- 无标题文档
查看论文信息

论文中文题名:

 基于M估计的厚尾序列均值多变点检验及应用研究    

姓名:

 景洁    

学号:

 21201103004    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0701    

学科名称:

 理学 - 数学    

学生类型:

 硕士    

学位级别:

 理学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 理学院    

专业:

 数学    

研究方向:

 时间序列分析    

第一导师姓名:

 金浩    

第一导师单位:

 西安科技大学    

第二导师姓名:

 武明华    

论文提交日期:

 2024-06-14    

论文答辩日期:

 2024-06-04    

论文外文题名:

 Research and application of mean multiple points test for heavy-tailed series based on M estimation    

论文中文关键词:

 均值多变点 ; 厚尾序列 ; M估计 ; 隔离检测方法 ; 在线监测 ; 平均运行长度    

论文外文关键词:

 Mean multiple points ; Heavy-tailed sequence ; M-estimation ; Isolated detection ; Online monitoring ; Average run length    

论文中文摘要:

       越来越多的证据表明,仅考虑单一变点的模型具有很大的局限性。在实际应用中,特别是针对长时间序列的分析,这些序列往往存在多个变点。而且为解决单变点问题而设计的方法,在尝试检测多个变点时难以取得理想的效果。鉴于此,本文将采用M估计方法,针对厚尾序列均值多变点检验问题进行分析,包括线下检验与在线监测两大核心内容,具体内容如下:
      现有的关于厚尾序列均值多变点检验的研究其统计量主要依赖最小二乘估计方法,但对异常值非常敏感,特别是在厚尾情形下性能显著降低。鉴于M估计的稳健性,本文构造了相应的比值检验统计量,并通过隔离检测方法检验厚尾序列均值多变点。不仅得到在原假设下基于M估计的比值型检验统计量的渐近分布,并在备择假设下给出相合性。此外,为了估计变点,提出了变点估计方法以确定变点位置,并进一步证明了其一致性以及收敛速度。仿真结果表明,与最小二乘估计相比,基于M估计的比率型检验对经验水平没有显著影响,并且经验势显著提高,特别是在厚尾下更具鲁棒性。通过采用隔离分割的方法,能够有效地解决数据中存在多个变点的问题,并且与现有方法相比,提高了估计精度。最后,选取两组数据说明了本文方法的有效性和实用性。
       鉴于线下检验方法在应对在线监测时失效的问题,并充分考虑数据的动态变化过程,进一步探索在线监测方法。在充分利用M估计优势基础上,结合ID隔离的思想,提出了一种改进的基于M估计的在线监测统计量。通过采用滑动的方式,旨在解决厚尾情形下关于均值多变点的监测问题。经过理论推导证明了在原假设下的渐近分布同样为布朗运动的泛函,同时在备择假设下证明了一致性。通过数值模拟分析,发现相比于最小二乘估计,基于M估计的统计量不仅有较高的经验势,而且其平均运行长度更短,这意味着可以在较短的运行长度内有效地监测出均值多变点。两组数据验证了本文所提的在线监测方法的有效性。

论文外文摘要:

There is growing evidence that models that consider only a single change point have significant limitations. In practice, this is especially true for analyses of long time series, which often have multiple change points. Moreover, methods designed to address the single change point problem struggle to achieve the desired results when attempting to detect multiple change points. In view of this, this thesis will adopt the M estimation method to analyse the problem of multiple change point testing for the mean of heavy-tailed sequences, including the two core contents of offline testing and online monitoring, as follows:
Existing studies on the test for multiple change points in the mean of heavy-tailed sequences have statistics that rely mainly on the least squares estimation method, but it is very sensitive to outliers, and its performance is significantly degraded especially in the heavy-tailed case. In view of the robustness of M estimation, this thesis constructs the corresponding ratio test statistic and tests the heavy-tailed sequence mean multiple change points by isolation detection method. Not only the asymptotic distribution of the ratio-type test statistic based on M estimation is obtained under the original hypothesis, but also the collinearity is given under the alternative hypothesis. In addition, to estimate the change points, the change point estimation method is proposed to determine the change point locations and further proves the consistency as well as the convergence speed. Simulation results show that the Ratio test based on M-estimation has no significant effect on the empirical level and the empirical power is significantly higher and more robust especially under heavy-tailed compared to the least squares estimation. By using the method of isolated segmentation, the problem of multiple change points in the data can be effectively solved and the estimation accuracy is improved compared with the existing methods. Finally, two sets of data are selected to illustrate the effectiveness and practicality of the method in this thesis.
In view of the failure of offline test methods in coping with online monitoring, and with full consideration of the dynamic process of data change, online monitoring methods are further explored. On the basis of making full use of the advantages of M-estimation and combining the idea of ID isolation, an improved online monitoring statistic based on M-estimation is proposed. By adopting a sliding approach, it aims to solve the monitoring problem about the mean multi-variable points in the heavy-tailed case. After theoretical derivation, it is proved that the asymptotic distribution under the null hypothesis is also a generalised function of Brownian motion, while consistency is proved under the alternative hypothesis. Through numerical simulation analysis, it is found that compared with the least squares estimation, the statistics based on M-estimation not only have higher empirical powers, but also have shorter average run lengths, which implies that the mean multiple change points can be efficiently monitored in a shorter run length. The two sets of data validate the effectiveness of the online monitoring method proposed in this thesis. 

参考文献:

Page, E.S. Continue inspection schemes[Z].Biometrika, 1954, 42(1): 100-114.

陈希孺. 变点统计分析简介[J]. 数理统计与管理, 1991, 10(2): 52-59.

Chen J, Gupta A K, Gupta A K. Parametric statistical change point analysis[M]. Boston: Birkhäuser, 2000,10(2):88-94.

Perron P. Dealing with structural breaks[J]. Boston University Department of Economics, 2005:278-352.

Jin H, Zhang S, Zhang J, Hao H. Modified tests for change points in variance in the possible presence of mean breaks[J]. Journal of Statistical Computation and Simulation, 2018, 88(14):2651–2667.

Wang D, Guo P , Xia Z. Detection and estimation of structural change in heavy-tailed sequence. Communications in Statistics - Theory and Methods, 2017,46(2), 815–827.

Horváth L, Horvath Z. Ratio tests for change point detection[J]. Institute of Mathematical Statistics, 2008:293-304.

Noriah M. Al-Kandari,Emad-Eldin A. A. Aly. An ANOVA-type test for multiple change points[J]. Statistical Papers,2014,55(4).

Yau, C., and Zhao, Z. Inference for multiple change points in time series via likelihood ratio scan statistics[J]. Journal of the Royal Statistical Society: Series B, 2016, 78: 895-916.

Al-Kandari M N ,Aly A A E .An ANOVA-type test for multiple change points[J].Statistical

s,2014,55(4):1159-1178.

Mandebrot B. The variation of certain speculative prices[J]. Journal of Business, 1992, 36(3):394-491.

Ibbotson R G, Jaffe J F. The Behavior of Stock Market Prices [J]. Journal of Finance, 2006, 30(4): 1027-1042.

Barabasi A L. The Origin of Bursts and Heavy Tails in Human Dynamics [J]. Nature, 2005, 435(7039): 207-211.

Brodin E, Kluppelberg C. Extreme Value Theory in Finance [M]. Everitt, B. and Meiinick, E. Encyclopedia of Quantitive Risk Assessment, 2007.

Peštová B, Pešta M. Abrupt change in mean using block bootstrap and avoiding variance estimation[J]. Computational Statistics, 2018, 33(1): 413-441.

Horváth L, Hušková M, Kokoszka P, et al. Monitoring changes in linear models[J].

Journal of statistical Planning and Inference, 2004, 126(1): 225-251.

Aue A, Horváth L, Hušková M, et al. Change-point monitoring in linear models[J]. The

Econometrics Journal, 2006, 9(3): 373-403.

Černíková A, Hušková M, Prášková Z, et al. Delay time in monitoring jump changes in

linear models[J]. Statistics, 2013, 47(1): 1-25.

陈占寿,田铮,丁明涛.线性回归模型参数变点的在线监测[J].系统工程理论与实践,2010, 30(06):1047-1054.

李拂晓,田铮,陈占寿.随机系数自回归模型变均值点在线监测与应用[J].控制理论与应用,2012,29(04):497-502.

Chen Zhangshou, Li Fuxiao, Zhu Li, Xing Yuhong. Monitoring mean and variance change-points in long-memory time series[J]. J Syst Sci Complex,2022,35(2):1009-1029.

Aue A, L Horváth. Delay time in sequential detection of change, Stat. Probab. Lett. 67:

221-231[J]. Statistics & Probability Letters, 2004, 67(3):221-231

Zhao W, Xue Y, Liu X. Monitoring parameter change in linear regression model based

on the efficient score vector[J]. Physica A: Statistical Mechanics and Its Applications, 2019, 527: 121-135.

陈希孺.变点统计分析简介[J].数理统计与管理, 1991, 10(2): 52-59.

Hawkins D M.Testing a Sequence of Observations for a Shift in Location [J]. Journal of the American Statistical Association, 1977, 72(357): 180-186.

Kokoszka P, Leipus R, Change-point estimation in GARCH models[J]. Bernoulli, 2000, 6(3): 513-539.

Wang L, Wang J. Change of Variance Problem for Linear Processes with Long Memory [J]. Stat Papers, 2006, 47: 279-298.

Kim J Y. Detection of Change in Persistence of a Linear Time Series [J]. Journal of Econometrics, 2000, 95(1): 97-116.

Belaire-Franch J, Kim J Y, Amador R B. Corrigendum to “Detection of Change in Persistence of a Linear Time Series” [J]. Journal of Econometrics, 2002, 109(2):389-392.

Bai J S. Least squares estimation of a shift in linear process[J]. Journal of Time Series Analysis, 1994, 15(5): 453-472.

Leipus R. Change-point estimation in GARCH models[J]. Bernoulli, 2000, 6(3): 513-539.

Antoch J, Husková M. Effect of eependence on statistics for determination of change[J]. Journal of Statistical Planning and Inference,1997,60(291):1-15.

Shao X F, Zhang X Y. Testing for change points in time series[J]. Journal of the American statistical Association, 2010, 105(491): 1228-1240.

Embrechts P, Mikosch T. Modelling extremal events for insurance and finance[M]. New York: Springer, 2003.

Thomas W, Christian U. Time variation in the tail behavior of bund future returns[J]. Journal of Futures Markets, 2004, 24: 387-398.

Samorodnitsky G, Taqqu M S, Linde R W. Stable non-gaussian random processes: stochastic models with infinite variance[J]. Bulletin of the London Mathematical Society, 1996, 28(134): 554-555.

Huber P J. Robust Statistics [M]. New York: Wiley, 1981.

陈希孺,赵林城.线性模型中的M方法[M].上海科学技术出版社,1996.

Hušková M. M-Procedures for detection of changes for dependent observations[J]. Commun. Stat., Simul. Comput, 2012, 41:1032-1050.

Qin R, Liu W. Ratio detection for mean change in α mixing observations[J]. Communications in Statistics, 2019, 48(7):1693-1708.

CHU C-S J, STINCHCOMBE M, WHITE H. Monitoring structural change [J] . Econometrica, 1996, 64 (5) : 1045-1065.

Yao Y C. Estimating the number of change-points via Schwarz’ criterion[J]. Statistics and Probability Letters, 1988, 6(3): 181-189.

Lee C B .Estimating the number of change points in a sequence independent normal random variables[J].Statistical and Probability Letters,1995,25(3) ,241-248.

Horvath, L. The maximum likelihood method of testing changes in the parameters of normal observations[J].Ann. Statist,1993,21,671-680.

Lavielle, M. , Ludena, C. The multiple change points problem for the spectral distribution[J]. Bernoulli,2000, 6, 845-869.

Jackson B, Scargle J D, Barnes D, et al. An algorithm for optimal partitioning of data on an interval[J]. IEEE Signal Processing Letters, 2005, 12(2): 105-108.

Killick, R., Fearnhead, P. Optimal detection of change points with a linear computational cost[J]. Am. Statist. Ass.,2005,107, 1590-1598.

Tibshirani Robert. Regression shrinkage and selection via the lasso[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1996,58(1),267-288.

Li Q, Wang L. Robust change point detection method via adaptive LAD-LASSO[J]. Statistical Papers, 2020, 61(1): 109-121.

Vostrikova L. Detecting “disorder” in multidimensional random processes[J]. SovMath Dokl,1981, 24:55-59.

Bai, J. Estimating multiple breaks one at time. Econmetr[J]. Theor., 1997, 13: 315-352.

Olshen AB, Venkatraman ES, Lucito R, Wigler M . Circular binary segmentation for the analysis of array-based DNA copy number data[J]. Biostatistics, 2004, 5:557–572.

Fryzlewicz P. Wild binary segmentation for multiple change-point detection. Ann Stat,2014, 42:2243-2281.

Fryzlewicz P . Detecting possibly frequent change-points: wild binary segmentation 2 and steepest-drop model selection. J Korean Stat Soc .2020,49:1027-1070.

Baranowski R, Chen Y, Fryzlewicz P . Narrowest-over-threshold detection of multiple change pointsand change-point-like features. J R Stat Soc B,2019, 81:649–672.

Kovács S, Li H, Bühlmann P, Munk A . Seeded binary segmentation: a general methodology for fastand optimal change point detection. arXiv:2002.06633.2020.

Anastasiou A, Fryzlewicz P. Detecting multiple generalized change-points by isolating single ones[J]. Metrika, 2022, 85(2): 141-174.

Niu Y S, Zhang H. The screening and ranking algorithm to detect DNA copy number variations[J]. The annals of applied statistics, 2012, 6(3): 1306.

Ma L, Grant A J, Sofronov G. Multiple change point detection and validation in autoregressive time series data[J]. Statistical Papers, 2020, 61(4): 1507-1528.

Eichinger B, Kirch C . A MOSUM procedure for the estimation of multiple random change points[J].Bernoulli,2018, 24:526-564.

徐琼瑶.长记忆时间序列均值多变点的精准估计[D].青海师范大学,2019.

庄丹,刘友波,马铁丰.多变点检测问题的Shape-based BS算法[J].高校应用数学学报A辑,2019,34(02):151-164.

Peštová B, Pešta M. Abrupt change in mean using block bootstrap and avoiding variance estimation[J]. Computational Statistics, 2018, 33(1): 413-441.

J. Bai, P. Perron. Estimation and testing for multiple structural changes in linear models[J].Econometrica, 1998,66:47-78.

J. Bai. Likelihood ratio tests for multiple structural changes[J]. Journal of Econometrics,1999, 91:299-323.

Huškova, M, Marusiakoa. M-procedures for detection of changes for dependent observations[J]. Robustenss and Complex Data Structures, 2012,41(7):1032-1050.

FU G, HE M.Multi-variable point sliding ratio test for long memory time series parametersand applications[J].Journal of Qiqihar University, 2018,34(05): 54-63.

Juhl T, Xiao Z. Tests for changing mean with monotonic power[J]. Journal of Econometrics,2009,148(1): 14-24.

茆诗松. 高等数理统计[M]. 北京:高等教育出版社,2006:149.

中图分类号:

 Q211.61    

开放日期:

 2024-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式