- 无标题文档
查看论文信息

论文中文题名:

 基于事件相关电位特征信息的矿工疲劳评估研究    

姓名:

 路伟    

学号:

 18220214082    

保密级别:

 保密(2年后开放)    

论文语种:

 chi    

学科代码:

 085224    

学科名称:

 工学 - 工程 - 安全工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 安全与应急管理    

第一导师姓名:

 田水承    

第一导师单位:

  西安科技大学    

论文提交日期:

 2021-06-18    

论文答辩日期:

 2021-05-29    

论文外文题名:

 Study on fatigue of miners assessment based on event-related potential characteristic information    

论文中文关键词:

 矿工 ; 疲劳 ; 事件相关电位 ; P300 ; 安全管理    

论文外文关键词:

 Miners ; fatigue ; Event-related potential ; P300 ; The safety management    

论文中文摘要:

     随着煤矿设备智能机械化发展,煤矿井下设备操作要求矿工持续地将注意力集中在单调枯燥的操作任务和体力任务上。由于长时间轮班工作和重复性作业,矿工容易产生疲劳。即使矿工具有丰富井下作业经验,出现疲劳后仍然会导致矿工反应时间延迟、工作效率降低、注意力水平下降,而且疲劳后容易导致工作分心。然而,现有对煤矿从业者疲劳问题的研究多采用主观评定,缺乏对疲劳的客观评估,导致煤矿从业人员身体状况与岗位匹配度不佳,限制了煤矿管理者对矿工安全能力水平的提高。因此,本文通过实验研究,采集矿工下井前后的脑电数据进行分析,选取疲劳指标构建评估模型,旨在快速检测矿工疲劳状态。
       本文以夜班矿工为研究对象。首先进行脑电和行为测试实验研究。采用经典实验范式诱发事件相关电位(Event-related potentials,简称ERP)的认知成分P300,同时应用夜班矿工的主观疲劳量表。其次,根据实验数据分析夜班矿工的疲劳状态。采用配对t检验,分析夜班矿工下井前后主观疲劳数据和行为数据的差异;选取ERP成分P300作为关键指标,对矿工下井前后P300成分的波幅和潜伏期进行统计分析;筛选矿工上岗前的疲劳评估指标,包括主观评估得分、行为数据得分、脑电数据指标(波幅和潜伏期)、睡眠时间。最后,根据疲劳评估指标,构建多元线性回归模型,分析各指标的相关性并对矿工岗前疲劳进行筛查。
       从主观评价和行为指标分析结果发现,夜间矿工连续一线作业诱发了疲劳,操作反应时间明显延长。进一步比较上井后矿工ERP特征参数P300的波幅和潜伏期的变化情况,波幅明显降低,说明了矿工出现疲劳后脑部信息加工能力受到影响,对目标的注意力下降。因此,通过现场实验测试,应用事件相关电位(ERP)方法可用来研究矿工的疲劳程度;P300可以作为评价矿工疲劳的有效指标。本研究通过多元线性回归模型,提出了一种定量评估矿工岗前疲劳的方法。为了验证模型的正确性,进行了疲劳验证实验。实验结果表明,该疲劳评估方法通过比较矿工的主观和客观数据,可以成功地识别出岗前疲劳的矿工。

论文外文摘要:

     With the development of intelligent mechanization of coal mine equipment, the operation of underground coal mine equipment requires the miners to continuously focus on the monotonous operation tasks and physical tasks.Miners are prone to fatigue because of long shift work and repetitive work.Even if the miners have rich underground working experience, fatigue will still lead to the miners' reaction time delay, reduced work efficiency, decreased attention level, and easily lead to work distraction after fatigue. However, the existing research on the fatigue problem of coal miners mostly adopts subjective assessment, and lacks objective assessment of fatigue, which leads to the poor matching degree between the physical conditions of coal miners and their posts, and restricts the improvement of the safety ability level of coal mine managers.Therefore, this paper collects EEG data before and after miners go into the well for analysis through experimental research.Fatigue indexes were selected to build an evaluation model to quickly detect the fatigue state of miners.
      This paper takes the night shift miners as the research object.Firstly, the EEG and behavioral tests were carried out.At the same time, subjective fatigue scales of night shift miners were collected by evoked cognitive component P300 (Event-Related Potentials, or ERP), a classical experimental paradigm.Secondly, the fatigue state of night shift miners is analyzed according to the experimental data.Paired t test was used to analyze the difference of subjective fatigue data and behavior data before and after night shift miners went down the well.The ERP component P300 was selected as the research object, and the amplitude and latency of P300 component before and after the miners went down the shaft were statistically analyzed.The fatigue evaluation indexes of miners before work were screened, including subjective evaluation score, behavioral data score, EEG data index (amplitude and latency), and sleep time.Finally, according to the fatigue evaluation indexes, a multiple linear regression model was established to analyze the correlation of each index and screen the pre-job fatigue of miners.
       The results of subjective evaluation and behavior index analysis show that the continuous front-line work at night induced fatigue, and the response time of operation was significantly prolonged.Furthermore, the amplitudes of the ERP characteristic parameter P300 and the changes of the latency period of the miners were further compared. The amplitudes of the ERP characteristic parameter P300 were significantly reduced, indicating that the brain information processing ability of the miners was affected after fatigue and their attention to the target was decreased.Therefore, the application of event-related potential (ERP) method can be used to study the fatigue degree of miners through field experiments.P300 can be used as an effective index to evaluate miners' fatigue.In this study, a quantitative method for evaluating pre-job fatigue of miners was established by using multiple linear regression model.In order to verify the correctness of the model, a fatigue verification experiment was carried out.The experimental results show that by comparing the subjective and objective data of the miners, the fatigue miners can be identified successfully.

参考文献:

[1] Liu Q,Li X,Meng X. Effectiveness research on the multi-player evolutionary game of coal-mine safety regulation in China based on system dynamics[J]. Saf Sci,2019,111.

[2] 国家统计局.中国经济年鉴.http://www.stats.gov.cn/tjsj/pcsj/jjpc/4jp/zk/indexch.htm.

[3] Haimiao Yu,Hong Chen,Ruyin Long. Mental fatigue,cognitive bias and safety paradox in chinese coal mines[J]. Resources Policy,2017,52.

[4] Zhang J,Xu K,Reniers G,et al. Statistical analysis the characteristics of extraordinarily severe coal mine accidents (ESCMAs) in China from 1950 to 2018[J]. Process Safety and Environmental Protection,2020,133.

[5] Marcin Butlewski,Grzegorz Dahlke,Milena Drzewiecka,et al. Fatigue of Miners as a Key Factor in the Work Safety System[J]. Procedia Manufacturing,2015,3.

[6] Wagstaffff A S,Sigstad J A. Shift and night work and long working hours a systematic review of safety implications[J]. Scand J Work Environ.Health,2011,37.

[7] Akerstedt T,Knutsson A,Westerholm P,et al. Mental fatigue,work and sleep[J]. J Psychosom Res,2015,57.

[8] Boksem Maarten A S,Meijman Theo F,Lorist Monicque M. Mental fatigue,motivation and action monitoring.[J]. Biological psychology,2006,72.

[9] Maarten A S,Meijman F,Monicque M. Mental fatigue,motivation and action monitoring[J]. Biological Psychology,2005,72.

[10] Murataa A,Uetakeb A,Takasawab Y. Evaluation of mental fatigue using featureparameter extracted from event-related potential[J]. Int J Ind Ergon,2005,35.

[11] Akerstedt T,Axelsson J,Lekander M,et al. Do sleep,stress,and illness explain daily variations in fatigue? A prospective study[J]. Psychosom Res,2014,76.

[12] Hystad S W,Nielsen M B,Eid J. The impact of sleep quality,fatigue and safetyclimate on the perceptions of accident risk among seafarers[J]. Revue Européenne de Psychologie Appliquée/European Review of Applied Psychology,2017,67.

[13] Thoma P,Winter N,Juckel G,et al.Mental state decoding and mental state reasoning in recently detoxified alcohol-dependent individuals[J]. Psychiatry Research,2013,205.

[14] Eki Z,Akgl A,Recep Bozkurt M. The Classificaton of EEG Signals Recorded in Drunk and Non-Drunk People[J]. International Journal of Computer Applications,2013,68.

[15] Tzimourta K,Tsoulos I,Bilero T,et al. Direct Assessment of Alcohol Consumption in Mental State Using Brain Computer Interfaces and Grammatical Evolution[J]. Inventions,2018,3.

[16] Tempesta D,Socci V,De Gennaro L,et al. Sleep and emotional processing[J].Sleep Medicine Reviews,2018,40.

[17] Choudhry R M. Behavior-based safety on construction sites:A case study[J].Accident Analysis & Prevention,2014,70.

[18] Aicha F, Pierreval H, Gien D, et al. Taking Into Account Workers' Fatigue in Production Tasks: A Combined Simulation Framework[M]. The 9th Eurosim C-ongress on Modelling and Simulation.2016:590-596.

[19] AHSBERG E. Dimensions of fatigue in different working populations[J]. Scandinavian journal of psychology,2000,41.

[20] Knauth P. Extended Work Periods [J]. Industrial Health, 2007,45.

[21] Tourangeau A E, Cranley L A. Nurse intention to remain employed: Understanding and strengthening determinants[J]. Journal of Advanced Nursing,2006,55.

[22] 田水承,乌力吉,寇猛,等. 基于生理实验的矿工不安全行为与疲劳关系研究[J]. 西安科技大学学报,2016,36(03),324-330.

[23] 郭伏,王天博,宁作江,等. 单调作业中单调感对职业疲劳的影响研究[J]. 工业工程与管理,2017,22(01),134-140.

[24] 伏开放. 员工作业疲劳影响因素与测量研究综述[J]. 中小企业管理与科技(中旬刊),2019,572(04),7-8.

[25] 王焕新,王新建. 基于文献综述的船员疲劳研究[J]. 世界海运,2017,40(11),13-19.

[26] Kar S,Bhagat M,Routray A.EEG signal analysis for the assessment and quantification of driver’s fatigue[J]. Transportation Research Part F,2010,13.

[27] 朱千,龚斌,杨波.冲动性对海洛因戒治者执行功能影响的ERP研究[J].中华行为医学与脑科学杂志,2016,25(02):144-148.

[28] 姚娟娟,路堃,马兴宇,成工.基于脑电和眼电的疲劳检测方法的研究[J].电子设计工程,2020,28(06):115-120.

[29] Biferno M. Mental workload measurement in operational air craftsystems:two promising approaches[J]. Designs Codes &Cryptography,1987,6.

[30] Larue G S, Rakotonirainy A,Pettitt A N. Driving performance impairments due to hypovigilance on monotonous roads[J]. Accid Anal Prev,2011,43.

[31] Fowler B. P300 as a measure of workload during a simulated aircraft landing task[J]. Hum Factors,1994,36.

[32] Kok A. Event-related-potential (ERP) reflflections of mental resources:a review and synthesis[J]. Biol Psychol,1997,45.

[33] Gosselin A,De K.J,Campbell K. B. Total sleep deprivation and novelty processing: implications for frontal lobe functioning[J]. Clinical neurophysiology:officialjournal of the International Federation of Clinical Neurophysiology,2005,11.

[34] Boksem M,Meijman A.S,et al. Mental fatigue,motivation and action monitoring[J]. Biological Psychology ,2006,72.

[35] Ruijter J,Lorist M.M,Snel J,et al. The influence of caffeine on sustained attention:an ERP study[J]. Pharmacology Biochemistry and Behavior,2000,66.

[36] Lee H J,Kim L,Kim Y K,et al. Auditory event-related potentials and psychological changes during sleep deprivation[J]. Neuropsychobiology,2004,50.

[37] Raz A,Deouell L Y,Bentin S. Is pre-attentive processing compromised by prolonged wakefulness?Effects of total sleep deprivation on the mismatch negativity[J]. Psychophysiology.2001,38.

[38] Salmi J,Huotilainen M,Pakarinen S,et al. Does sleep quality affect involuntary attention switching system?[J]. Neuroscience Letters,2005,390.

[39] Atsuo M,Atsushi U,Yosuke T. Evaluation of mental fatigue using feature parameter extractedfrom event-related potential[J].International Journal of Industrial Ergonomics,2005,35.

[40] Ivo K,Selina C W,Gernot R M,et al. Effects of mental workload and fatigue on the P300, alphaand theta band power during operation of an ERP(P300) brain-computer interface[J]. BiologicalPsychology,2014,50.

[41] 宋国萍,赵仑,张侃. 连续10 h驾驶对听觉非随意注意影响的ERPs研究[J]. 航天医学与医学工程,2006,19(2):147-149.

[42] ZHAOChunlin,ZhaoMin,LiuJianpin,etal.Electroencephalogramand lectrocardiograph assessment of mental fatigue in a driving simulator[J].Accident Analysis and Prevention,2012,45.

[43] 范晓丽,牛海燕,周前祥,等. 基于EEG的脑力疲劳特征研究[J]. 北京航空航天大学学报,2016,42(07):1406-1413.

[44] Yang B,Xiao W,Liu X.F,et al. Mental fatigue impairs pre-attentive processing:A MMN study[J]. Neuroscience Letters,2013,532.

[45] 谢宏,徐文彪. 基于视觉诱发电位的精神疲劳量化标定方法研究[J]. 微型机与应用,2014,33(17):69-71.

[46] 李红霞,薛建文,杨妍. 疲劳对矿工不安全行为影响的ERP实验研究[J]. 西安科技大学学报,2015,35(03):376-380.

[47] Borghini G,Vecchiato G,Toppi J,et al. Assessment of mentalfatigue during car driving by using high resolution EEG activity andneurophysiologic indices[C]//Engineering in Medicine & BiologySociety.International Conference of the IEEE Engineering in Medi-cine and Biology Society,2012.

[48] Jap B T,Lal S,Fischer P,et al. Using EEG spectral components to assess algorithms for detecting fatigue[J]. Expert Systems with Applications,2009,36.

[49] Zhang C,Wang H,Fu R. Automated Detection of Driver Fatigue Based on Entropy and Complexity Measures[C]//IEEE Transactions on Intrlligent Transportation Systems,2014:168-177.

[50] Trejo LJ,Knuth K,Prado R,et al.EEG-Based Estimation of Mental Fatigue:Convergent Evidence for a Three-State Model[C]//HCII2007:201-211.

[51] 张崇,郑崇勋,裴晓梅,等. 生理性精神疲劳的多参数脑电功率谱分析[J]. 生物医学工程学杂志,2009(1):168-172.

[52] 王鹏等.基于小波包变换的精神疲劳多参数脑电分析[J]. 计算机工程与应用,2011,47(30):144-147.

[53] 刘建平,张崇,郑崇勋,等. 基于多导脑电复杂性测度的脑疲劳分析[J]. 西安交通大学学报,2008,42(12):555-1559.

[54] 王福旺,王宏,罗旭. 基于EEG与EOG信号的疲劳驾驶状态综合分析[J]. 东北大学学报,2014(2):175-178.

[55] 孙珲. 基于脑电信号的在线疲劳检测算法研究[D].上海:上海交通大学,2013.

[56] Wei L,Qichang H,Xiumin F,et al. Evaluation of driver fatigue on two channelsof EEG data[J]. Neuroscience Letters,2012,506.

[57] 董建梁. 基于脑电检测的矿工生理与心理疲劳监测系统[D].煤炭科学研究总院,2014.

[58] 王永祥. 基于EEG的疲劳检测技术的研究与应用[D].南京邮电大学,2019.

[59] 程小琴.知识作业心理疲劳的事件相关电位研究[D]. 成都:西南交通大学,2012.

[60] 喻玲. 中级水平东南亚留学生汉语阅读过程中心理疲劳的现状及成因[D].暨南大学,2017.

[61] 吴迪. 管制员疲劳风险预测模型研究[D].中国民航大学,2018.

[62] 万柏坤,高扬,赵丽,等.脑-机接口:大脑对外信息交流的新途径[J]. 国外医学生物工 册,2005,28(1):4-9.

[63] 王耀巍. 特发性疲劳证候要素应证组合及疲劳数字化评定量表研究[D].中国中医科学院,2016.

[64] 郝鹏茹. 基于脑电频谱特征的脑疲劳监测分析[D].河北工业大学,2017.

[65]马进. 健康青年脑力疲劳生理指标和认知功能的实验研究[D]. 西安:第四军医大学,2008.

[66] 李志春.驾驶员疲劳状态检测技术研究与工程实现[D].镇江:江苏大学,2009.

[67] 吕静. 脑力疲劳状态下注意特征及情绪变化的ERP研究[D].西安:第四军医大学,2008.

[68] Lal S K,Craig A. Driver fatigue:psychophysiological effects[C].The Fourth Inte-rnational Conference on Fatigue and Transportation.Fremantle,Australia:2000.365.

[69] 张崇,郑崇勋,欧阳轶,等.基于脑电功率谱特征的脑力疲劳分析[J]. 航天医学与医学工程,2008,21(1):35-39.

[70] 韩辉. 脑力疲劳评测方法研究[J]. 社会科学家,2006,S2:335-336.

[71] 张崇,郑崇勋,于晓琳. 基于多心理生理参数和核学习算法的脑疲劳估计[J]. 科学通报,2008,53(12):1403-1413.

[72] 赵仑. ERP实验教程[M].天津:天津社会科学院出版社,2004:0-12.

[73] 陈兴时,张明岛. 脑诱发电位形成的可能机制[J]. 神经病学与神经康复学杂志,2006,3(2):124-125.

[74] 何庆华,彭承琳,吴宝明. 脑机接口技术研究方法[J]. 重庆大学学报,2002,25(12):106-109.

[75] Lorist M.M,Klein M. Mental fatigue and task control:planning and preparation[J]. Int J Psychophysiology,2000,37.

[76] 魏景汉,罗跃嘉. 认知事件相关电位教程[M]. 北京:经济日报出版社,2002.

[77] Sutton S,Braren M,Zubin J,et a1. Evoked-potential correlates of stimulus uncertainty[J]. Science(New York,NY),1965,150.

[78] 徐彬锋. 基于事件相关单位的心理测试系统设计及算法研究[D].重庆:重庆大学,2008.

[79] 魏景汉,罗跃嘉. 事件相关电位原理与技术[M]. 北京科学出版社,2010.4.

[80] 乔延云. 基于脑疲劳的听觉诱发脑电特征分析[D].河北工业大学,2015.

[81] Sutton S.P300-Thirteen years later[J]. Evoked brain potentials and behavior,1979,2.

[82] Bashore T R,Van der Molen M W. Discovery of the P300:a tribute[J]. Biological Psychology,1991,32.

[83] Donchin E,Ritter W,Mc Callum W C. Cognitive psychophysiology:The endogenous components of the ERP[J]. Event-related brain potentials in man,1978.

[84] Putilov A A,Donskaya O G. Construction and validation of the EEG analogues of the Karolinska sleepiness scale based on the Karolinska drowsiness test[J]. Clinical Neurophysiology,2013,124.

[85] Johnson Jr R. On the neural generators of the P300 component of the eventrelated potential[J]. Psychophysiology.1993,30.

[86] 万育辰,蔡敏.脑力疲劳对前注意能力影响的ERP研究[J].西北国防医学杂志,2021,42(03):137-141.

[87]Ahmadian F F,Akbarnezhad A,Rashidi T H. Enhancing the safety of construction crew by accounting for brain resource requirements of activities in job assignment[J]. Automation in Construction,2018,88.

[88] Cigularov K P,Adams S,Gittleman J L,et a1. Measurement equivalence and mean comparisons of a safety climate measure across construction trades[J]. Accident Analysis&Prevention,2013,5.

[89]Lorist M M,Boksem M A,Ridderinkhof K R. Impaired cognitive control and reduced cingulate activity during mental fatigue[J]. Brain Research Cognitive Brain Research,2005, 24.

[90] Nieuwenhuis S,Mulder G,Meijman T F. Mental fatigue and task control:Planning and preparation[J]. Psychophysiology,2010,37.

[91] Lal S K,Craig A. A critical review of the psychophysiology of driver fatigue[J]. Biological Psychology,2001,55.

[92]Darwent D,Dawson D, Paterson J L,et al. Managing fatigue:It really is about sleep[J]. Accident Analysis&Prevention,2015,82.

[93] Xuan Zhou,Sally A,Fergouson,et al. Mismatch between subjective alertness andobjective performance under sleep restriction is greatest during the biological night[J]. Journal of Sleep Research,2012,21.

[94] Chen H,Long R,Zhang M. Research on 10-year tendency of China coal mine accidents and the characteristics of human factors[J].Saf Sci,2012,50.

中图分类号:

 TD79    

开放日期:

 2023-06-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式