- 无标题文档
查看论文信息

题名:

 锂离子电池电解液热失控机理及抑制效能研究    

作者:

 杨雯    

学号:

 20120089011    

保密级别:

 保密(4年后开放)    

语种:

 chi    

学科代码:

 083700    

学科:

 工学 - 安全科学与工程    

学生类型:

 博士    

学位:

 工学博士    

学位年度:

 2025    

学校:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 消防科学与技术    

导师姓名:

 邓军    

导师单位:

 西安科技大学    

第二导师姓名:

 张嬿妮    

提交日期:

 2025-06-23    

答辩日期:

 2025-06-03    

外文题名:

 Study on the mechanism and inhibition efficiency of thermal runaway of electrolyte in lithium ion battery    

关键词:

 锂离子电池 ; 电解液 ; 热失控 ; 燃烧行为 ; 抑制效能    

外文关键词:

 Lithium-ion battery ; Electrolyte ; Thermal runaway ; Combustion behavior ; Inhibition efficiency    

摘要:

锂离子电池电解液热失控是诱发电池火灾事故的主要原因,其热失控反应主要包括热解、释能及燃烧三个阶段。电解液热失控过程会产生大量可燃、有毒的气体产物并伴随剧烈的热量释放,严重威胁了储能系统安全。为明确电解液热失控反应机理,获取电解液热失控反应特征参数,并量化阻燃添加剂对电解液热失控反应的抑制效能,本文采用理论分析、数值模拟计算和实验室实验结合的方法,分析电解液热解产热、产气对其热失控行为的诱发作用,探究电解液热失控释能对其燃烧行为的加速作用,明确电解液热失控燃烧的火灾风险,最终结合宏微观方法得到甲基磷酸二甲酯(DMMP)对电解液热失控抑制路径和抑制效能。主要研究内容及成果如下:

(1)开展锂离子电池电解液热解行为实验,对比分析溶剂种类、溶剂比例及升温速率对电解液热解反应特性的影响规律,获取电解液热解反应特征参数;构建电解液热解反应分子动力学模型,明确电解液热解产物种类及其分布比例,阐明电解液热解产气规律及生成路径,发现CO、CO2和H2是电解液热解反应主要的气体产物,总占比的77.12%~98.82%,链状碳酸酯比例增加,电解液可燃性指数增大2.51~3.84倍,热稳定性显著降低,热解反应更为剧烈。

(2)通过锂离子电池电解液释能行为实验,分析溶剂种类及热通量对电解液释能排气行为及燃烧行为的影响规律,获取电解液释能行为特征参数。研究发现当热通量超过10.00 kW/m2时,电解液将面临极高的火灾风险,且触发三元电解液释能行为所需的热通量比二元电解液更低;依据电解液释能特征参数划分电解液释能行为特征阶段,界定电解液不同释能阶段释温升速率及气体射流种类,确定电解液释能过程最高温度达394.81 ℃,排气行为触发温度为184.78 ℃~259.55 ℃。

(3)依据多因素影响下锂离子电池电解液燃烧特性实验结果,量化分析热通量及溶剂组成对电解液燃烧特性参数的影响规律,解析电解液燃烧阶段式演化过程,得到电解液组分与其燃烧特征参数间的内在关系;阐明电解液燃烧动力学行为与其热-质传递机制的内在关联,分析电解液直径及溶剂种类对电解液火焰行为的影响规律,构建对流模式下电解液燃烧行为多因素关联模型。结合电解液热解反应特性、释能行为特征及燃烧动力学行为,最终揭示锂离子电池电解液热失控反应机理。

(4)采用化学反应动力学方法,得到甲基磷酸二甲酯(DMMP)对电解液活性自由基、气体产物及层流燃烧速度的抑制路径,发现DMMP消耗氢自由基的倾向性高于羟基自由基,PO2+H+M=HOPO+M是DMMP抑制电解液热失控的主要路径;通过自熄时间、释能行为及燃烧行为实验发现,添加10%的DMMP可使电解液由可燃性转为耐燃性,有效延缓了电解液释能行为触发时间,并显著降低了电解液燃烧风险,且相同添加量下DMMP对DMC的抑制效能更显著;综合评估DMMP对电解液电化学性能和安全性能的影响,最终确定10%的DMMP是阻燃电解液选择的最优添加量。

通过以上研究,从反应路径上完善了锂离子电池电解液热失控演化机理的理论模型,得出了电解液燃烧行为多因素关联模型,揭示了DMMP对电解液热失控反应的抑制路径,并通过多参数量化了DMMP对电解液热失控行为的抑制效能。研究结果丰富了锂离子电池电解液热失控理论体系,为高安全性电解液体系的优化设计与技术创新提供了理论支撑,具有重要的应用价值。

外文摘要:

Thermal runaway of lithium-ion battery electrolytes is a primary cause of battery fire incidents, involving three key stages: pyrolysis, energy release, and combustion. This process generates large quantities of flammable and toxic gases accompanied by intense heat release, posing severe threats to energy storage system safety. To elucidate the reaction mechanism of electrolyte thermal runaway, obtain characteristic parameters, and quantify the inhibitory efficacy of flame retardant additives, this study integrates theoretical analysis, numerical simulation, and laboratory experiments. The work investigates the roles of electrolyte pyrolysis heat/gas generation in triggering thermal runaway, explores the acceleration effect of energy release on combustion behavior, evaluates the fire hazards of electrolyte combustion, and ultimately identifies the inhibition pathways and efficacy of dimethyl methyl phosphonate (DMMP) through macro- and micro-scale approaches. The main research content and findings are as follows:

(1) Pyrolysis behavior experiments were conducted to analyze the effects of solvent type, solvent ratio, and heating rate on electrolyte pyrolysis characteristics, obtaining key reaction parameters. A molecular dynamics model of electrolyte pyrolysis reaction was constructed to make clear the types of electrolyte pyrolysis products and their distribution ratios, and to elucidate the law of electrolyte pyrolysis gas production and its path of generation, and it was found that CO, CO2 and H2 were the main gas products of electrolyte pyrolysis reaction, accounting for 77.12%~98.82% of the total proportion. Increasing linear carbonate content elevated the flammability index by 2.51~3.84 times, significantly reducing thermal stability and intensifying pyrolysis reactions.

(2) Energy release experiments examined the influence of solvent type and heat flux on exhaust and combustion behavior, determining characteristic parameters. At heat fluxes exceeding 10.00 kW/m², electrolytes face extreme fire risks, with ternary electrolytes requiring lower heat fluxes for energy release than binary systems. Energy release stages were classified based on temperature rise rates and gas jet types, with peak temperatures reaching 394.81 °C and exhaust initiation occurring at 184.78 ℃–259.55°C.

(3) Combustion experiments quantified the effects of heat flux and solvent composition on combustion parameters, deciphered the staged evolution process, and established correlations between electrolyte components and combustion characteristics. The intrinsic link between combustion kinetics and heat/mass transfer mechanisms was elucidated, with flame behavior analyzed under varying diameters and solvent types. A multi-factor coupling model for convective-mode combustion was developed, culminating in a comprehensive mechanism for electrolyte thermal runaway.

(4) Chemical kinetics analysis identified DMMP’s inhibition pathways via scavenging active radicals (preferentially H· over OH·), altering gas products, and reducing laminar flame speed, with PO2+H+M=HOPO+M as the dominant pathway. Self-extinguishing time, energy release, and combustion tests demonstrated that 10% DMMP transformed electrolytes from flammable to flame-retardant, delayed energy release ignition, and markedly mitigated combustion risks, with superior efficacy for DMC. Electrochemical and safety evaluations confirmed 10% DMMP as the optimal additive.

This study advances the theoretical framework of lithium-ion battery electrolyte thermal runaway by refining its reaction pathways, establishing a multifactor-coupled combustion model, and elucidating the inhibition mechanisms of DMMP. Through multiparameter analysis, the inhibitory efficacy of DMMP on thermal runaway behavior was quantitatively evaluated. The findings enrich the fundamental understanding of electrolyte thermal runaway and provide critical theoretical support for the optimized design and technological innovation of high-safety electrolyte systems, demonstrating significant practical applications.

参考文献:

[1] 欧阳明高. 中国新能源汽车未来10年周期性和结构性趋势展望[J]. 科技导报, 2024, 42(12): 6-13.

[2] 周豪慎. 为绿色能源赋能: 动力电池和储能电池的发展与创新[J]. 科学通报, 2025, 70(09): 1115-17.

[3] 郭沛, 崔灿灿, 孔德洁, 等. “双碳”背景下固态锂电池用硫化物固态电解质的发展趋势[J]. 化工进展, 2024, 43(09): 5193-206.

[4] 杨东日, 巩键, 周宝文. “双碳”战略下绿色动力与数字技术融合驱动汽车产业高质量发展及其趋势展望[J]. 科学通报, 2025: 1-9.

[5] 王震坡, 詹炜鹏, 孙逢春, 等. 新能源汽车碳减排潜力分析[J]. 北京理工大学学报, 2024, 44(02): 111-22.

[6] Chen Shu, Wu Guanbin, Jiang Haibo, et al. External Li supply reshapes Li deficiency and lifetime limit of batteries[J]. Nature, 2025, 638 (8051): 1-8.

[7] 张青松, 刘添添, 赵子恒. 锂离子电池热失控气体燃烧对热失控传播影响的量化方法[J]. 北京航空航天大学学报, 2023, 49(1): 17-22.

[8] Wang Qingsong, Mao Binbin, Stoliarov I. Stanislav, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies[J]. Progress in Energy and Combustion Science, 2019, 73: 95-131.

[9] Jia Zhuangzhuang, Jin Kaiqiang, Mei Wenxin, et al. Advances and perspectives in fire safety of lithium-ion battery energy storage systems[J]. eTransportation, 2025, 24: 100390-412.

[10] Zhou Gang, Niu Chenxi, Kong Yang, et al. Research on stimulation responsive electrolytes from the perspective of thermal runaway in lithium-ion batteries: A review[J]. Fuel, 2024, 368: 131599-610.

[11] Yang Wen, Zhang Yanni, Deng Jun, et al. Experimental study on combustion characteristics of electrolyte pool fire[J]. Journal of Energy Storage, 2024, 93: 112214-27.

[12] 程志翔, 曹伟, 户波, 等. 储能用大容量磷酸铁锂电池热失控行为及燃爆传播特性[J]. 储能科学与技术, 2023, 12(03): 923-33.

[13] Hu Xingjun, Gao Feifan, Xiao Yang, et al. Advancements in the safety of lithium-ion battery: The trigger, consequence and mitigation method of thermal runaway[J]. Chemical Engineering Journal, 2024, 481: 148450-69.

[14] Liu Weilin, Jiang Yan, Wang Na, et al. Recent progress in flame retardant technology of battery: A review[J]. Resources Chemicals and Materials, 2023, 2(1): 80-99.

[15] Li Bang, Zhou Tingjin, Sun Honghuai, et al. Hazardous electrolyte releasement and transformation mechanism during water protected spent lithium-ion batteries crushing[J]. Journal of Hazardous Materials, 2025, 486: 137036-47.

[16] Gan Luyu, Chen Rusong, Xu Xilin, et al. Comparative study of thermal stability of lithium metal anode in carbonate and ether based electrolytes[J]. Journal of Power Sources, 2022, 551: 232182-90.

[17] Chang Weida, Li Gang, Li Qiuping, et al. Effects of carbonates on explosion characteristics of lithium-ion batteries venting gases[J]. Fuel, 2025, 381: 133523-33.

[18] 张乾钧, 张明杰, 杨凯, 等. 不同激源条件下磷酸铁锂电池热失控产气特性研究[J]. 消防科学与技术, 2024, 43(10): 1349-54.

[19] Rudramani Tiwari, Devendra Kumar, Dipendra Kumar Verma, et al. Fundamental chemical and physical properties of electrolytes in energy storage devices: A review[J]. Journal of Energy Storage, 2024, 81: 110361-97.

[20] 李红生, 李慧, 萧厚桂, 等. 石墨负极和硅碳负极软包动力电池热失控特性研究[J]. 电源技术, 2023, 47 (11): 1404-08.

[21] Tao Xin, Wang Qilin, Guo Wenqi, et al. Influence of aviation low-pressure environment on the aging behavior and thermal safety of lithium titanate batteries[J]. Journal of Energy Storage, 2025, 112: 115488-503.

[22] 格桑多吉, 谢永亮. 不同正极材料锂电池火灾危害性分析[J]. 制冷与空调(四川), 2023, 37 (01): 52-9.

[23] Wang Bo, Zhang Feilong, Zhou Xinan, et al. Which of the nickel-rich NCM and NCA is structurally superior as a cathode material for lithium-ion batteries?[J]. Journal of Materials Chemistry A, 2021, 9(23): 13540-51.

[24] 张青松, 牛江昊, 赵洋. 不同正极材料锂离子电池热失控产物研究[J]. 消防科学与技术, 2023, 42 (05): 598-602.

[25] Wei Gang, Huang Ranjun, Zhang Guangxu, et al. A comprehensive insight into the thermal runaway issues in the view of lithium-ion battery intrinsic safety performance and venting gas explosion hazards[J]. Applied Energy, 2023, 349: 121651-66.

[26] Schöberl Jan, Ank Manuel, Schreiber Markus, et al. Thermal runaway propagation in automotive lithium-ion batteries with NMC-811 and LFP cathodes: Safety requirements and impact on system integration[J]. eTransportation, 2024, 19: 100305-22.

[27] Jia Zhuangzhuang, Qin Peng, Li Zheng, et al. Analysis of gas release during the process of thermal runaway of lithium-ion batteries with three different cathode materials[J]. Journal of Energy Storage, 2022, 50: 104302-14.

[28] Cheng Zhixiang, Min Yuanyuan, Peng Qin, et al. A distributed thermal-pressure coupling model of large-format lithium iron phosphate battery thermal runaway[J]. Applied Energy, 2025, 378: 124875-89.

[29] Rong Da, Zhang Guodong, Sun Qiang, et al. Experimental study on gas production characteristics of electrolyte of lithium-ion battery under pyrolysis conditions[J]. Journal of Energy Storage, 2023, 74: 109367-78.

[30] Li Honggang, Zhou Dian, Zhang Meihe, et al. Multi-field interpretation of internal short circuit and thermal runaway behavior for lithium-ion batteries under mechanical abuse[J]. Energy, 2023, 263: 126027-39.

[31] Grégoire Claire M., Cooper Sean P., Khan-Ghauri Maryam, et al. Pyrolysis study of dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate using shock-tube spectroscopic CO measurements and chemical kinetics investigation[J]. Combustion and Flame, 2023, 249: 112594-608.

[32] Grégoire Claire M., Petersen Eric L., Mathieu Olivie. Shock-tube CO measurements during the pyrolysis of ethylene carbonate[J]. Combustion and Flame, 2023, 257: 113019-27.

[33] Sheng Gong, Yumin Zhang, Zhenliang Mu, et al. A predictive machine learning force-field framework for liquid electrolyte development[J]. Nature Machine Intelligence, 2025, 7(4): 1-10.

[34] 刘志浩, 杜童, 李瑞瑞, 等. 宽温域、高电压、安全无EC电解液研究进展[J]. 储能科学与技术, 2023, 12(08): 2504-25.

[35] Li Yao, Zhao PengCheng, Shen Boxiong. A review of new technologies for lithium-ion battery treatment[J]. The Science of the total environment, 2024, 951: 175459-83.

[36] 张亚军, 王贺武, 冯旭宁, 等. 动力锂离子电池热失控燃烧特性研究进展[J]. 机械工程学报, 2019, 55(20): 17-27.

[37] 杨娟, 牛江昊, 魏陟珣, 等. 航空动力锂离子电池热失控行为与气体燃爆危险性研究进展[J]. 爆炸与冲击, 2025, 45(02): 87-104.

[38] DiDomizio Matthew J., Ibrahi mLi Vusal, Weckman Elizabeth J. Testing of liquids with the cone calorimeter[J]. Fire Safety Journal, 2021, 126: 103449-64.

[39] Ping Ping, Kong Depeng, Zhang Jiaqing, et al. Characterization of behaviour and hazards of fire and deflagration for high-energy Li-ion cells by over-heating[J]. Journal of Power Sources, 2018, 398: 55-66.

[40] Chen Mingyi, Xiao Ru, Zhao Luyao, et al. Experimental study on the combustion characteristics of carbonate solvents under different thermal radiation by cone calorimeter[J]. Applied Thermal Engineering, 2022, 211: 118428-43.

[41] Ping Ping, Wang Qingsong, Huang Peifeng, et al. Study of the fire behavior of high-energy lithium-ion batteries with full-scale burning test[J]. Journal of Power Sources, 2015, 285: 80-9.

[42] Mao Binbin, Chen Haodong, Jiang Lin, et al. Refined study on lithium ion battery combustion in open space and a combustion chamber[J]. Process Safety and Environmental Protection, 2020, 139: 133-46.

[43] Chen Haodong, Buston E.H. Jonathan, Gill Jason, et al. An experimental study on thermal runaway characteristics of lithium-ion batteries with high specific energy and prediction of heat release rate[J]. Journal of Power Sources, 2020, 472: 228585-95.

[44] 张青松, 翟祺悦, 赵子恒. 受限空间锂离子电池热解气体燃烧释能研究 [J]. 消防科学与技术, 2021, 40(12): 1711-14.

[45] Chen Shichen, Wang Zhirong, Liu Jiahao. A semi-quantitative analysis of infrared characteristics of thermal runaway ejection behaviour of lithium-ion battery[J]. Journal of Energy Storage, 2023, 71: 108166-76.

[46] Kong Depeng, Wang Gongquan, Ping Ping, et al. A coupled conjugate heat transfer and CFD model for the thermal runaway evolution and jet fire of 18650 lithium-ion battery under thermal abuse[J]. eTransportation, 2022, 12: 100157-207.

[47] Wang Zhi, Zhao Qingjie, Yin Bo, et al. Influence of longitudinal wind on thermal runaway and fire behaviors of 18650 lithium-ion batteries in a restricted channel[J]. Journal of Power Sources, 2023, 567: 232974-82.

[48] 徐成善, 李涵, 王炎, 等. 双层储能电池火蔓延特性及触发过程能量传递机制研究[J]. 储能科学与技术, 2025: 1-15.

[49] 杨泽伟. 不同环境压力下锂离子电池电解液火灾烟雾特性研究[D]. 合肥:科学技术大学, 2023.

[50] Mei Jie, Liu Hong, Chen Mingyi. Experimental study on combustion behavior of mixed carbonate solvents and separator used in lithium-ion batteries[J]. Journal of Thermal Analysis and Calorimetry: An International Forum for Thermal Studies, 2020, 139(6): 1255-64.

[51] Liu Changcheng, Zheng Kaihui, Zhou Yong, et al. Experimental thermal hazard investigation of pressure and EC/PC/EMC mass ratio on electrolyte[J]. Energies, 2021, 14 (9): 2511-30.

[52] Deng Jun, Yang Wen, Zhang Yanni, et al. Combustion characteristics and fire risk assessment of EC/DMC/EMC electrolytes for Li-ion batteries[J]. Journal of Energy Storage, 2025, 110: 115308-19.

[53] Pushparaj Robert Ilango, Kumar Ashish Ranjan, Xu Guang. Enhancing safety in lithium-ion batteries with additive-based liquid electrolytes: A critical review[J]. Journal of Energy Storage, 2023, 72: 108493-508.

[54] 张林, 汪书苹, 许佳佳, 等. 不同灭火剂抑制锂离子电池热失控传播试验研究[J]. 安全与环境学报, 2024, 24(07): 2585-92.

[55] Kainat Sana, Anwer Junaid, Hamid Abdul, et al. Electrolytes in lithium-ion batteries: advancements in the era of Twenties (2020’s)[J]. Materials Chemistry and Physics, 2024, 313: 128796-809.

[56] Gao Zhenhai, Rao Shun, Zhang Tianyao, et al. Design strategies of flame-retardant additives for lithium ion electrolyte[J]. Journal of Electrochemical Energy Conversion and Storage, 2022, 19(3): 030910-20.

[57] 张振环, 马航, 郭洪, 等. 磷系新能源电池材料研究进展与展望[J]. 精细化工, 2025: 1-12.

[58] Kim Taehoon. An artificial cathode-electrolyte interphase with flame retardant capability enabled by an organophosphorus compound for lithium metal batteries[J]. Journal of Materials Chemistry A, 2024, 12 (5): 2902-15.

[59] 刘焕蓉, 邹稼轩, 吕源, 等. 锂离子电池阻燃电解液添加剂研究进展[J]. 能源研究与利用, 2024, (01): 26-32

[60] Kihun An, Yen Hai Thi Tran, Sehyun Kwak, et al. Design of fire-resistant liquid electrolyte formulation for safe and long-cycled lithium-ion batteries[J]. Advanced Functional Materials, 2021, 31 (48): 2106102-11.

[61] 廖灿. 含磷阻燃锂电隔膜和电解液的设计及热安全性能与机理研究[D]. 合肥:中国科学技术大学, 2023.

[62] Wu Zhihao, Wu Yao, Tang Yan, et al. Evaluation of composite flame-retardant electrolyte additives improvement on the safety performance of lithium-ion batteries[J]. Process Safety and Environmental Protection, 2023, 169: 285-92.

[63] 张鹏. 锂离子电池阻燃电解液性质的研究[D]. 哈尔滨:哈尔滨工程大学, 2023.

[64] Yusuf Abdulmalik, Sai Avvaru Venkata, De la Vega Jimena, et al. Unveiling the structure, chemistry, and formation mechanism of an in-situ phosphazene flame retardant-derived interphase layer in LiFePO4 cathode[J]. Chemical Engineering Journal, 2023, 455: 140678-89.

[65] Liu Changcheng, Zhao Yuliang, Shibiao Qiao, et al. Effect of flame retardant hexafluorocyclotriphosphazene on combustion characteristics of electrolyte for lithium-ion batteries[J]. Case Studies in Thermal Engineering, 2024, 58: 104383-96.

[66] Ye Jiachi, Lai Yenwen, Huang Xinhao, et al. Development of the electrolyte in lithium-ion battery: a concise review on its thermal hazards[J]. Journal of Thermal Analysis and Calorimetry, 2024: 1-20.

[67] Wu Minghong, Shiheng Han, Shumei Liu, et al. Fire-safe polymer electrolyte strategies for lithium batteries[J]. Energy Storage Materials, 2024, 66: 103174-203.

[68] Chen Mingyi, Mei Jie, Wang Shijun, et al. Comparative studies on the combustion characters of the lithium-ion battery electrolytes with composite flame-retardant additives[J]. Journal of Energy Storage, 2022, 47: 103642-52.

[69] 尹继辉. 阻燃添加剂DMMP对电解液着火燃烧特性影响实验研究[D]. 成都:西南交通大学, 2021.

[70] 潘跃. TCPP和DMMP对锂电池电解液可燃性及电化学性能影响[D]. 成都:西南交通大学, 2023.

[71] Natarajan Karthic, Wu Shehuang, Wu Yishiuan, et al. Passive borate-based salt as electrolyte alternative for zero-excess lithium metal battery[J]. Journal of Energy Storage, 2025, 109: 115165-76.

[72] Hosein Sadeghi, Francesco Restuccia. Kinetic modelling of thermal decomposition in lithium-ion battery components during thermal runaway[J]. Journal of Power Sources, 2025, 629: 236026-43.

[73] 黄铭浩, 王跃达, 侯倩, 等. 锂金属电池电解液的理论计算模拟研究[J]. 化学进展, 2023, 35 (12): 1847-63.

[74] Baptiste Salomez, Sylvie Grugeon, Pierre Tran Van, et al. Counteracting thermal degradation of LiPF6-based electrolyte with additives or lithium salts: A gas analysis revealing the impact of NMC[J]. Journal of Power Sources, 2024, 613: 234901-10.

[75] 石敏, 蒋鹏杰, 徐琛, 等. 抑制锂金属负极枝晶的电解液调控策略[J].储能科学与技术, 2024, 13 (05): 1620-34.

[76] 张之钧. 基于离子液体的安全高效电解液的制备及其在锂电池中的应用[D]. 杭州:浙江大学, 2020.

[77] Huang Xinhao, Chung Yihung, Guo Gansyue, et al. Investigating the thermal stability and explosion characteristics of electrolytes composed of different ratios of carbonate organic solvents[J]. Journal of Loss Prevention in the Process Industries, 2025, 94: 105509-18.

[78] Beata Kurc, Xymena Gross, Ewelina Rudnicka, et al. Thermal studies of lithium-ion cells: ensuring safe and efficient energy storage[J]. Energies, 2024, 17 (9): 1993-2010.

[79] Khajeh Talkhoncheh Mahdi. Development and application of a reaxff reactive force field for solid electrolyte interphase study in silicon based Li-ion batteries[D]. 2024.

[80] Shi Zhihao, Zhou Jian, Li Runjie. Application of reaction force field molecular dynamics in lithium batteries[J]. Frontiers in Chemistry, 2021, 8: 634379-84.

[81] Han Kee Sung, Lee Mal Soon, Kim Namhyung, et al. Lithium-ion hopping weakens thermal stability of LiPF6 carbonate electrolytes[J]. Cell Reports Physical Science, 2024, 5 (1): 101768-83.

[82] Saqib NajmusGanim, Chase M. Shelton, Austin E. Porter, et al. On the decomposition of carbonate-based lithium-ion battery electrolytes studied using operando infrared spectroscopy[J]. Journal of The Electrochemical Society, 2018, 165 (16): A4051-9.

[83] Wu ZhiHao, Huang AnChi, Tang Yan, et al. Thermal effect and mechanism analysis of flame-retardant modified polymer electrolyte for lithium-ion battery[J]. Polymers, 2021, 13 (11): 1675-87.

[84] Gnanaraj J.S., Zinigrad E., Asraf L., et al. The use of accelerating rate calorimetry (ARC) for the study of the thermal reactions of Li-ion battery electrolyte solutions[J]. Journal of Power Sources, 2003, 119: 794-8.

[85] Wu Lijun, Zhang Fushen, Zhang Zhiyuan, et al. Conversion and fate of waste Li-ion battery electrolyte in a two-stage thermal treatment process[J]. Waste Management, 2024, 187: 1-10.

[86] 曹乾坤, 王茜, 王睿. 玉米秸秆和海藻共热解特性研究[J]. 新能源进展, 2024, 12 (01): 98-105.

[87] Ong Mitchell T, Verners Osvalds, Draeger Erik W, et al. Lithium ion solvation and diffusion in bulk organic electrolytes from first-principles and classical reactive molecular dynamics[J]. The Journal of Physical Chemistry. B, 2015, 119 (4): 1535-45.

[88] 彭琳珊, 巫湘坤, 贾梦敏, 等. 溶剂化能调控实现低浓度锂电池电解液[J].科学通报, 2022, 67 (33): 3885-8.

[89] 陈浩舟, 邹大中, 李勋, 等. 锂离子电池正极材料热稳定性研究[J]. 稀有金属与硬质合金, 2021, 49 (05): 47-52.

[90] Wang Qingsong, Sun Jinhua, Chen Chunhua, et al. Thermal stability of LiPF6/EC/DMC/EMC electrolyte for lithium ion batteries[J]. Rare Metals, 2006: 94-9.

[91] 米雪, 许海青, 刘春力, 等. 退役锂电池电解液高效热解气化与选择性提锂研究[J]. 中南大学学报 (自然科学版), 2023, 54 (02): 694-701.

[92] 任宁, 王昉, 张建军, 等. 热分析动力学研究方法的新进展[J]. 物理化学学报, 2020, 36 (06): 12-8.

[93] 欧振宇, 韩俊伟, 焦芬, 等. 废旧PVC电线热重分析及热解试验研究[J]. 甘肃科学学报, 2023, 35 (02): 48-54.

[94] Lee Yongho, Kim Sang-Ok, Mun Junyoung, et al. Influence of salt, solvents, and additives on the thermal stability of delithiated cathodes in lithium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2017, 807: 174-80.

[95] 张晓宇, 贾旭宏, 丁思婕, 等. 低气压下民航客机机舱壁板材料的热解动力学[J]. 复合材料学报, 2024, 41 (04): 1840-51.

[96] 郝朝龙. 基于拉曼光谱的锂离子电池热失控气体在线检测方法研究[D]. 天津:中国民航大学, 2022.

[97] 苏彬, 董浩伟, 罗振敏, 等. 气粉两相体系爆炸动力学特性及机理研究进展[J]. 化工学报, 2024, 75 (06): 2109-22.

[98] Bugryniec Peter J., Vernuccio Sergio, Brown Solomon F. Towards a micro-kinetic model of Li-ion battery thermal runaway - Reaction network analysis of dimethyl carbonate thermal decomposition[J]. Journal of Power Sources, 2023, 580: 233394-406.

[99] Wen Minyue, Wang Sheng, Wang Jiawen, et al. Optimization of conductive cyclized polyacrylonitrile content to enhance the structural stability of single-crystal LiNi0.8Co0.1 mn0.1O2 cathode materials for lithium-ion batteries[J]. Carbon Letters, 2025: 1-6.

[100] 刘娜, 张锟, 梁晓嫱, 等. 高比能锂离子电池安全性及控制策略研究进展[J]. 化工进展, 2025: 1-20.

[101] Zhao Huajun, Hu Shiguang, Fan Yanchen, et al. Significance of electrolyte additive molecule structure in stabilizing interphase in LiNi0.8Co0.1Mn0.1O2 / artificial graphite pouch cells at high temperature[J]. Energy Storage Materials, 2024, 65: 103151-65.

[102] 杨梦洁, 杨爱军, 叶奕君, 等. 基于气体分析的锂离子电池热失控早期预警研究进展[J]. 电工技术学报, 2023, 38(17): 4507-38.

[103] 叶锦昊, 侯军辉, 张正国, 等. 100Ah磷酸铁锂软包电池的热失控特性及产气行为[J]. 储能科学与技术, 2025: 1-12.

[104] Zhang Wenxia, Chen Xiao, Chen Qinpei, et al. Combustion calorimetry of carbonate electrolytes used in lithium ion batteries[J]. Journal of Fire Sciences, 2015, 33 (1): 22-36.

[105] Willstrand Ola, Pushp Mohit, Ingason Haukur, et al. Uncertainties in the use of oxygen consumption calorimetry for heat release measurements in lithium-ion battery fires[J]. Fire Safety Journal, 2024, 143: 104078-89.

[106] 于志金, 杨淞, 谷雨, 等. 松散煤体内液态二氧化碳相变换热试验研究[J]. 中国安全科学学报, 2020, 30 (06): 98-105.

[107] Minuk Kim, Hyo Min You, Jaeyoung Jeon, et al. Thermal decomposition mechanism of lithium methyl carbonate in solid electrolyte interphase layer of lithium-ion battery[J]. Energy Storage Materials, 2024, 70: 103517-29.

[108] Jia Teng, Zhang Ying, Ma Chuyuan, et al. The early warning for thermal runaway of lithium-ion batteries based on internal and external temperature model[J]. Journal of Energy Storage, 2024, 83: 110690-701.

[109] 杨凯心. 形状适应性相变材料的制备及其在电池热管理中的应用[D]. 广州:华南理工大学, 2023.

[110] 范文杰. 18650锂离子电池在机械滥用下的安全性能研究[D]. 太原:太原理工大学, 2019.

[111] 周志钻. 开路和并联磷酸铁锂电池热失控触发机理及传播特性研究[D]. 合肥:中国科学技术大学, 2024.

[112] Yang Juan, Tong Jiacheng, Yang Yu, et al. Characteristics of thermal runaway and propagation for 18650 lithium batteries in top-confined space[J]. International Journal of Heat and Mass Transfer, 2025, 241: 126663-74.

[113] Hobold Gustavo M., Khurram Aliza, Gallant Betar M. Operando gas monitoring of solid electrolyte interphase reactions on lithium[J]. Chemistry of Materials, 2020, 32 (6): 2341-52.

[114] Jin Yang, Liu Kai, Lang Jialiang, et al. High-energy-density solid-electrolyte-based liquid Li-S and Li-Se batteries[J]. Joule, 2020, 4(1): 262-74.

[115] Zhang Qingsong, Liu Tiantian, Wang Qiong. Experimental study on the influence of different heating methods on thermal runaway of lithium-ion battery[J]. Journal of Energy Storage, 2021, 42: 103063-72.

[116] 汪逸峰. 高性能二次电池的电解液设计及界面研究[D]. 长春:吉林大学, 2024.

[117] 孙国宸. 有机电解质的电化学动力学模型与电化学窗口研究[D]. 合肥:中国科学院大学(中国科学院物理研究所), 2023.

[118] 黄宗侯. 锂离子电池热失控传播机制及基于液氮的阻隔抑制研究[D]. 合肥:中国科学技术大学, 2023.

[119] 邹凯予. 大幅面软包811三元锂电池热失控行为及特性研究[D]. 合肥:中国科学技术大学, 2022.

[120] 厉运杰, 张光雨, 祝维文, 等. 基于壅塞流的动力电池防爆阀泄压特性的动态仿真[J]. 储能科学与技术, 2023, 12 (03): 960-7.

[121] 赖照丹. 锂离子电池热失控产热-喷气耦合机制与热蔓延特性研究[D]. 广州:华南理工大学, 2023.

[122] 曹隽达. 凝胶态锂离子电池热失控机制及火灾危险性评价[D]. 合肥:中国科学技术大学, 2021.

[123] 倪延强, 于全蕾, 赵震, 等. 基于层次分析法的轨道车辆车体用碳纤维复合材料火灾危险性综合评价[J]. 工程塑料应用, 2023, 51(12): 125-30.

[124] Wang Gongquan, Kong Depeng, Ping Ping, et al. Revealing particle venting of lithium-ion batteries during thermal runaway: A multi-scale model toward multiphase process[J]. eTransportation, 2023, 16: 100237-57.

[125] Liu Changcheng, Shen Wanyu, Liu Xiaozhao, et al. Research on thermal runaway process of 18650 cylindrical lithium-ion batteries with different cathodes using cone calorimetry[J]. Journal of Energy Storage, 2023, 64: 107175-85.

[126] Qiao Shibiao, Meng Xiaokai, Cao Weiguo, et al. Effect of lithium salts LiPF6 and LiBF4 on combustion properties of electrolyte with EC/PC/EMC under different pressures[J]. Case Studies in Thermal Engineering, 2022, 30: 101741-54.

[127] Huang Junqiao, Shen Zhichuan, Jinhan Li, et al. Molecular-level designed gel polymer electrolyte with ultrahigh lithium transference number for high-performance lithium metal batteries[J]. Chemical Engineering Journal, 2025, 504: 158671-84.

[128] Rappsilber Tim, Yusfi Nawar, Krüger Simone, et al. Meta-analysis of heat release and smoke gas emission during thermal runaway of lithium-ion batteries[J]. Journal of Energy Storage, 2023, 60: 106579-94.

[129] Deng Jun, Yang Wen, Zhang Yanni, et al. Experimental study on hot surface ignition and flame characteristic parameters of lubricating oil[J]. Journal of Thermal Analysis and Calorimetry, 2024, 149 (18): 10213-25.

[130] 邓军, 周廷斌, 康付如, 等. 纳米NiO对硅橡胶泡沫阻燃抑烟及热稳定性的影响[J]. 中国安全生产科学技术, 2023, 19 (08): 5-11.

[131] 袁依琳, 张晓磊, 胡隆华. 低压条件下线性浮力主控湍流扩散射流火焰行为实验研究[J]. 工程热物理学报, 2024, 45(09): 2831-8.

[132] 张芙魁. 高镍正极锂离子动力电池电性能与热安全性研究[D]. 重庆:重庆交通大学, 2023.

[133] 梅杰. 锂离子电池组件燃烧特性和电解液阻燃改进方法研究[D]. 镇江:江苏大学, 2020.

[134] 刘术敬, 朱鹏, 汪东东, 等. 基于锥形量热仪的锂离子电池电解液火灾危险性研究[J]. 消防科学与技术, 2020, 39 (10): 1459-61.

[135] Amandine Lecocq, Guy Marlair, Delphine Tigreat, et al. Safety-focused analysis of solvents used in electrolytes for large scale lithium-ion batteries[C]. Batteries, 2013.

[136] Wang Xuehui, Wang Wenhe, Chen Qinpei, et al. Experimental study on combustion and yield characteristics of dimethyl carbonate/ n -heptane blends in the cone calorimeter[J]. Journal of Thermal Analysis and Calorimetry, 2020, 143 (4): 1-8.

[137] Hu Yuhang, Cheng Siyuan, Liu Pengjie, et al. Experimental study on combustion characteristics of electrolytes and slurries for semi-solid Lithium-ion flow battery[J]. Fire Technology, 2023, 59 (3): 1199-220.

[138] Gebrekidan Gebresilassie Eshetu, Jean-Pierre Bertrand, Amandine Lecocq, et al. Fire behavior of carbonates-based electrolytes used in Li-ion rechargeable batteries with a focus on the role of the LiPF6 and LiFSI salts[J]. Journal of Power Sources, 2014, 269: 804-11.

[139] Huang Que, Chen Huimin, Zheng Kaihui, et al. Comparison of oxygen consumption calorimetry and thermochemistry theory on quantitative analysis of electrolyte combustion characteristics[J]. Case Studies in Thermal Engineering, 2021, 26: 101085-99.

[140] 毛亚岐. 基于火灾危险性分析的客车防火开发体系研究[D]. 合肥:中国科学技术大学, 2019.

[141] Hynynen Jonna, Willstrand Ola, Blomqvist Per, et al. Analysis of combustion gases from large-scale electric vehicle fire tests[J]. Fire Safety Journal, 2023, 139: 103829-37.

[142] Chen Jian, Song Ye, Yu Yueyang, et al. The influence of a plate obstacle on the burning behavior of small scale pool fires: An experimental study[J]. Energy, 2022, 254: 124223-34.

[143] 刘春祥, 刘声涛, 黄萍, 等. 边缘高度影响下油池火燃烧行为特性实验[J]. 实验室研究与探索, 2023, 42 (08): 62-65.

[144] 李玉玺, 蒋新生, 余彬彬, 等. 不同几何尺寸和泄漏量的航空煤油池火燃烧特性研究[J]. 当代化工, 2022, 51 (05): 1038-48.

[145] Chen Yuhang, Fang Jun Zhang Xiaolei, et al. Pool fire dynamics: Principles, models and recent advances[J]. Progress in Energy and Combustion Science, 2023, 95:101070-124.

[146] Benjamin D. Ditch, John L. de Ris, Thomas K. Blanchat, et al. Pool fires-An empirical correlation[J]. Combustion and Flame, 2013, 160 (12): 2964-74.

[147] 林圣辉. 柴油及柴油混合燃料的火蔓延特性研究[D]. 合肥:中国科学技术大学, 2018.

[148] Zhao Jinlong, Zhang Xiang, Zhang Jianping, et al. Experimental study on the flame length and burning behaviors of pool fires with different ullage heights[J]. Energy, 2022, 246: 123397-407.

[149] Fu Yangyang, Lu Song, Shi Long, et al. Combustion characteristics of electrolyte pool fires for lithium ion batteries[J]. Journal of The Electrochemical Society, 2016, 163 (9): 2022-8.

[150] Hu Yuhang, Cheng Siyuan, Liu Pengjie, et al. Experimental study on combustion characteristics of electrolytes and slurries for semi-solid lithium-ion flow battery[J]. Fire Technology, 2023, 59 (3): 1199-220.

[151] Samiran Mandal, Dhanadeep Dutta, Sk Irsad Ali, et al. Role of vacancy type defects on microstructural and optoelectronic property of CdS wurtzite nanoparticles[J]. Journal of Molecular Structure, 2024, 1304: 137734-44.

[152] Ahmed Mohamed M., Trouvé Arnaud. Large eddy simulation of the unstable flame structure and gas-to-liquid thermal feedback in a medium-scale methanol pool fire[J]. Combustion and Flame, 2021, 225: 237-54.

[153] Wang Jinhui, Zhang Ruiqing Wang Yongchang, et al. Experimental study on combustion characteristics of pool fires in a sealed environment[J]. Energy, 2023, 283: 128497-508.

[154] 陈健. 舱室压力对池火燃烧特性的影响研究[D]. 合肥:中国科学技术大学, 2020.

[155] Shi Xueqiang, Zhang Yutao, Chen Xiaokun, et al. The response of an ethanol pool fire to transverse acoustic waves[J]. Fire Safety Journal, 2021, 125: 103416-30.

[156] Ju Xiaoyu, Mizuno Mikio, Matsuoka Tsuneyoshi, et al. Effect of circulation on flame heights over liquid fuel pools[J]. Combustion and Flame, 2022, 246: 112435-45.

[157] Zhang Xiaolei, Fang Xu, Miao Yanli, et al. Experimental study on pulsation frequency of free-, wall- and corner buoyant turbulent diffusion flames[J]. Fuel, 2020, 276: 118022-30.

[158] 代尚沛. 低压环境下典型液体燃料蒸发特性及燃烧特性研究[D]. 广汉:中国民用航空飞行学院, 2024.

[159] Zhang Xiang, Zhao Jinlong, Li Xinjiang, et al. Experimental investigation of effects of ullage height on the burning rate and heat feedback in pool fires[J]. Case Studies in Thermal Engineering, 2024, 62: 105175-87.

[160] Shi Yangjin, Li Bo, Wu Gexin, et al. Experimental analysis of combustion intensity of irregular multiple pool fires based on the characteristics of flame merging, flame height, and mass loss rate[J]. Fuel, 2025, 380: 133045-60.

[161] Ge Shaokun, Zhou Fubao, Ni Ya, et al. Experimental study and new-proposed characterization of burning rate and flame geometry of gasoline pool fires with different aspect ratios[J]. Energy, 2024, 298: 131336-48.

[162] Heskestad Gunnar. Peak gas velocities and flame heights of buoyancy-controlled turbulent diffusion flames[C]. Symposium (International) on Combustion. Elsevier, 1981, 18 (1): 951-60.

[163] 陈龙, 张振东, 盛雷, 等. 锂离子电池模组热失控传播实验研究[J]. 上海理工大学学报, 2024, 46 (05): 525-532.

[164] Zou Kaiyu, Li Qian, Lu Shouxiang. An experimental study on thermal runaway and fire behavior of large-format LiNi0.8Co0.1Mn0.1O2 pouch power cell[J]. Journal of Energy Storage, 2022, 49: 104138-48.

[165] Dai Xinyi, Ping Ping, Depeng Kong, et al. Heat transfer enhanced inorganic phase change material compositing carbon nanotubes for battery thermal management and thermal runaway propagation mitigation[J]. Journal of Energy Chemistry, 2024, 89 (02): 226-38.

[166] 闫航, 赵倩雯, 毕煜, 等. 硼酚醛/硅橡胶基绝热材料热解动力学研究[J]. 复合材料学报, 2025: 1-13.

[167] Takahashi Shintaro, Kanayama Keisuke, Morikura Shota, et al. Study on oxidation and pyrolysis of carbonate esters using a micro flow reactor with a controlled temperature profile. Part II: Chemical kinetic modeling of ethyl methyl carbonate[J]. Combustion and Flame, 2022, 238: 111878-88.

[168] Feng Guangyuan, Yang Qing, Liu Zechang, et al. Study of combustion characteristics of linear carbonates (DMC/DEC/EMC) and cyclic carbonate (EC): Laminar burning velocity and chemical reaction kinetics modeling[J]. Fuel, 2024, 363: 130881-900.

[169] 井艺璇, 王占东. 甲基磷酸二甲酯(DMMP)的氧化实验和机理研究[J]. 火灾科学, 2023, 32(04): 225-35.

[170] Chen Zhiqiang, Xu Wu, Jiang Yong. Investigation of the effect of dimethyl methylphosphonate (DMMP) on flame extinction limit of lithium-ion battery electrolyte solvents[J]. Fuel, 2020, 270: 117423-31.

[171] 龚相奎. 阻燃剂对电解液蒸气爆炸抑制作用研究[D]. 重庆: 重庆交通大学, 2024.

[172] 陈烽. 新型磷氮阻燃涂层的构筑及其在涤、棉织物上的应用[D]. 北京:北京化工大学, 2024.

[173] 陈炜乐. 矿用输送带燃烧特性及烟气发展态势预测研究[D]. 西安:西安科技大学, 2023.

[174] Ge Shanhai, Sasaki Tatsuro, Gupta Nitesh, et al. Quantification of lithium battery fires in internal short circuit[J]. ACS Energy Letters, 2024, 9 (12): 5747-55.

[175] 殷璐璐. 碳酸甲乙酯预混层流火焰传播特性及其火焰抑制研究[D]. 合肥:中国科学技术大学, 2024.

[176] 李小曼. 碳酸二甲酯层流燃烧特性及其火焰抑制研究[D]. 合肥:中国科学技术大学, 2021.

[177] Luo Qiankun, Zheng Ligang, Wang Jian, et al. Investigation of chemical kinetic models for electrolyte solvent vapors released from thermal runaway lithium-ion batteries[J]. Journal of Energy Storage, 2025, 107: 114932-47.

[178] Zhang Jianqi, Li Fangzhou, Yu Lin, et al. Research on the explosive characteristics and suppression mechanisms of gas generation during thermal runaway of batteries in a charged state[J]. Chemical Engineering Journal, 2025, 505: 159699-740.

[179] 李岩. 自由基氢提取与氢迁移反应速率常数的高精度计算研究[D]. 北京:清华大学, 2023.

[180] Fan Rujia, Wang Zhirong, Lu Yawei, et al. Numerical analysis on the combustion characteristic of lithium-ion battery vent gases and the suppression effect[J]. Fuel, 2022, 330: 125450-61.

[181] 周佳敏.铁基金属有机框架/氧化铝对硅橡胶泡沫阻燃抑烟性能影响研究[D]. 西安:西安科技大学, 2023.

[182] Deng Jun, Hu Zhen, Chen Jian, et al. The enhanced cooling effect and critical control capability of nanofluids on suppressing thermal runaway of lithium-ion batteries[J]. Journal of Energy Storage, 2025, 106114733-42.

中图分类号:

 X932    

开放日期:

 2029-06-25    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式