- 无标题文档
查看论文信息

题名:

 宁正矿区南部洛河组沉积控水规律研究    

作者:

 雷琪琪    

学号:

 22209071009    

保密级别:

 内部    

语种:

 chi    

学科代码:

 0818    

学科:

 工学 - 地质资源与地质工程    

学生类型:

 硕士    

学位:

 工学硕士    

学位年度:

 2025    

学校:

 西安科技大学    

院系:

 地质与环境学院    

专业:

 地质资源与地质工程    

研究方向:

 水文地质    

导师姓名:

 陈跃    

导师单位:

 西安科技大学    

提交日期:

 2025-06-12    

答辩日期:

 2025-06-02    

外文题名:

 Study on sedimentary water control law of Luohe Formation in the southern part of Ningzheng mining area    

关键词:

 洛河组 ; 沙漠相 ; 层序地层 ; 沉积控水 ; 富水性评价    

外文关键词:

 Luohe Formation ; desert facies ; sequence stratigraphy ; sedimentation water control ; Evaluation of water richness    

摘要:

宁正矿区位于陇东地区东南部,侏罗系中统延安组是区内的含煤地层,主采8号煤层,煤层开采后,导水裂隙带已发育至洛河组含水层,以往资料表明,该含水层厚度较大,严重威胁矿井的安全生产。基于此,本文以沉积控水理论为基础,对矿区南部洛河组地层沉积环境、微观结构和不同层位沉积相特征进行研究,并建立洛河组富水性预测模型进行评价及分区。取得主要成果如下:

洛河组砂岩多以紫红、浅棕红色中粗粒砂岩为主,磨圆度主要为次棱状,分选适中。沉积结构以碎屑结构为主,岩石类型主要为长石石英砂岩和岩屑石英砂岩,填隙物主要为泥质杂基和方解石胶结物,平行层理和交错层理普遍发育,层面构造不明显。研究区以沙漠沉积体系为主,将沉积亚相划分为:旱谷亚相、砾漠亚相、复合沙丘亚相及丘间亚相。洛河组整体沉积环境以氧化—弱还原为主,地层指示陆相淡水环境,沉积期气候表现为先湿后干再湿、先温后冷再温的变化特征。

将研究区洛河组地层划分为4个级别的沉积旋回,分别为超大型旋回、大型旋回、中型旋回和小型旋回:洛河组整体划分为一个超大型沉积旋回,命名为SSC1;SSC1划分为三个大型沉积旋回LSC1、LSC2和LSC3;大型沉积旋回各划分为三个中型沉积旋回MSC1、MSC2和MSC3。其中LSC1以复合沙丘夹丘间亚相为主体,并伴随有旱谷河流沉积以及局部砾漠沉积;LSC2为干旱期沉积,发育大范围的复合沙丘沉积、旱谷沉积和少量砾漠沉积夹于沙丘沉积之中;LSC3气候向湿润方向转变,形成以复合沙丘沉积为主夹丘间的沉积体系。

洛河组含水层岩性及其组合特征对富水性控制显著,粒度较大的中粗砂岩在层段中的厚度越大,富水性越好;将砂岩孔隙类型划分为细微孔优势型(Ⅰ)、微小孔优势型(Ⅱ)和中大孔优势型(Ⅲ)三类,孔隙类型级别越大,富水性越好;复合沙丘亚相对富水性影响较为显著,对含水层富水性的影响具有积极作用,丘间亚相整体富水性较差,孔隙结构较复杂,不利于地下水的运移与富集。

沉积相和孔隙结构分别是洛河组富水性的宏观和微观表现,二者相互影响、相互制约,构成了一个有机整体,共同表征含水层富水性。引入AHP层次结构法评价洛河组富水性,其中富水性LSC2>LSC1>LSC3,整体在区内表现为中等~强。

外文摘要:

Ningzheng mining area is located in the southeast of Longdong area, the middle Jurassic Yan'an Formation is the coal-bearing strata in the area, the main mining No. 8 coal seam, after the coal seam mining, the water diversion fracture zone has developed to the Luohe Formation aquifer, the past data show that the thickness of the aquifer is large, seriously threatening the safety of the mine. Based on the theory of sedimentary water control, this paper studies the sedimentary environment, microstructure and sedimentary facies characteristics of different horizons of the Luohe Formation in the southern part of the mining area, and establishes a prediction model for the water-richness of the Luohe Formation for evaluation and zoning. The main results are as follows:

The sandstone of Luohe Formation is mainly purple-red, light brown-red medium-coarse-grained sandstone, and the roundness is mainly sub-prismatic, and the sorting is moderate. The sedimentary structure is mainly clastic structure, the rock types are mainly feldspar quartz sandstone and lithic quartz sandstone, the gap filler is mainly argillaceous heterogeneous and calcite cement, parallel bedding and cross-bedding are generally developed, and the layer structure is not obvious. The sedimentary subfacies in the study area is mainly desert sedimentary system, and the sedimentary subfacies are divided into: dry valley subfacies, gravel desert subfacies, composite dune subfacies and intermound subfacies. The overall sedimentary environment of the Luohe Formation is dominated by oxidation-weak reduction, and the stratigraphy indicates the continental freshwater environment, and the climate during the sedimentary period is characterized by the change characteristics of first wet, then dry and then wet, first warm and then cold and then warm.

The strata of the Luohe Formation in the study area are divided into four levels of sedimentary cycles, namely super-large cycles, large cycles, medium-sized cycles and small cycles: the Luohe Formation is divided into a super-large sedimentary cycle and named SSC1; SSC1 is divided into three large sedimentary cycles, LSC1, LSC2 and LSC3. The large cycles are divided into three medium-sized sedimentary cycles, MSC1, MSC2 and MSC3. Among them, LSC1 is dominated by composite dune and inter-mound subfacies, accompanied by wadi fluvial sediments and local gravel desert sediments. LSC2 is a arid sediment, which develops a wide range of composite dune sediments, wadi sediments and a small amount of gravel desert sediments sandwiched between sand dune sediments. The climate of LSC3 changed to a humid direction, forming a sedimentary system dominated by composite dune sediments.

The lithology and assemblage characteristics of the aquifer in the Luohe Formation have significant control over the water richness, and the greater the thickness of the medium and coarse sandstone with larger grain size in the interval, the better the water richness. The pore types of sandstone were divided into three types: microporous dominant type (I.), microporous dominant type (II.) and medium-large porous dominant type (III.), and the larger the pore type level, the better the water richness. The relative water richness of the composite dune subfacies is significant, which has a positive effect on the water richness of the aquifer, and the overall water richness of the interhilan subfacies is poor, and the pore structure is complex, which is not conducive to the migration and enrichment of groundwater.

The sedimentary facies and pore structure are the macroscopic and microscopic manifestations of the water-richness of the Luohe Formation, respectively, and they influence and restrict each other to form an organic whole, which jointly characterizes the water-richness of the aquifer. The AHP hierarchical structure method was introduced to evaluate the water richness of the Luohe Formation, in which the water-rich LSC2> LSC1> LSC3 were moderately ~ strong in the region.

参考文献:

[1] 董书宁,姬亚东,王皓,等. 鄂尔多斯盆地侏罗纪煤田典型顶板水害防控技术与应用[J]. 煤炭学报, 2020, 45(07): 2367-2375.

[2] 顾大钊,张勇,曹志国. 我国煤炭开采水资源保护利用技术研究进展[J]. 煤炭科学技术, 2016, (01): 1-7.

[3] 王国法,任世华,庞义辉,等. 煤炭工业“十三五”发展成效与“双碳”目标实施路径[J]. 煤炭科学技术, 2021, (09): 1-8.

[4] 刘峰,曹文君,张建明,等. 我国煤炭工业科技创新进展及“十四五”发展方向[J]. 煤炭学报, 2021, 46(01): 1-15.

[5] 董书宁,姬亚东,王皓,等. 鄂尔多斯盆地侏罗纪煤田典型顶板水害防控技术与应用[J]. 煤炭学报, 2020, (07): 2367-2375.

[6] 代革联,杨韬,周英,等. 神府矿区柠条塔井田直罗组地层富水性研究[J]. 安全与环境学报, 2016, 16(04): 144-148.

[7] 吴铁卫. 宁正矿区洛河组含水层水文地质特征及防治对策[J]. 中国煤炭地质, 2021, 33(S1): 65-68.

[8] 牛永强. 宁正矿区白垩系砂岩水文地质特征及煤层顶板涌水危险性评价[D]. 河北工程大学, 2013.

[9] Jie He,Xiaodong Liu,Xinyu Zhu, et al. Author Correction: Water-flooding characteristics of lithologic reservoir in Ordos basin[J]. Scientific Reports, 2021, 11(1).

[10] 曹德福. 鄂尔多斯盆地南区洛河组地下水演化水文地球化学模拟[D]. 长安大学, 2005.

[11] 于波,张忠义,刘显阳,等. 鄂尔多斯盆地白垩系洛河组至环河华池组砂体展布规律研究[J]. 地层学杂志, 2008, (03): 285-289.

[12] 徐中华,李云峰,侯光才. 鄂尔多斯盆地洛河组地下水地球化学模拟——以陕西省长武-彬县地区为例[J]. 干旱区资源与环境, 2009, 23(10): 143-148.

[13] 朱欣然,刘立,贾士琚,等. 鄂尔多斯盆地白垩系洛河组风成砂岩地球化学与物源区特征:以靖边县龙洲乡露头为例[J]. 世界地质, 2018, 37(03): 702-711.

[14] 马明,张广忠,王晓亮,等. 彬长矿区小庄矿宜君-洛河组砂体预测研究[J]. 煤炭技术, 2016, 35(01): 136-138.

[15] 陈通,王苏健,邓增社,等. 彬长矿区洛河组砂岩含水层富水性分区预测[C]. 煤矿隐蔽致灾因素及探查技术研究: 煤炭工业出版社, 2015: 56-60.

[16] 杜文斌,郑杨帆,耿明奇. 彬长矿区高家堡井田白垩系下统富水性及水力连通试验分析[J]. 中国煤炭地质, 2015, 27(05): 38-41.

[17] 李超峰,刘业献,张金魁,等. 基于双Packer抽水试验的洛河组水文地质特征垂向变异性研究[J]. 煤田地质与勘探, 2023, 51(11): 55-64.

[18] 任邓君,蔺成森,霍超,等. 高家堡煤矿洛河组含水层水文地质特征及水害防治[J]. 陕西煤炭, 2023, 42(06): 119-124+135.

[19] 张成弓,陈安清,侯林君,等. 中国西部古老海相沉积建造的典型结构样式及勘探指向[J]. 沉积学报, 2021, (06): 1491-1505.

[20] 熊伟,王越,熊峥嵘,等. 准噶尔盆地石北凹陷岛弧环境下火山—沉积建造特征及源储发育模式——以石炭系姜巴斯套组为例[J]. 石油实验地质, 2023, 45(04): 656-666.

[21] 陈晨. 乌审旗—横山地区中侏罗世沉积特征与控水规律研究[D]. 煤炭科学研究总院, 2018.

[22] 王蓉蓉. 朔州矿区岩溶发育规律及构造控水机制研究[D]. 中国矿业大学, 2015

[23] 沈玉林,秦勇,申建,等. 鄂尔多斯盆地东缘上古生界煤系叠置含气系统发育的沉积控制机理[J]. 天然气工业, 2017, 37(11): 29-35.

[24] 何昌春. 基于关键层结构的地表沉陷预计方法研究[D]. 中国矿业大学, 2018.

[25] 王长申,白海波,缪协兴. 漳村矿峰峰组隔水关键层孔隙性实验研究[J]. 中国矿业大学学报, 2009, 38(04): 455-462.

[26] Mo Deng,Guowei Zhao,Xiaobing Lin, et al. Sedimentary Facies, Paleogeography, and Depositional Models of the Middle–Late Permian in the Sichuan Basin, Southwest China[J]. Minerals, 2023, 13(11): 1406.

[27] Hongping XIAO,Rui’e LIU,Fudong ZHANG, et al. Sedimentary model reconstruction and exploration significance of Permian He 8 Member in Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2019, 46(2): 280-292.

[28] Yangwei Feng,Yan Ren,Fei Xia, et al. Study on the Early Cretaceous fluvial-desert sedimentary paleogeography in the Northwest of Ordos Basin[J]. Open Geosciences, 2023, 15(1).

[29] Nada Amer,Amir Said,Samir Raslan, et al. Sedimentary facies analysis and cyclicity of the Ras El Barr Concession, offshore Nile Delta, Egypt[J]. Arabian Journal of Geosciences, 2021, 14.

[30] Zeng-Zhao Feng. A review on the definitions of terms of sedimentary facies[J]. Journal of Palaeogeography, 2019, 8.

[31] Zeng-Zhao Feng. Some new thoughts of definitions of terms of sedimentary facies: Based on Miall's paper (1985)[J]. Journal of Palaeogeography, 2022, 11: 1-7.

[32] 谢渊,王剑,江新胜,等. 鄂尔多斯盆地白垩系沙漠相沉积特征及其水文地质意义[J]. 沉积学报, 2005, (01): 73-83.

[33] 谢渊,王剑,殷跃平,等. 鄂尔多斯盆地白垩系含水层沉积学初探[J]. 地质通报, 2003, (10): 818-828.

[34] 魏斌,张忠义,杨友运. 鄂尔多斯盆地白垩系洛河组至环河华池组沉积相特征研究[J]. 地层学杂志, 2006, (04): 367-372.

[35] 杨友运,张英利,侯光才. 鄂尔多斯白垩系自流水盆地沉积特征、岩性分布与盆地演化规律[J]. 地球学报, 2008, (04): 405-413.

[36] 马静. 鄂尔多斯盆地白垩系古沙漠研究[D]. 中国地质大学(北京), 2020.

[37] 林磊. 高家堡煤矿洛河组砂岩沉积控水规律研究[D]. 西安科技大学, 2020.

[38] 郭小铭. 彬长矿区洛河组沉积控水及开采扰动流场响应特征研究[D]. 煤炭科学研究总院, 2022.

[39] 谷德振,黄鼎成. 岩体结构的分类及其质量系数的确定[J]. 水文地质工程地质, 1979, (02): 8-13.

[40] 王永焱. 新疆瑪納斯地区第四紀沉积及水文地质特点[J]. 西北大学学报(自然科学版), 1958, (02): 21-33.

[41] Thomas Aigner. Working concept for aquifer sedimentology.[J]. Neues Jahrbuch Für Geologie Und Paläontologie - Abhandlungen, 1995, 195: 147-157.

[42] a Geological–Palaeontological Institute,University of Basel,CH-, et al. Introduction to the special issue on aquifer-sedimentology:problems, perspectives and modern approaches[J]: 1-8.

[43] Dylan J. Irvine,Heather A. Sheldon,Craig T. Simmons, et al. Investigating the influence of aquifer heterogeneity on the potential for thermal free convection in the Yarragadee Aquifer, Western Australia[J]. Hydrogeology Journal, 2015, 23(1): 161-173.

[44] Ludovic Schorpp,Julien Straubhaar,Philippe Renard. A Novel Surface‐Based Approach to Represent Aquifer Heterogeneity in Sedimentary Formations[J]. Water Resources Research, 2025, 61(2).

[45] Kyra H. Kim,James W. Heiss,Xiaolong Geng, et al. Modeling Hydrologic Controls on Particulate Organic Carbon Contributions to Beach Aquifer Biogeochemical Reactivity[J]. Water Resources Research, 2020, 56(10).

[46] 王德潜,刘方,侯光才,等. 鄂尔多斯盆地地下水勘查[J]. 西北地质, 2002, (04): 167-174.

[47] 许光泉,沈慧珍,魏振岱,等. 宿南矿区“四含”沉积相与富水性关系研究[J]. 安徽理工大学学报(自然科学版), 2005, (04): 4-8.

[48] 武强,王洋,赵德康,等. 基于沉积特征的松散含水层富水性评价方法与应用[J]. 中国矿业大学学报, 2017, 46(03): 460-466.

[49] 李明辉,王剑,谢渊,等. 鄂尔多斯盆地白垩纪岩相古地理与地下水相关性探讨[J]. 沉积与特提斯地质, 2003, (04): 34-40.

[50] 陶正平,崔旭东,黄金廷,等. 基于岩相的鄂尔多斯白垩系盆地含水层系统结构的研究[J]. 地质通报, 2008, (08): 1123-1130.

[51] 谢从瑞,杨忠智,王永和,等. 鄂尔多斯盆地白垩系沉积建造对地下水的控制[J]. 沉积与特提斯地质, 2013, 33(02): 40-45.

[52] 穆鹏飞,朱开鹏,牟林. 黄陇侏罗纪煤田洛河组砂岩富水规律[J]. 中国煤炭地质, 2015, 27(05): 42-45.

[53] 赵宝峰. 沉积和构造特征对含水层富水性的影响[J]. 工程勘察, 2015, 43(09): 51-54+80.

[54] 李东,刘生优,张光德,等. 鄂尔多斯盆地北部典型顶板水害特征及其防治技术[J]. 煤炭学报, 2017, 42(12): 3249-3254.

[55] 刘基,杨建,王强民,等. 红庆河煤矿煤层顶板含水层沉积规律研究[J]. 煤炭工程, 2018, 50(04): 97-99+104.

[56] 杨建,刘洋,刘基. 基于沉积控水的鄂尔多斯盆地侏罗纪煤田防治水关键层研究[J]. 煤矿安全, 2018, 49(04): 34-37.

[57] 冯洁,侯恩科,王苏健,等. 陕北侏罗系砂岩沉积控水规律研究[J]. 采矿与安全工程学报, 2022, 39(03): 546-556.

[58] 冯洁,侯恩科,王苏健,等. 陕北侏罗系沉积控水规律与沉积控水模式[J]. 煤炭学报, 2021, 46(05): 1614-1629.

[59] 熊小辉,肖加飞. 沉积环境的地球化学示踪[J]. 地球与环境, 2011, 39(03): 405-414.

[60] 徐亚军,杜远生,杨江海. 沉积物物源分析研究进展[J]. 地质科技情报, 2007, (03): 26-32.

[61] 陈亚军,荆文波,宋小勇,等. 三塘湖盆地马朗凹陷上石炭统沉积岩层地球化学特征及古环境意义[J]. 岩性油气藏, 2021, 33(04): 63-75.

[62] 王轲,翟世奎. 沉积物源判别的地球化学方法[J]. 海洋科学, 2020, 44(12): 132-143.

[63] 李俊,赵红格,汪建,等. 鄂尔多斯盆地西缘中部三叠系延长组碎屑岩沉积环境及物源示踪[J]. 沉积学报, 2024, (05): 1621-1638.

[64] 吴智平,周瑶琪. 一种计算沉积速率的新方法——宇宙尘埃特征元素法[J]. 沉积学报, 2000, (03): 395-399.

[65] 王益友,郭文莹,张国栋. 几种地球化学标志在金湖凹陷阜宁群沉积环境中的应用[J]. 同济大学学报, 1979, (02): 51-60.

[66] 谢渊,王剑,江新胜,等. 鄂尔多斯盆地白垩系沙漠相沉积特征及其水文地质意义[J]. 沉积学报, 2005, (01): 73-83.

[67] 黄隆基,胡庆东,杨荣礼,等. 自然伽马能谱测井薄层研究[J]. 测井技术, 1996, (05): 3-9.

[68] Washburn,Edward W. The Dynamics of Capillary Flow[J]. Phys.rev.ser, 1921, 17(3): 273-283.

[69] 郝乐伟,王琪,唐俊. 储层岩石微观孔隙结构研究方法与理论综述[J]. 岩性油气藏, 2013, 25(05): 123-128.

[70] 邓宏文,王红亮,宁宁. 沉积物体积分配原理——高分辨率层序地层学的理论基础[J]. 地学前缘, 2000, (04): 305-313.

[71] 林畅松,张燕梅,刘景彦,等. 高精度层序地层学和储层预测[J]. 地学前缘, 2000, (03): 111-117.

[72] 邓宏文. 美国层序地层研究中的新学派──高分辨率层序地层学[J]. 石油与天然气地质, 1995, (02): 89-97.

[73] 郑荣才,彭军,吴朝容. 陆相盆地基准面旋回的级次划分和研究意义[J]. 沉积学报, 2001, (02): 249-255.

[74] 刘波. 基准面旋回与沉积旋回的对比方法探讨[J]. 沉积学报, 2002, (01): 112-117.

[75] 顾家裕,郭彬程,张兴阳. 中国陆相盆地层序地层格架及模式[J]. 石油勘探与开发, 2005, (05): 11-15.

[76] 邓宏文,王洪亮,翟爱军,等. 中国陆源碎屑盆地层序地层与储层展布[J]. 石油与天然气地质, 1999, (02): 12-18.

[77] 吴怀春,张世红,冯庆来,等. 旋回地层学理论基础、研究进展和展望[J]. 地球科学(中国地质大学学报), 2011, 36(03): 409-428.

[78] 王鸿祯,史晓颖. 沉积层序及海平面旋回的分类级别——旋回周期的成因讨论[J]. 现代地质, 1998, (01): 2-17.

[79] 赵宝峰. 沉积和构造特征对含水层富水性的影响[J]. 工程勘察, 2015, 43(09): 51-54+80.

[80] 刘基,杨建,王强民. 基于沉积规律的煤层顶板含水层富水性研究[J]. 煤矿安全, 2018, 49(01): 69-72.

[81] 邓雪,李家铭,曾浩健,等. 层次分析法权重计算方法分析及其应用研究[J]. 数学的实践与认识, 2012, 42(07): 93-100.

[82] 何超,李萌,李婷婷,等. 多目标综合评价中四种确定权重方法的比较与分析[J]. 湖北大学学报(自然科学版), 2016, 38(02): 172-178.

[83] 李奇峰,崔恒,肖乐乐,等. 宁正煤田侏罗系煤层顶板富水性及涌(突)水风险评价[J]. 西安科技大学学报, 2023, 43(03): 523-529.

[84] 郭小铭,王皓,周麟晟. 煤层顶板巨厚基岩含水层空间富水性评价[J]. 煤炭科学技术, 2021, 49(09): 167-175.

[85] 武强,樊振丽,刘守强,等. 基于GIS的信息融合型含水层富水性评价方法——富水性指数法[J]. 煤炭学报, 2011, 36(07): 1124-1128.

中图分类号:

 P641    

开放日期:

 2026-06-12    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式