论文中文题名: | 超低轮廓铜箔微细粗化处理组织及性能研究 |
姓名: | |
学号: | 20211025015 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 0805 |
学科名称: | 工学 - 材料科学与工程 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2023 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 电解铜箔 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2023-06-19 |
论文答辩日期: | 2023-06-03 |
论文外文题名: | Microstructure and properties of very low profile copper foil after micro roughening treatment |
论文中文关键词: | |
论文外文关键词: | Very low profile copper foil ; Micro coarsening treatment ; Organic additives ; Roughness ; Peel strength |
论文中文摘要: |
随着第五代移动通信技术(5th Generation Mobile Communication Technology,5G)的到来,全球超低轮廓(HVLP)铜箔的需求量持续增长。为了获得性能良好并适用于高频高速电路用铜箔,需要调和低轮廓和高抗剥离性能之间的矛盾。目前我国仅有几家公司拥有相关技术,但是产品稳定性等方面与国外先进企业相比还存在较大差距,产品成熟度也不高。添加剂是影响铜箔质量的关键因素,因此寻求更佳电解添加剂复配技术以改善电解工艺条件,是取代进口铜箔的重要途经。本文模拟企业后处理的工艺参数,探索不同添加剂体系及其作用机制,从而获得性能优异的5G通讯用铜箔的添加剂配方。 本文的主要研究内容及结论如下: 采用“低铜高酸”基础电解液(Cu2+浓度:10 g/L、浓H2SO4浓度:110 g/L),研究溶液中引入单一聚二硫二丙烷磺酸钠(SPS)、羟乙基纤维素(HEC)、明胶和苯基二硫丙烷磺酸钠(BSP)四种有机添加剂对铜箔粗化层组织及性能的影响,并研究其对铜电沉积过程电化学行为的影响。结果表明,SPS可促进铜沉积,细化粗化层铜颗粒,使铜箔剥离强度提高至0.49 N/mm;HEC会抑制铜箔活性点位的铜沉积,但其提高剥离强度的效果较差;明胶可提高铜形核密度,在提高剥离强度(0.48 N/mm)的同时也降低了表面粗糙度(1.58 μm)。此外,通过对比单一添加剂性能,BSP提高铜箔剥离强度的效果较明显,在浓度为20 mg/L时达到最大值0.52 N/mm。 将四种添加剂以促进剂和抑制剂进行二元复配,组成SPS与HEC(称为SH)、SPS与明胶(称为SG)、BSP与HEC(称为BH)及BSP与明胶(称为BG)组合,研究不同添加剂组合对铜箔粗化层形貌及性能的影响,同时分析双组分添加剂对铜电沉积行为的影响。结果表明,SH和SG添加剂体系均具有去极化作用,但相比单一SPS作用减弱,可知SPS和HEC或明胶存在拮抗作用,抑制剂的加入降低了SPS的促进作用;其中SG改善铜箔剥离强度和整平性的效果最优;而从BSP双组份复合体系结果可知明胶或HEC的加入增强了添加剂体系的去极化作用,说明明胶或HEC与BSP存在协同作用。 研究了新型添加剂噻唑啉基二硫代丙烷磺酸钠(SH110)对铜箔粗化层组织及性能的影响,并研究了铜电沉积行为。结果表明,SH110可在溶液中分解出促进剂(MPS)和抑制剂片段(H1),二者协同使其发挥出与复合添加剂相同的效果。引入SH110后,铜箔的粗糙度最低可至1.6 μm,剥离强度也在SH110浓度为20 mg/L时出现较明显的提升(0.55 N/mm,提升152.3%),可达到双组份复合的效果,且浓度较二元添加剂更易调控。 通过正交实验探索新的多组份添加剂配方,研究了SPS+HEC+明胶(SHG)、BSP+HEC+明胶(BHG)及BSP+SPS+HEC+明胶(BSHG)组合对铜箔粗化层形貌及性能的影响。获得了最佳配方为BSHG-5(30 mg/L BSP,60 mg/LSPS,3 mg/LHEC,40 mg/L 明胶),此复合添加剂体系下沉积的粗化层铜颗粒均匀细小,且剥离强度最大(0.70 N/mm),该体系中 BSP对剥离强度影响较大,而SPS对粗糙度数值影响较大。 |
论文外文摘要: |
With the arrival of the 5th Generation Mobile Communication Technology (5G), the global demand for very low profile (HVLP) copper foil continues to grow. It is vital to resolve the conflict between low profile and strong peel resistance in order to produce copper foil that performs well and is appropriate for high frequency and high speed circuits. Only a few Chinese businesses currently possess the necessary technology, but when compared to overseas sophisticated businesses, there is still a huge gap in terms of product stability, and the maturity of the products is low. Additives are a key factor affecting the quality of copper foil, so seeking better electrolytic additive compounding technology to improve electrolytic process conditions is an important way to replace imported copper foil. In order to improve the company's operations and get additive formulations that can efficiently produce copper foils for 5G communications, this experiment replicates the post-treatment method used by the company and investigates alternative additive systems and their modes of action. The main research contents and conclusions of this paper are as follows: "Low copper and high acid" was used as the basic electrolyte. The effects of four organic additives, including 3,3'-Dithiobis-1-propanesulfonic acid disodium salt (SPS), hydroxyethyl cellulose (HEC), gelatin, and phenyl disulfide propane sodium (BSP), on the microstructure and properties of the coarsened layer of copper foil were studied, as well as their effects on the electrochemical behavior of copper electrodeposition. The findings demonstrate that the addition of SPS accelerates copper deposition, refines the copper particles of the coarsened layer, and boosts the peel strength to 0.49 N/mm. The HEC prevents copper from depositing at copper foil's active sites; however, it has a minimal impact on peel strength. Gelatin increases the copper nucleation density and improves the peel strength (0.48 N/mm) while also reducing the surface roughness (1.58 μm). By comparing the performance of single additives, BSP was the most effective in improving the peel strength of copper foil, reaching a maximum value of 0.52 N/mm at a concentration of 20 mg/L. The four additives were binary compounded with promoters and inhibitors, namely SPS and HEC (SH), SPS and gelatin (SG), BSP and HEC (BH), and BSP and gelatin (BG), to investigate their effects on the morphology and properties of copper foil coarsened layer. The effects of the two-component composite additive on copper electrodeposition behavior were also analyzed. The results show that SH and SG additive systems have depolarization effects, but the effect is weaker than that of single SPS. which indicates that there is an antagonistic effect of both SPS and HEC or gelatin, and the addition of inhibitor reduces the promoting effect of SPS. Among them, SG has the best effect in improving the peel strength and leveling of copper foil. In the BSP two-component composite system, the addition of gelatin or HEC enhanced the depolarizing effect of the additive system from the electrochemical test results, indicating that there was a synergistic effect of gelatin or HEC with BSP. The effect of sodium thiazoline dithiopropane sulfonate (SH110) on the microstructure and properties of the coarsened layer of copper foil was studied, and the copper electrodeposition behavior was investigated. The results indicate that SH110 can be decomposed into accelerator (MPS) and inhibitor fragment (H1) in solution. The synergy of the two enables it to play the same effect as the composite additive. After introducing SH110, the roughness of copper foil can be as low as 1.6 μm, an improvement of 19.4%, and the peel strength also increased significantly (0.55 N/mm, increased by 152.3%) at a SH110 concentration of 20 mg/L. It can achieve a dual component composite effect, and the concentration is easier to control than binary additives. Exploring new multi-component additive formulations through orthogonal experiments, the effects of SPS+HEC+gelatin (SHG), BSP+HEC+gelatin (BHG), and the combination of BSP+SPS+HEC+gelatin (BSHG) on the morphology and properties of the coarsened layer of copper foil were studied. The optimal formula was obtained as BSHG-5 (30 mg/L BSP, 60 mg/L SPS, 3 mg/L HEC, 40 mg/L gelatin) had the most uniform and fine copper particles and the largest peel strength (0.70 N/mm), and the influence of BSP on the peel strength was greater in this system, while the roughness value was more influenced by SPS. |
参考文献: |
[1] 黄震, 刘军, 李洋. 5G商用元年发展现状及应用挑战[J]. 电力信息与通信技术, 2020, 18(1): 18-25. [2] 何立发, 文伟峰, 朱贵娥, 等. 5G通讯对移动通讯终端用电路板技术的新挑战[J]. 电子元器件与信息技术, 2019, 3(8): 43-45. [3] 张怀武, 何为, 林金堵, 等. 现代印制电路原理与工艺[M]. 北京: 机械工业出版社, 2006: 1-10. [4] 文雯, 周国云, 王翀, 等. 面向5G通信的电解铜箔表面粗化处理研究[J]. 印制电路信息, 2021, 29(S2): 358-364. [5] 曹跃胜, 孙岩, 李晋文, 等. 铜箔表面粗糙度测量与建模[C]//中国计算机学会. 第二十届计算机工程与工艺年会暨第六届微处理器技术论坛论文集. 2016: 7. [6] 师慧娟, 陆冰沪, 樊小伟, 等. 电解铜箔表面处理技术及添加剂研究进展[J]. 中国有色金属学报, 2021, 31(5): 1270-1284. [7] 惠越, 杨光, 胡正晨, 等. 电解液组成及工艺参数对铜箔性能的影响[J]. 材料科学与工艺: 2022: 1-11. [8] 范红, 王红飞, 赵亮兵, 等. 低轮廓铜箔在高频材料中应用的研究[J]. 印制电路信息, 2015, 23(8): 29-34. [9] 徐建平. 基于5G通信领域应用线路板用高频高速电解铜箔开发[J]. 世界有色金属, 2019, 522(6): 182-184. [10] 阳声富. 锂电池用低轮廓电解铜箔制备及表面处理工艺研究[D]. 广州: 华南理工大学, 2015. [11] 孙玥, 刘玲玲, 李鑫泉, 等. 添加剂对电解铜箔作用机理及作用效果的研究进展[J]. 化工进展, 2021, 40(11): 5861-5874. [12] 梁红玉, 贺秀丽, 白瑞, 等. 一种制备锂离子电池多孔铜箔集流体的方法 [P]. 中国专利 : 201810060385.9, 2020-11-03. [13] 眭乐萍, 席晓丽. 锂离子电池用电解铜箔领域专利技术综述[J]. 科技创新与应用, 2018(23): 21-22. [14] 余三宝. 电解铜箔常见问题及解决方法[J]. 世界有色金属, 2016(5): 19-20. [15] 祝大同. 当前我国电子电路铜箔供需关系问题的讨论[C]//中国电子材料行业协会覆铜板材料分会. 2022年中国覆铜板行业高层论坛论文集. 2022: 18. [16] 何田. 添加剂对电解铜箔组织性能的影响及优化[D]. 南昌: 南昌大学, 2011. [20] Bard A J, Faulkner L R. 电化学方法-原理和应用[M]. 2 版. 邵元华, 朱果逸, 董献堆, 等, 译. 北京: 化学工业出版社, 2005: 38-40. [21] 金荣涛. 电解铜箔生产[M]. 长沙: 中南大学出版社, 2010: 158-160. [23] 简志超, 彭永忠. 用于 PCB 基板的高耐热性电解铜箔的表面处理[J]. 有色金属工程, 2015, 5(2): 20-22. [24] 张彪. 高密度互连印制电路板用超低轮廓电解铜箔的研究[D]. 武汉: 华中科技大学, 2011. [26] 郑衍年. 电解铜箔表面处理工艺与结晶形态[J]. 印制电路信息, 2004(10): 14-16. [27] 付强, 付毅, 张宏洋. 一种电解铜箔表面的微细粗化处理工艺 [P]. 中国专利: 201910489068.3, 2019-09-06. [28] 徐树民, 杨祥魁, 刘建广等. 挠性印刷电路板用超低轮廓铜箔的表面处理工艺[J]. 电镀与涂饰, 2011, 30(7): 28-33. [29] 邓云, 陈建国, 冯云. 超声萃取塑料中十溴二苯醚含量影响因素研究[J]. 化学工程与装备, 2020, 282(7): 21-22. [30] 张金涛, 胡吉明, 张鉴清等. 金属涂装预处理新技术与涂层性能研究方法进展[J]. 表面技术, 2005, 34(1): 1-4. [36] 樊振龙. 有机添加剂在电解铜箔生产中的应用[D]. 南昌: 南昌大学, 2010. [37] 王桂香, 张晓红. 电镀添加剂与电镀工艺 [M]. 北京: 化学工业出版社, 2011: 70-78. [38] 霍栓成. 镀铜[M]. 北京: 化学工业出版社, 2007: 77-82. [39] 胡旭日, 王海振, 徐好强, 等. 无添加剂体系中电解铜箔的多步粗化[J]. 电镀与涂饰, 2015, 34(1): 20-24. [41] 窦维平. 利用电镀铜填充微米盲孔与通孔之应用[J]. 复旦学报(自然科学版), 2012, (2): 5-12+133-134. [42] 蔡元兴, 孙齐磊. 电镀电化学原理[M]. 北京: 化学工业出版社, 2014: 146-148. [47] 易光斌. 电解铜箔组织性能及其翘曲产生机理研究[D]. 南昌: 南昌大学, 2014. [48] 王海振, 胡旭日. 酸性镀铜添加剂对生产锂离子电池用双面光电解铜箔的影响[J]. 电镀与涂饰, 2019, 38(8): 335-337. [56] 张立茗, 方景礼, 袁国伟, 等. 实用电镀添加剂[M]. 北京: 化学工业出版社, 2007. [59] 陈志明. 新型酸性镀铜光亮剂SH-110的合成及应用[J].材料保护, 1980(3): 9-12. [60] 方亚超, 潘明熙, 黄惠等. 铜电解沉积过程中添加剂的影响研究现状及展望[J]. 矿冶, 2021, 30(5): 61-69. [62] 蔡加勒, 张爱强, 周绍民. 聚乙二醇聚合度对其吸附和阻化Cu2+放电的影响[J]. 高等学校化学学报, 1988, 9(1): 57-61. [67] 顾晓清, 徐赛生. 不同浓度添加剂对铜镑层性能的影响[J]. 中国集成电路, 2008, 17(8): 61-64. [72] 袁智斌. 锂电池用8微米超薄双面光电解铜箔工艺研究[D]. 南昌: 南昌大学, 2014. [78] 胡成国, 华雨彤. 线性扫描伏安法的基本原理与伏安图解析[J]. 大学化学, 2021, 36(4): 126-132. [79] 面向5G时代的铜箔开发及课题[C]//中国电子材料行业协会覆铜板材料分会、中国电子电路行业协会(CPCA)覆铜板分会. 第二十届中国覆铜板技术研讨会论文集. 2019: 10. [81] 樊小伟. 超薄电解铜箔组织结构与力学性能调控及其表面处理技术研究[D]. 赣州: 江西理工大学, 2021. [83] 祝大同. 印制电路板用高端电子铜箔及其技术新发展(上)[J]. 印制电路信息, 2022, 30(4): 9. [85] 刘励昀. 酸性镀铜高效添加剂的作用机理研究[D]. 安庆: 安庆师范大学, 2021. [89] 丁辛城. 电解铜箔添加剂的研究及电解液中各组份浓度的检测[D]. 广州: 华南理工大学, 2015. [90] 方景礼. 电镀添加剂理论与应用[M]. 北京: 国防工业出版社, 2006: 40-44. [93] 苗玉玲. 高性能电解铜箔添加剂的实验研究[D]. 广州: 华南理工大学, 2012. |
中图分类号: | TG146.1 |
开放日期: | 2023-06-19 |