- 无标题文档
查看论文信息

论文中文题名:

 基于分子动力学模拟的橡胶沥青短期老化特性及机理研究    

姓名:

 冯子轩    

学号:

 20204228130    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085213    

学科名称:

 工学 - 工程 - 建筑与土木工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 土木水利    

研究方向:

 道路工程    

第一导师姓名:

 李海滨    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-12    

论文答辩日期:

 2023-06-10    

论文外文题名:

 Study on short-aging characteristics and mechanism of rubber asphalt based on molecular dynamics simulation    

论文中文关键词:

 道路工程 ; 橡胶沥青 ; 短期老化 ; 分子动力学 ; 组分聚集 ; 扩散运动    

论文外文关键词:

 Rubber asphalt ; Short-term aging ; Molecular dynamics ; Component aggregation ; Diffusion motion ; Migration contact behavior    

论文中文摘要:

橡胶沥青老化严重影响路面的服役水平及使用寿命。当前对于橡胶沥青老化的相关研究主要集中于宏观层面,现有研究尺度难以探明老化反应-组分运动-性能变化间的关系,因此无法深入研究橡胶沥青的老化特性及机理。为了解决上述难点、痛点问题,本文将从橡胶沥青的短期老化入手,以宏观性能测试与微观特性分析为基础,在分子层面研究橡胶沥青老化初期的宏观特性与微观机理。本文主要内容如下:

(1)结合短期老化试验(TFOT),研究了老化前后橡胶沥青的基本物理性能、宏观形貌、质量损失变化以及流变性能变化,结果表明老化后橡胶沥青的针入度、延度降低,软化点升高,宏观物理性能发生衰减,老化橡胶沥青表面光滑、附着“油膜”。橡胶沥青中的胶粉掺量不应过大,当胶粉掺量为20%时,老化前后橡胶沥青具有更好的宏观物理性能和流变性能。

(2)对比分析了短期老化前后橡胶沥青的官能团变化,阐明了其老化趋势变化,揭示了其荧光相以及微观形貌变化。短期老化后,橡胶沥青发生了明显的氧化反应,生成了大量的羰基(C=O)与亚砜基(S=O),主峰核磁信号值减小,次峰核磁信号量增大。随着短期老化的发生,沥青相的连结变得更加松散,出现了明显的凹坑,胶粉颗粒尺寸减小并且逐渐聚集。

(3)采用分子动力学模拟,定量分析了短期老化前后橡胶沥青的性能变化,通过表征短期老化前后橡胶沥青组分聚集行为和自愈合行为,揭示了其迁移接触行为。结果表明老化增大了沥青质分子、胶粉分子的聚集程度,同时降低了分子扩散速率。短期老化使胶粉与沥青的相容性变差,橡胶沥青的自由体积减少。老化官能团羰基(C=O)与亚砜基(S=O)使沥青质分子形成了“π-π堆积”、“偏移π-π堆积”以及“T型堆积”,影响了橡胶沥青的宏观物理性能,并且降低了橡胶沥青的自愈合效率。

论文外文摘要:

The aging of rubber asphalt seriously affects the service level and life of pavements. Current research on rubber asphalt aging is mainly focused on the macroscopic level, and it is difficult to investigate the relationship between aging reaction-component movement-performance change at the existing research scale, so it is incapable of studying the aging characteristics and mechanism of rubber asphalt in depth. In order to solve these difficult and painful problems, this paper will start from the short-term aging of rubber asphalt, and study the macroscopic properties and microscopic mechanisms of rubber asphalt at the macroscopic, microscopic and molecular levels in the early stage of aging. The main contents of this paper are as follows:

(1) By conducting short-term aging tests (Thin Film Oven Test - TFOT), the basic properties, macroscopic morphology, mass loss variation, and rheological performance changes of rubber asphalt before and after aging were studied. The results indicate that after aging, the needle penetration and ductility of rubber asphalt decrease, the softening point increases, and the macroscopic physical properties decay. And a smooth surface with an adherent "oil film" is observed on aged rubber asphalt. The dosage of rubber powder in rubber asphalt should not be excessive. When the rubber powder dosage is 20%, rubber asphalt exhibits better macroscopic physical properties and rheological performance before and after aging.

(2) A comparative analysis of the functional group changes in rubber asphalt before and after short-term aging was conducted to elucidate the aging trend and reveal the fluorescence phase and microstructural changes. After short-term aging, rubber asphalt undergoes significant oxidation reactions, leading to the generation of a large number of carbonyl (C=O) and sulfoxide (S=O) groups. The main peak nuclear magnetic resonance (NMR) signal decreases, while the secondary peak NMR signal increases. With the occurrence of short-term aging, the interconnectivity of the asphalt phase becomes looser, evident pits appear, and the rubber powder particle size decreases while gradually aggregating.

(3) Molecular dynamics simulations were employed to quantitatively analyze the performance changes of rubber asphalt before and after short-term aging. By characterizing the aggregation behavior and self-healing behavior of rubber asphalt components before and after short-term aging, the migration and contact behavior were revealed. The results indicate that aging increases the aggregation degree of asphaltene molecules and rubber powder particles, while reducing the molecular diffusion rate. Short-term aging deteriorates the compatibility between rubber powder and asphalt, resulting in a decrease in the free volume of rubber asphalt. The functional groups formed by aging, such as carbonyl (C=O) and sulfoxide (S=O), induce the formation of "T-shaped stacking" and "offset π-π stacking" in asphaltene molecules, reducing the self-healing efficiency of rubber asphalt.

参考文献:

[1] 董凯旋, 贺爱华. 官能化橡胶的合成及应用研究进展[J]. 高分子通报, 2022(07): 22-28.

[2] 国钦瑞, 邵华锋. 橡胶的老化机理及老化行为的研究进展[J]. 高分子通报, 2022(02): 17-24.

[3] Qu S, Guo Y, Ma Z, et al. Implications of China’s foreign waste ban on the global circular economy[J]. Resources, Conservation and Recycling, 2019, 144: 252-255.

[4] Nuzaimah M, Sapuan S M, Nadlene R, et al. Recycling of waste rubber as fillers: A review[C]. IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2018, 368(1): 012016.

[5] 陈天增, 刘俊, 马庆鑫, 等. 复合污染条件下人为源VOCs的SOA生成研究进展[J]. 环境科学, 2023, 44(03): 1201-1213.

[6] 王清洲, 范鑫, 刘淑艳, 等. 温拌沥青路面建设期内节能减排效益测算[J]. 中外公路, 2017, 37(05): 318-322.

[7] 郑炳锋, 吉增晖, 黄毅, 等. 泡沫温拌橡胶沥青混合料施工能耗与碳排放测算[J]. 公路, 2022, 67(02): 16-23.

[8] Jiao Y, Zhang Y, Fu L, et al. Influence of crumb rubber and tafpack super on performances of SBS modified porous asphalt mixtures[J]. Road Materials and Pavement Design, 2019, 20(sup1): S196-S216.

[9] Cooper S, Salari S, Mata D. Evaluation of crumb rubber modification on specification compliance of asphalt mixtures[J]. Transportation Research Record, 2019, 2673(3): 540-550.

[10] 季节, 董阳, 杨跃琴, 等. 不同温拌剂对橡胶沥青性能的影响[J]. 中国石油大学学报(自然科学版), 2020, 44(06): 133-140.

[11] Franesqui M A, Yepes J, García-González C, et al. Sustainable low-temperature asphalt mixtures with marginal porous volcanic aggregates and crumb rubber modified bitumen[J]. Journal of Cleaner Production, 2019, 207: 44-56.

[12] 刘少东, 巩雨注, 王小萍. 再生胶粉在沥青中的应用进展[J]. 再生资源与循环经济, 2020, 13(12): 32-35+41.

[13] 杜晓博, 刘晓彤, 张宏超, 等. 团粒结构对再生沥青混合料路用性能的影响[J]. 武汉理工大学学报(交通科学与工程版), 2020, 44(06): 1008-1012.

[14] 汪德才, 常昊雷, 郝培文, 等. 改性乳化沥青冷再生混合料动态模量特性[J]. 长安大学学报(自然科学版), 2020, 40(06): 35-46.

[15] 刘朝晖, 高新文, 翟龙, 等. 再生沥青中新旧沥青扩散特性[J]. 长安大学学报(自然科学版), 2018, 38(05): 18-24.

[16] 姚晓光, 许涛, 王燕. 沥青路面不同厂拌热再生方案经济环保性量化评价[J]. 武汉大学学报(工学版), 2021, 54(12): 1133-1139.

[17] 李士才. 基于正交试验层次分析法的橡胶沥青生产工艺参数研究[J]. 铁道建筑技术, 2021(07): 33-38.

[18] 马春, 谢希望, 王建文, 等. SDO/CR复合改性沥青微观形态与性能研究[J]. 公路, 2021, 66(11): 284-289.

[19] 杨德胜, 郭豪. 基于储存稳定性的橡胶改性沥青制备工艺[J]. 硅酸盐通报, 2021, 40(09): 3168-3176.

[20] 任瑞波, 薄剑, 赵品晖, 等. 沥青材料分子动力学模拟研究进展[J]. 山东建筑大学学报, 2020, 35(03): 61-68.

[21] 余可心, 孙国强, 孙大权. 基于分子动力学模拟的沥青-再生剂扩散研究进展[J]. 石油沥青, 2021, 35(02): 27-34.

[22] Seidel J C, Haddock J E. Rheological characterization of asphalt binders modified with soybean fatty acids[J]. Construction and Building Materials, 2014, 53(11): 324-332.

[23] Fernández-Ruiz R, Redrejo M J, Pérez-Aparicio R, Saiz-Rodríguez L. Quantification of recycled rubber content of end-of-life tyres in asphalt bitumen by total-reflection X-ray fluorescence spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2020, 166: 105803.

[24] Binti Joohari I, Giustozzi F. Hybrid polymerisation: An exloratory study of the chemo-mechanical and rheological properties of hybrid-modified bitumen[J]. Polymers, 2020, 12(4): 945.

[25] 杨永强, 康秉铎, 郭海东, 等. 活化胶粉/SBS复合改性沥青短期老化性能[J]. 长安大学学报(自然科学版), 2021, 41(05): 23-33.

[26] Tian Y, Li H, Zhang H, et al. Comparative investigation on three laboratory testing methods for short-term aging of asphalt binder[J]. Construction and Building Materials, 2021, 266: 121204.

[27] 罗浩原, 黄晓明. 废油再生沥青二次老化后的性能与组分变化[J]. 中国公路学报, 2021, 34(10): 98-110.

[28] Jameel M S, Abubakar H M, Raza A, et al. Effect of aging on adhesion and moisture damage of asphalt: A perspective of rolling bottle and bitumen bond strength test[J]. International Journal of Pavement Research and Technology, 2022, 15(1): 233-242.

[29] 郭兵兵, 贾雪梅, 张恒基, 等. 固废填料对改性沥青老化过程中的疲劳特性影响研究[J]. 硅酸盐通报, 2021, 40(08): 2822-2830.

[30] Wang H, Li H, Zhang H, et al. Experimental study on the aging behavior of modified asphalt with different types of fine solid wastes under different aging conditions[J]. Construction and Building Materials, 2021, 291: 123308.

[31] 张泽浩. 高等级公路沥青混凝土路面老化系数对力学性能影响研究[J]. 公路工程, 2018, 43(06): 247-251+273.

[32] 张金喜, 姜凡, 王超, 等. 室内外老化沥青混合料动态模量评价[J]. 建筑材料学报, 2017, 20(06): 937-942.

[33] Menapace I, Yiming W, Masad E. Chemical analysis of surface and bulk of asphalt binders aged with accelerated weathering tester and standard aging methods[J]. Fuel, 2017, 202: 366-379.

[34] Puello J, Afanasjeva N, Alvarez M. Thermal properties and chemical composition of bituminous materials exposed to accelerated ageing[J]. Road Materials and Pavement Design, 2013, 14(2): 278-288.

[35] Zhang W, Bahadori A, Shen S, et al. Comparison of laboratory and field asphalt aging for polymer-modified and warm-mix asphalt binders[J]. Journal of Materials in Civil Engineering, 2018, 30(7): 04018150.

[36] Yang X, Mills-Beale J, You Z. Chemical characterization and oxidative aging of bio-asphalt and its compatibility with petroleum asphalt[J]. Journal of Cleaner Production, 2017, 142:1837-1847.

[37] 李宁, 申爱琴, 周彬, 等. 基于流变和微观分析的PR改性沥青老化性能评价[J]. 材料科学与工程学报, 2019, 37(05): 812-816.

[38] Amini A, Ziari H, Saadatjoo S A, et al. Rutting resistance, fatigue properties and temperature susceptibility of nano clay modified asphalt rubber binder[J]. Construction and Building Materials, 2021, 267: 120946.

[39] Rasool R T, Wang S, Zhang Y, et al. Improving the aging resistance of SBS modified asphalt with the addition of highly reclaimed rubber[J]. Construction and Building Materials, 2017, 145: 126-134.

[40] Gulzar S, Underwood B S. Nonlinear viscoelastic response of crumb rubber modified asphalt binder under large strains[J]. Transportation Research Record, 2020, 2674(3): 139-149.

[41] Hemida A, Abdelrahman M. Monitoring separation tendency of partial asphalt replacement by crumb rubber modifier and guayule resin[J]. Construction and Building Materials, 2020, 251: 118967.

[42] Subhy A, Pires G M, Lo Presti D, et al. The effects of laboratory ageing on rheological and fracture characteristics of different rubberised bitumens[J]. Construction and Building Materials, 2018, 180: 188-198.

[43] 王笑风, 曹荣吉. 橡胶沥青的改性机理[J]. 长安大学学报(自然科学版), 2011, 31(02): 6-11.

[44] 杨毅文, 袁浩, 马涛. 脱硫橡胶沥青溶胀原理及路用性能[J]. 公路交通科技, 2012, 29(02): 35-39.

[45] 周鑫. TOR橡胶沥青老化特性及机理研究[D]. 扬州: 扬州大学, 2011.

[46] 高中洋. 干拌法橡胶粉改性沥青及其混合料性能研究[D]. 苏州: 苏州科技大学, 2019.

[47] 郑静, 向科炜, 黄光速. 红外光谱研究丁基橡胶老化机理及寿命预测[J]. 宇航材料工艺, 2013, 43(01): 89-92.

[48] 刘宇. 热氧水综合作用下的温拌橡胶沥青抗老化性能与机理的研究[D]. 广州: 广州大学, 2020.

[49] 赵增刚. LUCOBIT/橡胶复合改性沥青流变及粘附特性研究[D]. 湘潭: 湘潭大学, 2020.

[50] 弥海晨, 张娟, 郭平, 等. 老化后橡胶沥青混合料高温性能研究[J]. 中外公路, 2019, 39(04): 251-254.

[51] 李美江, 王旭东. 橡胶粉在沥青及混合料中的作用机理研究[C]. 第四届亚太可持续发展交通与环境技术大会.

[52] 张宏雷, 李金亮, 王仕峰. 工厂化胶粉改性沥青的开发与应用进展[J]. 公路, 2010(10): 199-203.

[53] 贾彦. CR/SBS复合改性沥青制备与性能研究[D]. 西安: 长安大学, 2019.

[54] 栗煜东. 液体橡胶改性沥青制备及性能研究[D]. 大连: 大连理工大学, 2019.

[55] Tarefder R A, Arisa I. Molecular dynamic simulations for determining change in thermodynamic properties of asphaltene and resin because of aging[J]. Energy & Fuels, 2011, 25(5): 2211-2222.

[56] Pan J, Tarefder R A. Investigation of asphalt aging behaviour due to oxidation using molecular dynamics simulation[J]. Molecular Simulation, 2016, 42(8): 667-678.

[57] Samieadel A, Oldham D, Fini E H. Investigating molecular conformation and packing of oxidized asphaltene molecules in presence of paraffin wax[J]. Fuel, 2018, 220: 503-512.

[58] Samieadel A, Oldham D, Fini E H. Multi-scale characterization of the effect of wax on intermolecular interactions in asphalt binder[J]. Construction and building materials, 2017, 157: 1163-1172.

[59] Liu J, Liu Q, Wang S, et al. Molecular dynamics evaluation of activation mechanism of rejuvenator in reclaimed asphalt pavement (RAP) binder[J]. Construction and Building Materials, 2021, 298(35): 123898.

[60] Zhang X, Ning Y, Zhou X, et al. Quantifying the rejuvenation effects of soybean-oil on aged asphalt-binder using molecular dynamics simulations[J]. Journal of Cleaner Production, 2021, 317: 128375.

[61] Cui B, Gu X, Hu D, et al. A multiphysics evaluation of the rejuvenator effects on aged asphalt using molecular dynamics simulations[J]. Journal of Cleaner Production, 2020, 259: 120629.

[62] Guo F, Zhang J, Pei J, et al. Investigating the interaction behavior between asphalt binder and rubber in rubber asphalt by molecular dynamics simulation[J]. Construction and Building Materials, 2020, 252: 118956.

[63] 刘福军, 辛诚, 管明阳, 等. 基于分子动力学模拟研究废食用油-老化沥青的扩散行为[J]. 公路工程, 2022, 47(05): 120-125.

[64] 白爱明, 周新星. 生物质油再生沥青的自愈合性能研究[J]. 重庆交通大学学报(自然科学版), 2018, 37(08): 29-33.

[65] 王业飞. 再生剂扩散模拟分析及其对老化沥青性能的影响[D]. 武汉: 武汉理工大学, 2016.

[66] 汤文, 郭颖君, 吕悦晶, 等. 生物再生剂对老化沥青分子聚集行为的影响[J]. 重庆交通大学学报(自然科学版), 2022, 41(06): 92-97.

[67] 陈子璇. 胶粉改性沥青-集料界面效应及水的影响研究[D]. 西安: 长安大学, 2019.

[68] 易宝. 基于分子模拟技术的橡胶对沥青改性作用研究[D]. 乌鲁木齐: 新疆大学, 2020.

[69] Zhang L, Greenfield M L. Analyzing properties of model asphalts using molecular simulation[J]. Energy & fuels, 2007, 21(3): 1712-1716.

[70] D Storm D A, Edwards J C, DeCanio S J, et al. Molecular representations of Ratawi and Alaska north slope asphaltenes based on liquid-and solid-state NMR[J]. Energy & fuels, 1994, 8(3): 561-566.

[71] Hansen J S, Lemarchand C A, Nielsen E, et al. Four-component united-atom model of bitumen[J]. The Journal of Chemical Physics, 2013, 138(9): 094508.

[72] Li D D, Greenfield M L. Chemical compositions of improved model asphalt systems for molecular simulations[J]. Fuel, 2014, 115: 347-356.

[73] Zadshir M, Oldham D J, Hosseinnezhad S, et al. Investigating bio-rejuvenation mechanisms in asphalt binder via laboratory experiments and molecular dynamics simulation[J]. Construction and Building Materials, 2018, 190: 392-402.

[74] Sonibare K, Rucker G, Zhang L. Molecular dynamics simulation on vegetable oil modified model asphalt[J]. Construction and Building Materials, 2021, 270: 121687.

[75] Samieadel A, Oldham D, Fini E H. Multi-scale characterization of the effect of wax on intermolecular interactions in asphalt binder[J]. Construction and Building Materials, 2017, 157: 1163-1172.

[76] Shariati S, Rajib A I, Crocker M S, et al. Bio-grafted silica to make an asphalt road a sink for reactive environmental pollutants[J]. Environmental Pollution, 2022, 313: 120142.

[77] 黄威麟. 废胶粉复合改性沥青微观改性机理研究[D]. 长沙: 长沙理工大学, 2021.

[78] 李澳. 橡胶沥青净味机理及性能评价[D]. 哈尔滨: 哈尔滨工业大学, 2020.

[79] 栗启, 胡魁, 俞才华, 等. 聚乙烯与沥青相互作用的分子动力学机理研究[J]. 材料导报, 2023, 37(05): 268-273.

[80] 曹雪娟, 易柳, 丁勇杰, 等. 基于分子动力学模拟改性剂掺量对改性沥青微观作用影响研究[J]. 化工新型材料, 2022, 50(07): 175-182.

[81] 翟明, 李金龙, 王日冉, 等. SBS/CNT改性沥青-集料黏附与破坏的分子动力学研究[J]. 塑料科技, 2022, 50(06): 37-42.

[82] 徐宁, 汪海年, 陈玉, 等. 基于分子动力学的生物沥青相容性研究[J]. 华南理工大学学报(自然科学版), 2022, 50(05): 65-72.

[83] 朱雅婧, 徐光霁, 马涛, 等. 基于分子动力学模拟的高黏沥青改性与再生研究[J].东南大学学报(自然科学版), 2022, 52(04): 736-743.

[84] 苏曼曼, 张洪亮, 张永平, 等. SBS与沥青相容性及力学性能的分子动力学模拟[J].长安大学学报(自然科学版), 2017, 37(03): 24-32.

[85] 周艺, 童瑶, 温广香, 等. 沥青四组分测定法的改良及其在老化再生中的应用[J].公路, 2021, 66(03): 283-288.

[86] JTG F40-2004, 公路沥青路面施工技术规范[S].北京:人民交通出版社, 2004.

[87] 王从敬. 废旧胶胎粉改性沥青制备工艺及性能研究[D]. 济南: 山东建筑大学, 2022.

[88] 刘国明. 共混胶粉改性沥青性能及作用机理研究[D]. 西安: 西安科技大学, 2020.

[89] 董博. 脱硫胶粉改性沥青特性及其混合料性能研究[D]. 西安: 西安科技大学, 2020.

[90] 李文博. 介观尺度下胶粉空间运动行为对橡胶沥青基本性能的影响[D]. 西安: 西安科技大学, 2021.

[91] 梁俊怡. 基于时温等效原理的基质沥青快速老化试验与分析[J]. 广东公路交通, 2019, 45(04): 5-9.

[92] 周兴林, 杨艳梅, 关佳希, 等. 基于红外光谱的沥青老化时程预测[J]. 中外公路, 2020, 40(01): 218-223.

[93] 栗培龙. 道路沥青老化行为与机理研究[D]. 西安: 长安大学, 2007.

[94] 耿久光. 沥青老化机理及再生技术研究[D]. 西安: 长安大学, 2009.

[95] 邸泽. 延时老化试验研究纳米碳酸钙对沥青抗老化性能的影响[J]. 武汉理工大学学报: 交通科学与工程版, 2018, 42(06):167.

[96] 交通运输部公路科学研究院. 公路工程沥青及沥青混合料试验规程[S]. JTG E20—2019.

[97] 陆涛. 废橡塑复合改性沥青在道路工程中的应用研究[D]. 重庆: 重庆交通大学, 2021.

[98] 赵栋. 回收油脂复配再生剂制备及其再生机理研究[D]. 西安: 西安科技大学, 2020.

[99] 王莹. 基于红外光谱-原子力的沥青微观结构特征及性能研究[D]. 哈尔滨: 东北林业大学, 2021.

[100] 唐国茜. 竹原纤维沥青胶浆特性及其混合料性能研究[D]. 西安: 西安科技大学, 2021.

[101] Nie X, Du Z, Zhao L, et al. Molecular dynamics study on transport properties of supercritical working fluids: Literature review and case study[J]. Applied Energy, 2019, 250: 63-80.

[102] 严六明, 朱素华. 分子动力学模拟的理论与实践[M]. 科学出版社, 2013.

[103] 朱建勇. 沥青胶结料自愈合行为的分子动力学模拟[J]. 建筑材料学报, 2018, 21(03): 433-439.

[104] 范维玉, 赵品晖, 康剑翘, 等. 分子模拟技术在乳化沥青研究中的应用[J]. 中国石油大学学报(自然科学版), 2014, 38(06): 179-185.

[105] 刘必心, 龙军, 任强, 等. 塔河沥青质超分子体系的初步探索[J]. 石油学报(石油加工), 2017, 33(01): 16-24.

[106] Jian C, Adams J J, Grossman J C, et al. Carbon fiber synthesis from pitch: Insights from ReaxFF based molecular dynamics simulations[J]. Carbon, 2021, 176: 569-579.

[107] Xu Z, Wang Y, Cao J, et al. Adhesion between asphalt molecules and acid aggregates under extreme temperature: A ReaxFF reactive molecular dynamics study[J]. Construction and Building Materials, 2021, 285: 122882.

[108] Zhang L. Physical and mechanical properties of model asphalt systems calculated using molecular simulation[M]. University of Rhode Island, 2007.

[109] Storm D A, Edwards J C, Decanio S J, et al. Molecular representations of ratawi and alaska north slope asphaltenes based on liquid- and solid-state NMR[J]. Energy & Fuels, 1994, 8(3):561-566.

[110] Kowalewski I, Vandenbroucke M, Huc A Y, et al. Preliminary results on molecular modeling of asphaltenes using structure elucidation programs in conjunction with molecular simulation programs[J]. Energy & Fuels, 1996, 10(1):97-107.

[111] Artok L, Su Y, Hirose Y, et al. Structure and Reactivity of Petroleum-Derived Asphaltene[J]. Energy & Fuels, 1999, 13(2):287-296.

[112] Zhang L, Greenfield M L. analyzing properties of model asphalts using molecular simulation[J]. Energy & Fuels, 2007, 21(3):1712-1716.

[113] Zhang L, Greenfield M L. Effects of polymer modification on properties and microstructure of model asphalt systems[J]. Energy & fuels, 2008, 22(5): 3363-3375.

[114] Hansen J S, Lemarchand C, Nielsen E, et al. Four-component united-atom model of bitumen[J]. American Institute of Physics, 2013, 138(9): 094508.

[115] 崔冰彦. 热再生沥青胶结料新旧沥青融合的分子动力学模拟[D].东南大学,2020.

[116] 徐宁,汪海年,陈玉,王惠敏,焦虎.餐饮废油对老化沥青的微观再生效应[J/OL].铁道科学与工程学报:1-10.

[117] 刘斌清,胡松山,谭华等.沥青四组分与橡胶沥青性能指标的相关性分析[J].中外公路,2015,35(06):321-326.

[118] 王诗雨,董夫强,于新等.相容剂组成对SBS改性沥青抗老化性能的影响[J/OL].建筑材料学报:1-15[2023-05-21].

[119] 焦亚平. 微波对稠油体系中沥青质缔合及其分子间作用的影响研究[D].中国石油大学(北京),2021.

[120] 宋圣晗. 稠油中沥青质与表面活性剂相互作用的分子模拟[D].山东大学,2019.

[121] Ding H, Wang H, Qu X, et al. Towards an understanding of diffusion mechanism of bio-rejuvenators in aged asphalt binder through molecular dynamics simulation[J]. Journal of Cleaner Production, 2021.

[122] 汤文,郭颖君,吕悦晶,陈华.生物再生剂对老化沥青分子聚集行为的影响[J].重庆交通大学学报(自然科学版),2022,41(06):92-97.

[123] Abbad E A N, Zaoui A. Enhancing Mechanical and Self-Healing Properties of Asphalt Binder Through the Incorporation of Nano-silica[J]. International Journal of Pavement Research and Technology, 2023, 16(1):1-14.

[124] Li D, Wu S, Huang Y, Wang D, et al. Effect of aggregate and bitumen on the high-temperature performance of asphalt mixture containing waste crumb rubber.

Construction and Building Materials, 2018, 186: 824-835.

中图分类号:

 U414    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式