- 无标题文档
查看论文信息

论文中文题名:

 孔周煤体裂隙注浆扩散行为及封堵试验研究    

姓名:

 季冰    

学号:

 21220226144    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 矿井瓦斯灾害防治    

第一导师姓名:

 潘红宇    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-17    

论文答辩日期:

 2024-06-01    

论文外文题名:

 Study on grouting diffusion behavior and plugging test of coal fracture around boreholes    

论文中文关键词:

 裂隙演化 ; 扩散通道 ; 注浆扩散 ; 扩散半径 ; 浆液封堵    

论文外文关键词:

 Crack evolution ; Diffusion path ; Grouting diffusion ; Diffusion radius ; Slurry plugging    

论文中文摘要:

       瓦斯抽采是矿井瓦斯防治的有效技术手段,钻孔封孔质量是提高瓦斯抽采效率的关键因素。钻孔施工后,受地应力和工程扰动的影响,孔周煤体应力重新分布,孔壁出现不同发育程度的裂隙网络,浆液通过充填、渗透等方式流动扩散至孔周煤体裂隙中进而达到密封钻孔的效果。因此,理清浆液在钻孔孔周煤体裂隙中的扩散规律对于提高封堵质量具有重要意义。本文采用理论分析、数值模拟及模型试验相结合的研究方法,深入研究钻孔孔周煤岩体裂隙扩展规律,模拟浆液在孔周裂隙中的扩散行为,揭示浆液在钻孔孔周煤体裂隙中的扩散规律及封堵机理,分析影响注浆效果的主要因素,对于强化钻孔注浆封堵效果、提高瓦斯抽采效率具有重要工程意义。本文的主要研究工作如下:

      (1) 根据钻孔孔周煤体应力分布特征,研究钻孔孔周煤体浆液扩散通道分布规律。结合现场实际情况,系统开展不同含水率含孔煤体渐进性破坏试验,分析孔周煤体变形破坏特征和裂纹发育规律,结合数字图像技术表征孔周煤体渐进性破坏过程,利用应变场灰度演化特征量化表征裂纹演化规律,得到浆液扩散通道的分布规律。

      (2) 根据钻孔孔周煤体裂纹发育规律建立注浆扩散通道分布模型,利用经典流体力学中的Navier-Stocks方程和Darcy定律推导浆液在孔周裂隙内的流动扩散方程,运用流量守恒理论构建钻孔孔周煤体注浆扩散模型。将模型嵌入至COMSOL Multiphysics软件中,模拟钻孔孔周煤岩体浆液渗透扩散过程,分析不同注浆参数条件下孔周煤体浆液扩散行为。

      (3) 根据钻孔孔周应力分布和裂隙演化规律,自主设计钻孔孔周煤体破碎-裂隙区域注浆试验平台,研究浆液在孔周不同应力分区下注浆压力、注浆量等注浆参数与对扩散半径的影响关系。结合浆液在裂隙中的流动扩散模型,分析多因素条件下浆液在孔周煤体不同应力分区中的扩散行为。

      (4) 在陕西某矿工作面采用水泥-水玻璃填充材料开展钻孔注浆封堵试验,应用钻孔窥视和SF6示踪检测方法检验浆液在孔周煤体裂隙中的注浆封堵效果,采用自研封孔质量检测设备测量抽采钻孔内部不同位置处的瓦斯浓度变化,反映抽采钻孔封孔质量及浆液渗透扩散范围,验证前述研究得到的布孔参数和注浆参数的合理性。

论文外文摘要:

      Gas extraction is an effective technical means for mine gas prevention and control, and the quality of borehole sealing is a key factor to improve the efficiency of gas extraction. After the drilling construction, due to the influence of in-situ stress and engineering disturbance, the stress of the coal body around the hole is redistributed, and the fracture network with different development degrees appears on the hole wall. The slurry flows and diffuses into the cracks of the coal body around the hole through filling and infiltration, so as to achieve the effect of sealing the borehole. Therefore, it is of great significance to clarify the diffusion law of slurry in the coal fracture around the borehole for improving the sealing quality. In this paper, theoretical analysis, numerical simulation and model test are used to study the crack propagation law of coal and rock mass around boreholes, simulate the diffusion behavior of slurry in the cracks around boreholes, reveal the diffusion law and plugging mechanism of slurry in the cracks around boreholes, and analyze the main factors affecting the grouting effect. It is of great engineering significance to strengthen the plugging effect of borehole grouting and improve the efficiency of gas drainage. The main research work of this paper is as follows:

      (1) According to the stress distribution characteristics of the coal body around the borehole, the distribution law of the slurry diffusion channel around the borehole is studied. Combined with the actual situation in the field, the progressive failure test of coal body with different water content was carried out systematically, and the deformation and failure characteristics and crack development law of coal body around the hole were analyzed. Combined with digital image technology, the progressive failure process of coal body around the hole was characterized. The gray evolution characteristics of strain field were used to quantitatively characterize the crack evolution law, and the distribution law of slurry diffusion channel was obtained.

      (2) According to the development law of coal cracks around the borehole, the distribution model of grouting diffusion channel is established. The Navier-Stocks equation and Darcy 's law in classical fluid mechanics are used to derive the flow diffusion equation of slurry in the cracks around the borehole. The flow conservation theory is used to construct the grouting diffusion model of coal around the borehole. The model is embedded into COMSOL Multiphysics software to simulate the infiltration and diffusion process of coal and rock slurry around the borehole, and the diffusion behavior of coal slurry around the borehole under different grouting parameters is analyzed.

      (3) According to the stress distribution and fracture evolution law around the borehole, a grouting test platform for the fracture-fracture area of the coal body around the borehole was independently designed to study the influence of grouting parameters such as grouting pressure and grouting amount on the diffusion radius under different stress zones around the borehole. Combined with the flow diffusion equation of slurry in the fracture, the diffusion behavior of slurry in the fracture network of coal body around the hole under multi-factor conditions is analyzed.

      (4) The cement-water glass filling material was used to carry out the drilling grouting plugging test in the working face of a mine in Shaanxi Province. The drilling peeping and SF6 tracer detection methods were used to test the grouting plugging effect of the slurry in the cracks of the coal body around the hole. The self-developed sealing quality detection equipment was used to measure the gas concentration changes at different positions inside the extraction borehole, reflecting the sealing quality of the extraction borehole and the range of slurry penetration and diffusion, and verifying the rationality of the hole arrangement parameters and grouting parameters obtained in the previous study.

参考文献:

[1] 李树刚, 杨二豪, 林海飞, 等. 深部开采卸压瓦斯精准抽采体系构建及实践[J]. 煤炭科学技术, 2021, 49(5): 1-10.

[2] 袁亮. 我国煤矿安全发展战略研究[J]. 中国煤炭, 2021, 47(6): 1-6.

[3] 周福宝, 孙玉宁, 李海鉴, 等. 煤层瓦斯抽采钻孔密封理论模型与工程技术研究[J]. 中国矿业大学学报, 2016, 45(3): 433-439.

[4] 王振, 梁运培, 金洪伟. 防突钻孔失稳的力学条件分析[J]. 采矿与安全工程报, 2008(4): 444-448.

[5] 郑雨天. 井巷和钻孔周围三维应力场的简化模式[J]. 煤炭学报, 1982(4): 74-80.

[6] 王法凯, 蒋承林, 吴爱军, 等. 瓦斯测压孔壁围岩坍塌机理及孔壁注浆加固技术[J].煤炭科学技术, 2010, 38(9): 10-13.

[7] Wu Fei, Zhang Hao, Zou Quanle, et al. In-situ stress distribution laws of coal and rock in deep mining based on the Griffith criterion[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2022, 8(2): 351-364.

[8] Cheng Hongmei, Zhang Ning, Yang Yugui, et al. 3-D dynamic evolution analysis of coal-rock damaged field and gas seepage field during the gas extraction process[J]. Journal of Natural Gas Science and Engineering, 2018, 56: 444-454.

[9] 姚向荣, 程功林, 石必明. 深部围岩遇弱结构瓦斯抽采钻孔失稳分析与成孔方法[J]. 煤炭学报, 2010, 35(12): 2073-2081.

[10] 林柏泉, 张祥良, 李彦君, 等. 离子体对煤体选择性破碎的实验与数值模拟分析[J]. 煤炭学报, 2019, 44(11): 3472-3479.

[11] 林柏泉, 钟玉婷, 曹轩, 等. 循环微波辐射下煤体孔裂隙结构演化特征[J]. 西安科技大学学报, 2021, 41(6): 964-972.

[12] 王志明, 孙玉宁, 张硕, 等. 竖直恒载循环作用下煤层钻孔失稳演化研究[J]. 岩石力学与工程学报, 2020, 39(2): 262-271.

[13] 刘延保, 曹树刚, 李勇, 等. 含瓦斯煤体破坏过程中AE序列关联维数演化分析[J]. 重庆大学学报, 2012, 35(3): 108-114.

[14] 康红普, 司林坡, 苏波. 煤岩体钻孔结构观测方法及应用[J]. 煤炭学报, 2010, 35(12): 1949-1956.

[15] 张天军, 纪翔, 张磊, 等. 瓦斯抽采钻孔孔周裂隙演化及等效裂纹宽度试验研究[J]. 岩石力学与工程学报, 2019, 38(S2): 3625-3633.

[16] Nie Baisheng, He Xueqiu, Li Xiangchun, et al. Meso-structures evolution rules of coal fracture with the computerized tomography scanning method[J]. Engineering Failure Analysis, 2014, 41: 81-88.

[17] 李伟, 要惠芳, 刘鸿福, 等. 基于显微CT的不同煤体结构煤三维孔隙精细表征[J]. 煤炭学报, 2014, 39(6): 1127-1132.

[18] 宋晓夏, 唐跃刚, 李伟, 等. 基于显微CT的构造煤渗流孔精细表征[J]. 煤炭学报, 2013, 38(3): 435-440.

[19] Yao Yanbin, Liu Dameng, Che Yao, et al. Non-destructive characterization of coal samples from China using microfocus X-ray computed tomography[J]. International Journal of Coal Geology, 2009,80; 113-123.

[20] 李贺, 林柏泉, 洪溢都, 等. 微波辐射下煤体孔裂隙结构演化特性[J]. 中国矿业大学学报, 2017, 46(6): 1194-1201.

[21] Li Huoyin, Yujiro Ogawa, Sohei Shimada. Mechanism of methane flow through sheared coals and its role on methane recovery[J]. Fuel, 2003, 82: 1271-1279.

[22] 叶桢妮, 侯恩科, 段中会,等. 不同煤体结构煤的孔隙-裂隙分形特征及其对渗透性的影响[J]. 煤田地质与勘探, 2019, 47(5): 70-78.

[23] 丁志文, 董平川, 李世银, 等. 岩体分形离散裂隙网络系统中流体流动模拟研究进展[J]. 水利水电科技进展, 2016, 36(2): 87-94.

[24] 邓世冠, 鲁力, 刘海娇, 等. 一种孔隙裂隙网络模型及页岩气渗流模拟[J]. 地下空间与工程学报, 2015, 11(S1): 76-79.

[25] 李冬伟, 刘健, 陈亮, 等. 三维裂隙网络建模技术修正及其工程应用[J]. 地下空间与工程学报, 2020, 16(5): 1476-1483.

[26] Ni Xiaoming, Chen Wenxue, Li Zheyuan, et al. Reconstruction of different scales of pore-fractures network of coal reservoir and its permeability prediction with Monte Carlo method[J]. International Journal of Mining Science and Technology, 2017, 27(4): 693-699.

[27] 潘红宇, 葛迪, 张天军, 等. 应变率对岩石裂隙扩展规律的影响[J]. 煤炭学报, 2018, 43(3): 675-683.

[28] Pan Hongyu, Ji Bing, Ji Xiang, et al. Study on the Grayscale Characteristics of Borehole Images of Progressive Failure of Coal Bodies with Different Moisture Contents[J]. Processes, 2022, 10(12): 2499-2499.

[29] Ji Xiang, Zhang Tianjun, Ji Bing, et al. Gray Characteristics Analysis of Strain Field of Coal and Rock Bodies Around Boreholes During Progressive Damage Based on Digital Image[J]. Rock Mechanics and Rock Engineering, 2023, 56(8): 5607-5620.

[30] Zhang Tianjun, Ji Xiang, Pang Mingkun, et al. Investigation of the crack evolution characteristics of coal and rock bodies around boreholes during progressive damage based on stress threshold values[J]. Theoretical and Applied Fracture Mechanics, 2023, 125: 103935.

[31] Dreuzy D J, Davy P, Bour O. Hydraulic properties of two-dimensional random fracture networks following power law distributions of length and aperture[J]. Water Resources Research, 2002, 38(12): 121-129.

[32] 翟成, 孙勇, 范宜仁, 等. 低场核磁共振技术在煤孔隙结构精准表征中的应用与展望[J]. 煤炭学报, 2022, 47(2): 828-848.

[33] Tarokh A, Kao C S, Fakhimi A, et al. Insights on surface spalling of rock[J]. Computational Particle Mechanics, 2016, 3(3): 391-405.

[34] 陈萍, 唐修义. 低温氮吸附法与煤中微孔隙特征的研究[J]. 煤炭学报, 2001, (5): 552-556.

[35] 降文萍, 宋孝忠, 钟玲文. 基于低温液氮实验的不同煤体结构煤的孔隙特征及其对瓦斯突出影响[J]. 煤炭学报, 2011, 36(4): 609-614.

[36] 魏建平, 姚邦华, 刘勇, 等. 裂隙煤体注浆浆液扩散规律及变质量渗流模型研究[J]. 煤炭学报, 2020, 45(1): 204-212.

[37] 郑卓, 李术才, 刘人太, 等. 裂隙岩体注浆中的浆液-岩体耦合效应分析[J]. 岩石力学与工程学报,2015,34(S2): 4054-4062.

[38] 郭炎伟, 贺少辉, 张安康, 等. 劈裂注浆复合土体三维等效弹性模型理论研究[J]. 岩土力学, 2016, 37(7): 1877-1886.

[39] 黄耀光, 王连国, 陆银龙. 巷道围岩全断面锚注浆液渗透扩散规律研究[J]. 采矿与安全工程学报, 2015, 32(2) :240-24.

[40] Dasgupta N, Borah R, Mishra P, et al. Combined effects of blockage and yield stress on drag and heat transfer from an in-line array of three spheres[J]. Journal of Dispersion Science and Technology, 2019, 40(6): 855-873.

[41] Mahmood R, Bilal S, Majeed A H, et al. Assessment of pseudo-plastic and dilatant materials flow in channel driven cavity: application of metallurgical processes[J]. Journal of Materials Research and Technology, 2020, 41(3): 897-912.

[42] 秦鹏飞, 朱翔, 周想云. 基于分形理论的裂隙岩体渗透注浆机理研究[J]. 煤炭学报, 1-10.

[43] 赵鹏. 基于浆液黏度时变特性的交叉裂隙注浆扩散规律[D].山东大学, 2016.

[44] 谢涛锋. 碎粒煤层注浆实验及浆液扩散规律研究[D].中国矿业大学, 2016.

[45] Eklund D. Stille H. Penetrability due to filtration tendency of cement-based grouts[J]. Tunnelling and Underground Space Technology, 2008,23(4): 389-398.

[46] Axdsson M, Gustafson G, Fransson A. Stop mechanism for cementitious grouts at different water-to-cement ratios[J]. Tunnelling and Underground Space Technology, 2009, 24: 390-397.

[47] 赵庆彪, 毕超, 虎维岳,等. 裂隙含水层水平孔注浆“三时段”浆液扩散机理研究及应用[J]. 煤炭学报, 2016, 41(5): 1212-1218.

[48] 谌文武, 张起勇, 刘宏伟. SH固土剂在遗址土中的渗透注浆扩散规律[J]. 岩土力学, 2019, 40(2): 429-435.

[49] 陈鑫, 袁昌. 多孔介质中Bingham型浆液柱状渗透规律研究[J]. 采矿与安全工程学报, 2021, 38(4): 800-809.

[50] 张连震, 张庆松, 刘人太, 等. 基于浆液–岩体耦合效应的微裂隙岩体注浆理论研究[J]. 岩土工程学报, 2018, 40(11): 2003-2011.

[51] 湛铠瑜, 隋旺华, 高岳. 单一裂隙动水注浆扩散模型[J]. 岩土力学, 2011, 32(6): 1659-1663.

[52] 张改玲, 湛铠瑜, 隋旺华. 水流速度对单裂隙化学注浆浆液扩散影响的试验研究[J]. 煤炭学报, 2011, 36(3): 403-406.

[53] 刘泉声, 卢超波, 刘滨, 等. 深部巷道注浆加固浆液扩散机理与应用研究[J]. 采矿与安全工程学报, 2014, 31(3): 333-339.

[54] 阮文军. 基于浆液黏度时变性的岩体裂隙注浆扩散模型[J]. 岩石力学与工程学报, 2005, 24(15): 2709-2714.

[55] 周谟远. 浅埋砂层水平孔加固注浆浆液扩散规律试验研究[D]. 煤炭科学研究总院, 2018.

[56] 阮文军. 注浆扩散与浆液若干基本性能研究[J]. 岩土工程学报, 2005, 27(1): 69-73.

[57] 刘滨, 桑昊旻, 康永水, 等. 岩体裂隙网络注浆模拟试验系统研制及应用[J]. 岩石力学与工程学报, 2020, 39(3): 540-549.

[58] 朱明听, 张庆松, 李术才, 等. 围岩性质对于注浆压力变化规律及浆液扩散模式的影响研究[J]. 岩土工程学报, 2017, 39(7): 1258-1266.

[59] 张伟杰, 李术才, 魏久传, 等. 三维注浆模型试验系统研制及应用[J]. 岩土力学, 2016, 37(3): 902-911.

[60] 冯啸, 夏冲, 王凤刚, 等. 砂土介质中颗粒浆液扩散距离变化规律[J]. 山东大学学报(工学版), 2020, 50(5): 20-25.

[61] 田素川. 裂隙岩体注浆浆液扩散规律研究[D]. 徐州:中国矿业大学, 2014.

[62] 刘人太, 张连震, 张庆松, 等. 速凝浆液裂隙动水注浆扩散规律模拟试验[J]. 土木工程学报, 2017, 50(1): 82-90.

[63] 张家奇, 李术才, 张霄, 等. 土石分层介质注浆扩散的试验研究[J]. 浙江大学学报(工学版), 2018, 52(5): 914-924.

[64] Jiang Donghai, Cheng Xianzhen, Luan Hengjie, et al. Experimental Investigation on the Law of Grout Diffusion in Fractured Porous Rock Mass and Its Application[J]. Processes, 2018, 6(10): 191-191.

[65] Tosun A. Development of a technology to prevent spontaneous combustion of coal in underground coal mining[J]. Journal Of Southern African Institute of Mining And Metallurgy, 2017, 117(12): 1133-1138.

[66] 张庆松, 张连震, 张霄, 等. 基于浆液黏度时空变化的水平裂隙岩体注浆扩散机制[J]. 岩石力学与工程学报, 2015, 34(6): 1198-1210.

[67] 李术才, 刘人太, 张庆松, 等. 基于黏度时变性的水泥-玻璃浆液扩散机制研究[J]. 岩石力学与工程学报, 2013, 32(12): 2415-2421.

[68] 刘健, 张载松, 韩烨, 等. 考虑黏度时变性的水泥浆液盾构壁后注浆扩散规律及管片压力模型的试验研究[J]. 岩土力学, 2015, 36(2): 361-368.

[69] 俞文生, 李鹏, 张霄, 等. 可变倾角单裂隙动水注浆模型试验研究[J]. 岩土力学, 2014, 35(8): 2137-2143.

[70] Sina Kazemian, Arun Prasad, Bujang B. K. Huat, et al. Effects of Cement-Sodium Silicate System Grout on Tropical Organic Soils[J]. Arabian Journal for Science and Engineering, 2012, 37(8):2137-2148.

[71] 王健, 张乐文, 冯啸, 等. 碱激发地聚合物双液注浆材料试验与应用研究[J]. 岩石力学与工程学报, 2015, 34(S2): 4418-4425.

[72] 张家奇, 李术才, 张霄, 等. 一种新型综合注浆加固试验系统的研制及应用[J]. 工程科学学报, 2017, 39(8): 1268-1277.

[73] 王晓晨, 刘人太, 杨为民, 等. 考虑水泥浆液析水作用的水平裂隙注浆扩散机制研究[J]. 岩石力学与工程学报, 2019, 38(5): 1005-1017.

[74] 李术才, 冯啸, 刘人太, 等. 砂土介质中颗粒浆液的渗滤系数及加固机制研究[J]. 岩石力学与工程学报, 2017, 36(S2): 4220-4228.

[75] 林柏泉, 李庆钊, 杨威, 等. 基于千米钻机的“三软”煤层瓦斯治理技术及应用[J]. 煤炭学报, 2011, 36(12): 1968-1973.

[76] 胡胜勇. 瓦斯抽采钻孔周边煤岩渗流特性及粉体堵漏机理 [D]. 中国矿业大学, 2014.

[77] 张天军, 张磊, 李树刚, 等. 瓦斯抽采钻孔孔周裂纹扩展规律[J]. 辽宁工程技术大学学报(自然科学版), 2018, 37(3): 499-507.

[78] 张超. 钻孔封孔段失稳机理分析及加固式动态密封技术研究[D]. 中国矿业大学, 2014.

[79] Eberhardt E, Stead D, Stimpson B, et al. Identifying crack initiation and propagation thresholds in brittle rock[J]. Canadian geotechnical journal, 1998, 35(2): 222-233.

[80] 李尤嘉, 黄醒春, 邱一平, 等. 含水状态下膏溶角砾岩破裂全程的细观力学试验研究[J]. 岩土力学, 2009, 30(5): 1221-1225.

[81] Martin C D, Chandler N A. Progressive fracture of Lac du Bonnet granite[J]. International Journal of Rock Mechanics and Mining Sciences, 1994, 31(6): 643-659.

[82] 靖洪文, 孟庆彬, 朱俊福, 等. 深部巷道围岩松动圈稳定控制理论与技术进展[J]. 采矿与安全工程学报, 2020, 37(3): 429-442.

[83] Chen Yian, Xu Jiang, Peng Shoujian, et al. Strain localisation and seepage characteristics of rock under triaxial compression by 3D digital image correlation[J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 152-152.

[84] Miao Shuting, Pan Pengzhi, Zhao Shankun, et al. A New DIC-Based Method to Identify the Crack Mechanism and Applications in Fracture Analysis of Red Sandstone Containing a Single Flaw[J]. Rock Mechanics and Rock Engineering, 2021, 54(8): 1-25.

[85] Zhu Quanqi, Ma Chunde, Li Xibing, et al. Effect of Filling on Failure Characteristics of Diorite with Double Rectangular Holes Under Coupled Static-Dynamic Loads[J]. Rock Mechanics and Rock Engineering, 2021, 54(6): 1-21.

[86] 李鸿昌. 矿山压力的相似模拟试验[M]. 徐州: 中国矿业大学出版社, 1988.

[87] Zhao Bo, Wen Guangcai, Sun Haitao, et al. Similarity criteria and coal-like material in coal and gas outburst physical simulation[J]. International Journal of Coal Science Technology, 2018, 5(2): 167-178.

[88] 张磊. 抽采钻孔孔周裂隙扩展机理及其检测技术研究[D]. 西安科技大学, 2019.

[89] Zhao Dong, Feng Zengchao, Zhao Yangsheng. Effects of liquid water on coalbed methane adsorption characteristics based on the adsorption kinetic theory[J]. Journal of China Coal Society, 2014, 39(3): 518-523.

[90] Pan Zhejun, Luke D. Connell, Michael Camilleri, et al. Effects of matrix moisture on gas diffusion and flow in coal[J]. Fuel, 2010, 89(11): 3207-3217.

[91] Sun Qi, Cai Chang, Zhang Shukun, et al. Study of localized deformation in geopolymer cemented coal gangue-fly ash backfill based on the digital speckle correlation method[J]. Construction and Building Materials, 2019, 215: 321-331.

[92] 张天军, 景晨, 张磊, 等. 含孔试样孔周破坏的应变局部化特征[J]. 煤炭学报, 2020, 45(12): 4087-4094.

[93] 王家臣, 李良晖, 杨胜利. 不同照度下煤矸图像灰度及纹理特征提取的实验研究[J]. 煤炭学报, 2018, 43(11): 3051-3061.

[94] 张科, 张凯. 裂隙砂岩变形破裂过程中应变场灰度及纹理特征分析[J]. 煤炭学报, 2021, 46(04): 1253-1262.

[95] Liu Xianghua, Zhang Ke, Liu Wenlian, et al. Grayscale evolution characterization of the strain field and precursor identification in sandstone containing multiple flaws after freeze-thaw treatment[J]. Bulletin of Engineering Geology and the Environment, 2022, 82(1): 563-548.

[96] Wang Gang, Qin Xiangjie, Shen Junnan, et al. Quantitative analysis of microscopic structure and gas seepage characteristics of low-rank coal based on CT three-dimensional reconstruction of CT images and fractal theory[J]. Fuel, 2019, 256: 115900-115900.

[97] 黄正红, 邓守春, 李海波, 等.拉伸荷载作用下含预制裂纹平板试样表面特征量演化规律研究[J].岩石力学与工程学报, 2019, 38(3): 527-541.

[98] Benyamin K, Amin T, Zahra B, et al. Introducing Radiomics Model to Predict Active Plaque in Multiple Sclerosis Patients using Magnetic Resonance Images[J]. Biomedical physics engineering express, 2023, 9(5): 1-25.

[99] Shen Rongxi, Li Hongru, Wang Enyuan, et al. Infrared radiation characteristics and fracture precursor information extraction of loaded sandstone samples with varying moisture contents[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 130: 134-144.

[100] 冯志强. 破碎煤岩体化学注浆加固材料研制及渗透扩散特性研究[D]. 北京: 煤炭科学研究总院, 2007.

[101] 苏培莉. 裂隙煤岩体注浆加固渗流机理及其应用研究[D]. 西安科技大学, 2011.

[102] 杨志全, 丁一, 杨溢, 等. 不同水灰比的牛顿型水泥浆液流变性随时间变化规律[J]. 农业工程学报, 2020, 36(19): 161-167.

[103] 张佳兴. 粘度时变浆液流变-固化特性与注浆扩散机理研究[D]. 成都理工大学, 2020.

[104] 张凯文. 微裂隙注浆浆液渗流特性试验研究[D]. 中国矿业大学, 2019.

[105] 阮文军. 基于浆液粘度时变性的岩体裂隙注浆扩散模型[J]. 岩石力学与工程学报, 2005(15): 2709-2714.

[106] 权晓波, 姜培正, 亢力强. 幂律流体流流动指数对其湍流流动的影响[J]. 西安交通大学学报, 2000(12): 63-65.

[107] 张聪, 梁经纬, 阳军生, 等. 考虑区间分布的幂律流体脉动渗透注浆扩散机制研究[J]. 岩土工程学报, 2018, 40(11): 2120-2128.

[108] 刘健, 刘人太, 张霄, 等. 水泥浆液裂隙注浆扩散规律模型试验与数值模拟[J]. 岩石力学与工程学报, 2012, 31(12): 2445-2452.

[109] 裴启涛, 丁秀丽, 黄书岭, 等. 速凝浆液岩体倾斜裂隙注浆扩散模型研究[J]. 长江科学院院报, 2019, 36(12): 83-90.

[110] 周军霞. 矿井深部裂隙岩体浆液扩散机理及直接堵漏技术研究[D]. 辽宁工程技术大学, 2019.

[111] 林海飞, 翟雨龙, 李树刚, 等. 新型岩石相似材料物理力学参数影响因素的试验研究[J]. 西安科技大学学报, 2015, 35(04): 409-414.

[112] 郑长成. 岩体裂隙内稳定水泥浆液扩散范围的理论分析 [J]. 水利与建筑工程学报, 2006, 4(2): 1-5.

[113] 张连震, 黄长鑫, 张庆松, 等. 基于速凝浆液流-固相变特性的裂隙岩体注浆扩散机制[J].岩石力学与工程学报, 2024(1): 1-13.

[114] Zhou Yuan, Liu Bin, Wu Zhijun, et al. Experimental Investigation on the Grouting Diffusion Characteristics and Relative Filling Degree of Chemical Slurry in Fractured Porous Sandstone[J]. Rock Mechanics and Rock Engineering, 2023, 56(11): 7819-7837.

[115] 娄振. 煤层抽采钻孔周边裂隙填充堵漏机理及试验研究[D]. 中国矿业大学(北京), 2021.

中图分类号:

 TD712    

开放日期:

 2024-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式