,2017,(03):20-23. [25] 魏景生,吴淼.中国现代煤矿辅助运输[M].北京:煤炭工业出版社,2016. [26] WLR-19防爆锂电池运人车[EB/OL]. https://tyccri.ccteg.cn/contents/4037/12613.html. [27] WJX-10FB防爆蓄电池多功能铲运车[EB/OL]. https://tyccri.ccteg.cn/contents/4037/12640.html. [28] 神华集团防爆电动车研制成功节能效果明显[EB/OL]. http://blog.sina. com.cn/s/ blog_6292b7fd0102wtha.html. [29] 王伟. 四轮独立驱动电动车轨迹跟踪及转矩分配控制策略研究[D].燕山大学,2022.DOI:10.27440/d.cnki.gysdu.2021.001818. [32] 曹天琳,李刚,余志超等.四轮独立驱动电动车横摆力矩控制研究[J].汽车工程师,2020(11):43-46+51. [35] 郭海文,罗玉涛.基于自适应滑模的车辆稳定性控制策略[J].机械设计与制造工程,2020,49(09):73-77. [37] 胡红元,李兵,王阳阳.汽车四轮转向技术研究综述[J].上海汽车,2021(04):19-23. [39] 檀振贤,金阳,刘成武.主动后轮转向对车辆操纵稳定性的影响[J].机械设计,2022,39(S2):56-61.DOI:10.13841/j.cnki.jxsj.2022.s2.044. [45] 滕冬冬,孙骏,冯能莲.基于模型匹配的后轮主动转向车辆μ综合控制研究[J].湖北汽车工业学院学报,2015,29(03):1-5+10. [48] 元加加,韩伟,赵沛竹.主动后轮转向汽车与转矩分配协调控制研究[J].制造业自动化,2020,42(09):130-134. [54] 武冬梅. 分布式驱动电动汽车动力学控制机理和控制策略研究[D].吉林大学,2015. [55] 黄文军. 分布式驱动电动汽车主动后轮转向与直接横摆力矩协调控制研究[D].江西理工大学,2024.DOI:10.27176/d.cnki.gnfyc.2023.000864. [58] 谢宪毅.分布式电动汽车操纵稳定性集成控制方法研究[D].吉林大学,2018. [59] 龚建伟.无人驾驶车辆模型预测控制[M].北京:北京理工大学出版社,2014. [60] 刘伟.基于质心侧偏角相平面的车辆稳定性控制系统研究[D].吉林大学,2013. [61] 喻凡,林逸.汽车系统动力学[M].北京:机械工业出版社,2016. [62] 林志强.四轮独立驱动电动汽车主动悬架与直接横摆力矩集成控制研究[D].重庆大学,2022.DOI:10.27670/d.cnki.gcqdu.2022.002075 [63] 郭孔辉. UniTire 统一轮胎模型[J]. 机械工程学报, 2016, 52(12): 90-99. [66] 熊东海.两轮电动车用直流无刷电机调速系统的设计[D].广东工业大学,2018. [67] 赵彬.四轮驱动电动汽车操纵稳定性与节能集成优化控制[D].吉林大学,2019.DOI:10.27162/d.cnki.gjlin.2019.000046 [68] 崔胜民.基于MATLAB的新能源汽车仿真实例[M].北京:化学工业出版社,2020. [69] 韩丽.四轮转向车辆横向运动控制Simulink仿真[J].湘南学院学报,2023,44(05):15-19. [73] 李茂月.车辆CarSim仿真及应用实例[M].北京:冶金工业出版社,2020. [75] 余志生.汽车理论[M].北京:机械工业出版社,2000. [78] 柳江,王政皓,张业等.车辆主动转向和独立驱动集成控制[J].控制理论与应用,2019,36(08):1351-1359. |
中图分类号: | TD525 |
开放日期: | 2025-06-17 |