论文中文题名: | 白家梁煤岩磁性规律研究及其在火源探测中的应用 |
姓名: | |
学号: | 18220214106 |
保密级别: | 保密(1年后开放) |
论文语种: | chi |
学科代码: | 085224 |
学科名称: | 工学 - 工程 - 安全工程 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2021 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 煤火灾害防治 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2021-06-18 |
论文答辩日期: | 2021-06-03 |
论文外文题名: | Study on the magnetic law of Baijialiang coal and rock and its application in fire detection |
论文中文关键词: | |
论文外文关键词: | Coal field fire ; Residual magnetism ; Coal and rock magnetism ; Magnetic anomaly ; Fire source detection |
论文中文摘要: |
煤火作为煤矿的主要灾害之一,其治理不仅是对煤炭资源及生态环境的保护、而且对煤矿生产安全及矿工生命安全的保障有重要意义。治理煤火查明煤田自燃火区火源的核心位置,进而降低灭火成本和提高灭火效率,是实施针对性灭火措施的关键,但煤田火源隐蔽且发展状态复杂多变,煤火火源的高效精准定位的难度不言而喻。 本文基于磁化率实验测定系统分析了白家梁煤(BJL)、砂岩样品的磁性变化规律,并分别研究了温度、粒径以及磁场强度等因素对样品磁化率的影响,通过X衍射实验与傅里叶红外光谱(FTIR)测试,对比高温烘烤前后样品磁性物质的变化,揭示煤岩磁性变化机理,并应用Matlab正演计算,分析煤田火灾磁异常的变化特征,并通过现场氡法探测及钻孔勘探技术的融合应用,完善了磁异常数据的处理分析,得以下结论: 自700℃降至常温过程中,岩石内部磁矩在地磁场中择优排列,导致磁化率增大;从居里温度降至常温的过程中,在地磁场的作用下积聚了大量热剩余磁化强度,其磁性比升温过程中获得的磁性更强、更稳定;煤岩高温烘烤过程中,弱磁性的菱铁矿(FeCO3)与反磁性的赤铁矿(Fe2O3)被氧化成强磁性的磁铁矿(Fe3O4),同时逆磁性物质C不仅促进了铁磁性矿物的转化,而且随着低温氧化变成无磁性的含氧官能团COO-、C-O、C=O以及CO、CO2。形成岩石磁异常的三方面共同作用:即岩石磁化率和剩余磁化强度的急剧增大,以及新磁铁矿的产生,导致了煤田火灾磁异常的形成,这为在地表采用磁法观测进而圈定火区范围提供了理论基础。通过Matlab煤田火灾磁异常正演模拟,发现埋深较浅的煤田火区其磁异常剖面狭窄且尖锐,埋深较深的磁性体其磁异常宽阔且平缓,即随煤田火区埋藏深度的增加,磁异常区域向四周不断扩展。当煤体温度越高、埋深越浅,反馈到磁测仪的磁异常强度越强。 基于火区煤岩磁性规律,采用GSM-19T型质子磁力仪,在内蒙古白家梁煤田火区实际探测,在治理区域圈定出六个磁异常区,在排除周围环境的磁性影响因素,通过氡法复测及现场钻孔踏勘的验证,最后圈定出三处异常,进一步完善了磁法探测圈定煤火火源核心位置的现场应用技术。 |
论文外文摘要: |
Coal fire is one of the main disasters in coal mines, and its management is of great significance not only to the protection of coal resources and the ecological environment, but also to the safety of coal mine production and the safety of miners. Controlling coal fires. Identifying the core location of the fire in the spontaneous combustion area of coal fields, thereby reducing the cost of fire extinguishing and improving the efficiency of fire extinguishing, is the key to implementing targeted fire extinguishing measures. However, the source of coal fires is hidden and the development status is complex and changeable. The difficulty of efficient and precise positioning is self-evident. Based on the magnetic susceptibility experimental measurement system, this paper analyzes the magnetic change law of Baijialiang coal (BJL) and sandstone samples, and studies the effects of temperature, particle size, and magnetic field strength on the magnetic susceptibility of the samples. The FTIR and X-ray diffraction tests are passed. , Comparing the changes of magnetic materials in samples before and after high-temperature baking, revealing the mechanism of coal and rock magnetic change, and applying Matlab forward calculation to analyze the change characteristics of coal field fire magnetic anomalies, and through the application of on-site radon method detection and drilling exploration technology fusion, The processing and analysis of magnetic anomaly data are improved, and the following conclusions are obtained: During the process from 700℃ to room temperature, the internal magnetic moments of the rock are arranged optimally in the geomagnetic field, resulting in an increase in the magnetic susceptibility; during the process from the Curie temperature to room temperature, a large amount of thermal residual magnetization accumulates under the action of the geomagnetic field , Its magnetism is stronger and more stable than the magnetism obtained in the heating process; during the high temperature baking process of coal and rock, the weakly magnetic siderite (FeCO3) and diamagnetic hematite (Fe2O3) are oxidized into strong magnetic magnetism. Iron ore (Fe3O4), and the diamagnetic substance C not only promotes the conversion of ferromagnetic minerals, but also becomes non-magnetic oxygen-containing functional groups COO-, CO, C=O and CO, CO2 with low-temperature oxidation. Three aspects of the formation of rock magnetic anomaly work together: the rapid increase of rock magnetic susceptibility and residual magnetization, and the generation of new magnetite, which leads to the formation of coal field fire magnetic anomaly, which is delineated by the use of magnetic observation on the surface. The scope of the fire zone provides the theoretical basis. Through Matlab coal field fire magnetic anomaly forward simulation, it is found that the magnetic anomaly profile of the shallower coal field fire area is narrow and sharp, and the deeper magnetic body has a wide and gentle magnetic anomaly, that is, with the increase of the coal field fire area burial depth , The magnetic anomaly area continues to expand around. When the coal body temperature is higher and the buried depth is shallower, the intensity of the magnetic anomaly fed back to the magnetic measuring instrument is stronger. Based on the magnetic law of coal and rock in the fire area, the GSM-19T proton magnetometer was used to actually detect the fire area of the Baijialiang coal field in Inner Mongolia. Six magnetic anomaly areas were delineated in the treatment area, and the magnetic influence factors of the surrounding environment were eliminated through radon. Method retesting and field drilling survey verification, finally delineated three anomalies, and further improved the field application technology of magnetic detection and delineation of the core location of the coal fire source. |
参考文献: |
[1] Bp. BP Statistical Review of World Energy June 2016[EB/OL]. [2] 张建民,管海晏,曹代勇,等.中国地下煤火研究与治理[M] .北京:煤炭工业出版社,2008. [3] 曾强.新疆地区煤火燃烧系统热动力特性研究[D]. 徐州:中国矿业大学,2012. [4] 宋泽阳,朱红青,徐纪元,等.地下煤火高温阶段贫氧不完全燃烧耗氧速率的计算[J].煤炭学报,2014,39(12):2439-2445. [6] 邓 军,李 贝,王 凯,等.中国煤火灾害防治技术研究现状及展望[J].煤炭科学术,2016,44(10):1-7,101. [11] 邓存宝.煤的自燃机理及自燃危险性指数研究[D] .辽宁: 辽宁工程技术大学, 2006. [12] 张建民,宁书年,曹燕.中国北方地区煤层自燃环境影响及治理对策研究[J] .中国减灾, 1998, 1: 34-38. [13] 丁志平.地质灾害刍议[J].矿山环保,2002(3). [14] 余明高,岳超平.采空区火源位置探测技术现状及发展方向[J].中国安全科学学报,1998.8(5):14. [15] 张秀山,新疆煤田火烧区特征及灭火问题探讨[J].中国煤田地质,2004,16(1):18-21. [16] 宋吾军,王雁鸣,邵振鲁.高密度电法与磁法探测煤田火区的数值模拟[J].煤炭学报,2016,41(4). [18] 国家安全监管总局规划科技司.关于征求对我国煤矿火灾防治科技发展对策意见的通知[EB/OL]. [19] 尧志辉,旷戈.煤燃烧反应动力学的研究方法综述[J].广西轻工业,2008,12: 23~25. [20] 肖三霞,方庆艳,傅培舫,等.煤的热天平燃烧反应动力学特性的研究[J].工程热物理学报,2004, 25(5): 891-893. [21] 王琦.氧浓度及温度变化影响煤粉燃烧特性的恒温热分析研究[D].浙江大学,2008. [22] 刘学伟,刘泉声,卢超波,等.温度-应力耦合作用下岩体裂隙扩展的数值流行方法.研究[J].岩石力学与工程学报, 2014, 33(7):1432-1441. [24] 邹显宏,熊友辉,孙学信.煤燃烧特性的EGA与TGA法比较研究[J].华中科技大学学报(自然科学版), 2002, 32(12): 92-94. [25] 邹显宏,熊友辉,孙学信.基于CO2气体释放法的煤燃烧特性研究[J].燃料化学学报, 2003, 31(6): 185- 188. [27] 刘东,许江,尹光志,等.多场耦合煤矿动力灾害大型模拟试验系统研制与应用[J].岩石力学与工程学报, 2013, 32(5): 966-975. [28] 曹代勇,樊新杰,吴查查,等.内蒙古乌达煤田火区相关裂隙研究[J].煤炭学报,2009(8), 34(8): 1009-1014. [30] 马晓峰.煤田火区多场耦合作用下火源中心形成与识别方法研究[D].西安科技大学,2015. [31] 倪晓奋.煤燃烧动力特性的热分析[J].水泥.石灰,1994(1):12-15. [33] 程远平,李增华.煤炭低温吸氧过程及其热效应[J].中国矿业大学学报,1999,28(4):310-313. [36] 肖海红, 陈虎维, 李霞. 卫星遥感技术在煤田火区探测与监测中的应用研究[J]. 煤炭工程,2009(2): 117-119. [37] 毛耀保.宁夏汝箕沟煤田火区高光谱定量遥感探测研究[J].国土资源遥感,2010(3):69-74. [40] 刘洪福,白春明. 用测氡技术探测煤矿地下火区的研究[J]. 煤炭学报,1997,22(4): 402-405 [41] 赵耀江, 邬剑明. 测氡探火机理的研究[J]. 煤炭学报,2003, 28(3): 260-263. [42] 文 虎,程小蛟,许延辉,等.松散煤体自然发火过程氡析出及运移规律[J].煤炭学报,2019,44(9):2816-2823. [43] 张辛亥,牛 恒,费金彪.测氡法探测煤层自燃火源在巴依里矿的应用[J].煤矿安全,2009,40(7):29-30. [45] 文虎,马民,费金彪. 基于红外成像技术的煤矿火灾治理[J]. 煤炭科学技术,2010, 38(1): 28-30. [46] 许延辉,金永飞,李海涛,等.浅埋煤层近距离采空区隐蔽火源探测及控制技术[J]. 煤矿安全,2014, 45(9): 144-147. [47] 王伟峰, 邓军, 马砺, 等. 煤田火灾无线监测方法的应用研究[J].煤矿安全,2012, 43(12): 103-104. [49] 张秀山. 新疆煤田火烧区特征及灭火问题探讨[J]. 中国煤田地质,2004,16(1): 18-21. [50] 邵振鲁,王德明,王雁鸣.高密度电法探测煤火的模拟及应用研究[J].采矿与安全工程学报,2013, 30(3): 468-474. [51] 姜志海,杨 光.浅埋特厚煤层小窑采空区瞬变电磁探测技术研究及应用[J].采矿与安全工程学报,2014,31(5):769-774. [54] 刘 江,崔江伟,薛国强,等. 利用高精度磁法圈定陕北地区煤层火烧边界[J]. 地球科学前沿,2019, 9(5): 360-367. [55] 许满贵,申敬杰,贺 清.煤自燃危险区域磁法判定技术及应用[J].矿业安全与环保,2014,41(2):41-44. [56] 朱晓颖,于长春,熊盛青.磁法在煤火探测中的应用[J].物探与化探,2007,31(2):115-119. [59] 崔敬媛,焦红光,张慧等.密度组成及磁场强度对煤比磁化率影响的研究[J].煤炭转化,2008,31(1):6-9. [60] 张辛亥,苗于惠,王伟峰,等.高温加热对神东5-2煤磁性影响的实验研究[J]. 煤炭技术, 2016, 35(11): 100-102. [61] 熊盛青,于长春.地下煤层自燃区岩石磁性增强特征及机理研究-以内蒙古乌达和宁夏汝萁沟煤矿为例[J].地球物理学报,2013, 56(8). [63] 黄雷,刘池洋. 烧变岩岩石学及稀土元素地球化学特征[J].地球科学(中国地质大学学报), 2008, 33(4): 515-522. [64] 焦红光,李 沙,王 灿等.热处理强化煤系黄铁矿磁性的研究[J].中国矿业大学学报,2011,40(3):459-462. [65] 王文正,马李洋,路世远,王雁鸣.煤火区多层梯度烧变岩磁异常正演研究[J].科学技术与工程,2013,13(20):5924-5927. [66] 安玉林,陈玉陈,黄金明.重磁勘探正反演理论方法研究的新进展地学前缘[J].2003,10 (1) :141-149 [67] 秦政.煤岩高温磁异常规律及机理研究[D].西安科技大学,2018. [68] 唐跃刚,任德贻,郑建中等.煤中黄铁矿的磁性及其机理研究[J].科学通报,1995, 40(16):1483-1486. [69] 焦红,李沙,王灿等.热处理强化煤系黄铁矿磁性的研究[J].中国矿业大学学报,2011,40(3):459-462. [70] 吴攀,郭智勇,徐伟,陈文辉.磁偶极子构造法球形磁性矿体磁异常正演[J].地球物理学进展,2020,10(1). [71] 张楠,吴燕冈,周帅,孙鹏飞.基于地质体空间位置优化约束的航空重力梯度数据三维物性反演[J].地球物理学报,2019,62(04):1515-1525. [72] 张逗逗,汤井田,肖晓,王宁.三维地质体对AMT二维反演的影响研究物探化探计算技术, 物探化探计算技术.2019,41(01):80-90. [73] 范宇,简季,陈倩羽..一种改进的三 维地质体模型存储与重构方法地质与勘探[J].地质与勘探2019,55(01):203-211. [74] 张辛亥,苗于惠,张铎,秦政,丁峰,万旭.煤自燃过程特征气体与磁性变化规律实验研究[J].煤矿安全,2017,48(03):36-39. |
中图分类号: | TD752.2 |
开放日期: | 2022-06-18 |