- 无标题文档
查看论文信息

论文中文题名:

 碱活化粉煤灰矿化固碳性能及采空区安全封存应用研究    

姓名:

 吝思恒    

学号:

 21220226070    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 采空区CO2安全封存    

第一导师姓名:

 秦雷    

第一导师单位:

 西安科技大学    

第二导师姓名:

 李明    

论文提交日期:

 2024-06-18    

论文答辩日期:

 2024-06-01    

论文外文题名:

 Study on the Carbonation Performance of Alkali-Activated Fly Ash and Its Application in Safe Sequestration in Goaf    

论文中文关键词:

 碱性激活 ; CO2吸收特征 ; 矿化固碳 ; 采空区封存 ; 安全封存 ; 数值模拟    

论文外文关键词:

 Alkaline activation ; CO2 absorption characteristics ; Mineralization and carbon sequestration ; Goaf storage ; Safe storage ; Numerical simulation    

论文中文摘要:

粉煤灰因产量大、价格低廉,具备矿化吸附固定CO2能力等优势,成为煤炭行业CCUS矿化技术中重要原材料之一。但粉煤灰中钙基活性物质含量较少,表现出较低的CO2封存能力,且基于固碳粉煤灰的煤矿采空区安全封存技术尚不完善。基于此,本文利用碱性激活剂提升粉煤灰矿化反应活性,增强粉煤灰矿化固碳效率,自主搭建高温高压搅拌反应釜矿化实验平台,研究碱活化粉煤灰矿化固碳性能,并为固碳粉煤灰煤矿采空区安全封存技术提出潜在应用途径,通过COMSOL软件确定固碳粉煤灰采空区安全封存关键技术参数,研究基于固碳粉煤灰的采空区安全封存效果。

借助高温高压搅拌反应釜矿化实验平台及热重分析仪,总结基于压降法与热重分析法的矿化反应CO2吸收性能表征方式。结果表明,粉煤灰矿化反应过程反应釜内压力在前30min内快速降低后逐渐平稳,即CO2吸收过程主要集中在矿化反应前期;粉煤灰碱活化处理、矿化反应压力增加、矿化反应温度升高均可提升粉煤灰矿化反应CO2吸收性能,其中碱活化处理对粉煤灰矿化固碳性能提升效果最优;根据皮尔逊相关系数量化分析,粉煤灰中Ca元素与S元素含量与CO2吸收量呈现显著的线性相关,直接影响粉煤灰CO2矿化吸收性能;矿化反应后粉煤灰中吸附水、结晶水与Ca(OH)2含量减少,Ca(OH)2参与矿化反应被消耗,同时硅酸盐矿物含量因矿化反应而降低。

通过多方位测试实验,总结了碱活化粉煤灰矿化反应前后结构与组成特征。结果表明,微观尺度下粉煤灰呈规则球状颗粒,碱活化处理后颗粒表面被C-S-H凝胶物质覆盖,且凝胶中Si-O聚合度较高;碱活化剂会促进粉煤灰颗粒表面溶解,内部应力变化造成颗粒微观破裂和细化,导致粉煤灰粒径分布降低;随着碱活化程度提高,粉煤灰中CaO与MgO含量上升,表面Ca元素分布量显著提升,碱活化处理可促进粉煤灰细化,暴露更多活性Ca元素有利于矿化固碳;碱活化粉煤灰矿化反应后,球状颗粒周围形成大量以Ca、C、O为主的非结晶物质,且粒径分布范围提升,证明粉煤灰表面形成新的CaCO3沉淀。

基于采空区综采架后间断充填技术与煤矿采空区物理化学协同封存方式,形成固碳粉煤灰采空区安全封存工艺体系。利用COMSOL数值模拟优化采空区安全封存工艺参数,在保证采空区封存地质体安全稳定前提下,计算采空区最大碳封存量。数值模拟结果表明,充填封存体间隔距离直接影响采空区结构安全稳定,充填体间隔距离从2m增加至20m时,采空区上覆岩位移显著增加,充填体支撑压力大幅提升。以天池煤矿605工作面采空区为例,采空区充填体间隔距离优化值为4.2m。以碱活化程度为15%的褐煤粉煤灰为矿化原材料,基于固碳粉煤灰的采空区封存技术物理化学协同碳封存总量为2995.3吨。

论文外文摘要:

Fly ash has become one of the essential raw materials in the CCUS mineralization technology within the coal industry due to its significant output, low cost, and ability to mineralize, absorb, and fix CO2. However, the content of calcium-based active substances in fly ash is low, resulting in a reduced capacity for CO2 sequestration. Moreover, the safe sequestration technology of coal mine goafs using carbon-fixed fly ash is not yet fully developed. This paper utilizes an alkaline activator to enhance the mineralization reaction activity of fly ash, thereby improving the efficiency of mineralization and carbon fixation. An independent high-temperature, high-pressure stirring reactor mineralization experimental platform was constructed to investigate the carbon fixation performance of alkali-activated fly ash. It also proposes potential application pathways for the technology of safe sequestration in coal mine goafs using carbon-fixed fly ash. Key technical parameters for the safe sequestration of carbon-fixed fly ash in goafs were determined using COMSOL software, exploring the effectiveness of safe sequestration in goafs based on carbon-fixed fly ash.

With the high-temperature and high-pressure stirred reactor mineralization experimental platform and TG analyzer, the CO2 absorption performance characterization method of mineralization reaction based on the pressure drop and TG analysis method is summarized. The results show that during the fly ash mineralization reaction, the pressure in the reactor decreased rapidly in the first 30 minutes and then gradually stabilized, the CO2 absorption process was mainly concentrated in the early stage of the mineralization reaction. The alkali activation treatment of fly ash, the increasing in mineralization reaction pressure and temperature can improve the CO2 absorption performance of mineralization reaction, among which alkali activation treatment has the best effect on improving the mineralization and carbon fixation performance of fly ash. According to the quantitative analysis of Pearson's correlation coefficient, the Ca and S elements in fly ash have a significant linear correlation with the CO2 absorption, which directly affects the mineralization absorption performance of fly ash. After the mineralization reaction, the contents of adsorbed water, crystal water and Ca(OH)2 in fly ash are reduced, and Ca(OH)2 participates in the mineralization reaction and is consumed, while the silicate mineral content is reduced due to the mineralization reaction.

Through multi-faceted testing experiments, the structure and composition characteristics before and after the alkali-activated fly ash mineralization reaction were summarized. The results show that fly ash appears as regular spherical particles at microscopic, after alkali activation treatment, the particles surface is covered with C-S-H gel material, and the Si-O polymerization degree is high. The alkali activator will promote the surface dissolution of fly ash particles, and internal stress changes will cause microscopic cracking of particles, resulting in a reduction in particle size distribution. As the degree of alkali activation increases, the CaO and MgO contents increase, and the surface Ca element distribution increases significantly, which can promote the refinement of fly ash and expose more active Ca elements, which is beneficial to mineralization and carbon fixation. After the mineralization reaction, a large amount of amorphous substances mainly composed of Ca, C, and O were formed around the spherical particles, and the particle size distribution range increased, proving that new CaCO3 precipitation was formed on the surface of the fly ash.

Based on the intermittent backfilling technology behind the comprehensive mining frame in goaf areas and the physicochemical collaborative sequestration approach in coal mine goafs, a safe sequestration process system for carbon-fixed fly ash in goaf areas has been developed. Utilizing COMSOL for numerical simulations optimizes the process parameters for safe sequestration in goaf areas, calculating the maximum carbon sequestration capacity while ensuring the safety and stability of the geologic bodies in the goaf. The simulation results indicate that the spacing distance between backfill bodies directly impacts the safety and stability of the goaf structure. An increase in the spacing distance from 2m to 20m significantly raises the displacement of the overlying rock in the goaf and substantially increases the support pressure of the backfill body. Taking the goaf of the 605-working face in Tianchi Coal Mine as an example, the optimized spacing distance between the backfill bodies is 4.2m. Using lignite fly ash with an alkali activation degree of 15% as the mineralized raw material, the total amount of physicochemical synergistic carbon sequestration achieved through the goaf's safe sequestration technology based on carbon-fixed fly ash is 2995.3 tons.

参考文献:

[1] 刘洋, 郑景云, 葛全胜, 等. 低碳发展背景下中国温室气体排放变化及其对全球减排的贡献[J]. 资源科学, 2017,39(12):2399-2407.

[2] 王双明, 申艳军, 宋世杰, 等. “双碳”目标下煤炭能源地位变化与绿色低碳开发[J]. 煤炭学报, 2023,48(07):2599-2612.

[3] Muhammad S, Long X. Rule of Law and CO2 Emissions: A Comparative Analysis Across 65 Belt and Road Initiative(BRI) Countries[J]. Journal of Cleaner Production, 2021,279:123539.

[4] 滕飞, 孙玉玲, 曲建升. 面向《巴黎协定》目标的首次全球盘点系列报告解析及启示[J]. 世界科技研究与发展, 2024,1-9. doi:10.16507/j.issn.1006-6055.2023.12.001.(网络首发)

[5] 邹才能, 李士祥, 熊波, 等. 碳中和“超级能源系统”内涵、路径及意义——以鄂尔多斯盆地为例[J]. 石油勘探与开发, 2024,1-13.(网络首发)

[6] 金向阳, 李杨, 于雷, 等. 煤矿矿区绿色低碳评价指标构建及应用研究[J]. 煤炭科学技术, 2024,52(04):131-142.

[7] 白宏山, 赵东亚, 田群宏, 等. CO2捕集、运输、驱油与封存全流程随机优化[J]. 化工进展, 2019,38(11):4911-4920.

[8] 袁亮. 煤炭工业碳中和发展战略构想[J]. 中国工程科学, 2023,25(05):103-110.

[9] 孙腾民, 刘世奇, 汪涛. 中国二氧化碳地质封存潜力评价研究进展[J]. 煤炭科学技术, 2021,49(11):10-20.

[10] 桑树勋, 刘世奇, 陆诗建, 等. 工程化CCUS全流程技术及其进展[J]. 油气藏评价与开发, 2022,12(05):711-725.

[11] 李树刚, 张静非, 林海飞, 等. 双碳战略中煤气共采技术发展路径的思考[J]. 煤炭科学技术, 2024,52(01):138-153.

[12] 邓一荣, 汪永红, 赵岩杰, 等. 碳中和背景下二氧化碳封存研究进展与展望[J]. 地学前缘, 2023,30(04):429-439.

[13] 尹希文, 于秋鸽, 甘志超, 等. 高钙粉煤灰固碳降碱反应特性及煤矿井下规模化利用新途径[J]. 煤炭学报, 2023,48(07):2717-2727.

[14] 蔡洁莹, 李向东, 李海红, 等. 电厂粉煤灰固定二氧化碳实验研究[J]. 煤炭转化, 2019,42(01):87-94.

[15] 李琴, 徐舒, 顾闫悦, 等. 我国粉煤灰生态环境标准体系现状及建议[J]. 环境工程技术学报, 2023,13(01):438-446.

[16] 李琴, 何川, 常凯善, 等. 我国北方五省燃煤电厂粉煤灰产生及堆存现状[J]. 能源研究与管理, 2022,14(02):24-28.

[17] 武飞乐, 李世春. “双碳”目标下粉煤灰中有价金属回收技术研究[J]. 中国有色冶金, 2022:1-12.

[18] 徐潇, 周来, 茅佳俊, 等. 复掺粉煤灰吸附剂碳化固碳反应及对重金属浸出特性的影响[J]. 环境工程学报, 2017,11(03):1807-1813.

[19] 甘志超, 尹希文, 纪龙. 粉煤灰的CO2矿化降碱反应特性研究[J]. 煤炭工程, 2023,55(08):154-158.

[20] 奚弦, 桑树勋, 刘世奇. 煤矿区固废矿化固定封存CO2与减污降碳协同处置利用的研究进展[J]. 煤炭学报, 2023,1-16. doi:10.13225/j.cnki.jccs.2023.1075.(网络首发)

[21] 任国宏, 廖洪强, 高宏宇, 等. 粉煤灰-电石渣制浆矿化的固碳增强特性[J]. 材料导报, 2019,33(21):3556-3560.

[22] 姜龙, 何川, 李金晶. 粉煤灰用于碳捕集、利用及封存的研究进展[J]. 环境科学, 2023,44(02):1139-1148.

[23] 刘蓉, 王晓龙, 万超然, 等. 粉煤灰增湿矿化捕集CO2工艺研究[J]. 有色冶金节能, 2018,34(05):55-59.

[24] Huo B, Zhang J, Li M, et al. Effect of CO2 Mineralization on the Composition of Alkali-Activated Backfill Material with Different Coal-Based Solid Wastes[J]. Sustainability (Basel, Switzerland), 2023,15(6):4933.

[25] 曲强, 孙雅飞, 赵振华, 等. 采空区稳定性评价方法与治理措施研究现状与展望[J]. 水利水电技术, 2024,1-5.(网络首发)

[26] 谢和平, 高明忠, 刘见中, 等. 煤矿地下空间容量估算及开发利用研究[J]. 煤炭学报, 2018,43(06):1487-1503.

[27] 李树刚, 张静非, 林海飞, 等. 采空区碳封存条件下CO2-水界面特性及溶解传质规律研究[J]. 煤炭学报, 2024,01(49):513-527.

[28] 丁洋, 汤远卓, 李树刚, 等. 老采空区CO2封存井位部署方案数值模拟研究[J]. 煤炭科学技术, 2023,1-14.(网络首发)

[29] 刘浪, 王双明, 朱梦博, 等. 基于功能性充填的CO2储库构筑与封存方法探索[J]. 煤炭学报, 2022,47(03):1072-1086.

[30] 刘攀. 关于利用循环流化床灰/渣生产蒸压加气混凝土砌块/蒸压粉煤灰砖解决方案[J]. 砖瓦, 2019(11):112-116.

[31] 朱磊, 古文哲, 宋天奇, 等. 煤基固废矿化封存CO2技术研究进展[J]. 煤炭科学技术, 2024,02(52):309-328.

[32] 涂茂霞, 雷泽, 吕晓芳, 等. 水淬钢渣碳酸化固定CO2[J]. 环境工程学报, 2015,9(09):4514-4518.

[33] 何思祺, 孙红娟, 彭同江, 等. 磷石膏碳酸化固定二氧化碳的实验研究[J]. 岩石矿物学杂志, 2013,32(06):899-904.

[34] 梁平, 倪海波, 刘学炎, 等. 工业废弃物在燃煤工业锅炉烟气脱硫上的应用解析[J]. 化工管理, 2019(18):76.

[35] 王秋华, 吴嘉帅, 张卫风. 碱性工业固废矿化封存二氧化碳研究进展[J]. 化工进展, 2023,42(03):1572-1582.

[36] 朱磊, 刘成勇, 古文哲, 等. 双碳目标下“煤基固废-CO2”协同充填封存技术构想[J]. 矿业安全与环保, 2023,50(06):16-21.

[37] 张楚杰, 王玉高, 姚振朝, 等. 粉煤灰矿化CO2研究进展[J]. 洁净煤技术, 2024,30(02):300-315.

[38] 王琼, 王林猛, 于峥, 等. 掺烧污泥型粉煤灰矿化封存二氧化碳[J]. 环境工程学报, 2024,18(01):220-225.

[39] 王晓龙, 万超然, 郜时旺, 等. 粉煤灰CO2矿化利用溶出实验[J]. 电力建设, 2014,35(07):58-62.

[40] Lu J, Wang Z, Su S, et al. Single-Step Integrated CO2 Absorption and Mineralization Using Fly Ash Coupled Mixed Amine Solution: Mineralization Performance and Reaction Kinetics[J]. Energy (Oxford), 2024,286:129615.

[41] Ji L, Yu H, Wang X, et al. CO2 Sequestration by Direct Mineralisation Using Fly Ash from Chinese Shenfu Coal[J]. Fuel Processing Technology, 2017,156:429-437.

[42] Peng J, Xia B, Guo W. Multi-Scale Dynamic Mathematical Model of CO2 and Fly Ash Mineralization[J]. Journal of Cleaner Production, 2023,425:139054.

[43] Ji L, Yu H, Yu B, et al. Integrated Absorption–Mineralisation for Energy-Efficient CO2 Sequestration: Reaction Mechanism and Feasibility of Using Fly Ash as a Feedstock[J]. Chemical Engineering Journal, 2018,352:151-162.

[44] 莫淳, 廖文杰, 梁斌, 等. 工业固废活化钾长石-CO2矿化提钾的生命周期碳排放与成本评价[J]. 化工学报, 2017,68(06):2501-2509.

[45] 王云阳, 张歆怿, 张紫薇. 粉煤灰矿化封存CO2技术的应用研究[J]. 节能, 2023,42(01):89-93.

[46] 李家碧, 纪龙, 于海, 等. 粉煤灰对烟气中CO2的吸收特性及矿物相演变机理研究[J]. 环境科学学报, 2023,43(02):414-423.

[47] 王沛祎, 王茂月, 孙俊民. 粉煤灰低碳利用技术进展[J]. 低碳世界, 2021,11(09):63-65.

[48] 张亚朋, 崔龙鹏, 刘艳芳, 等. 3种典型工业固废的CO2矿化封存性能[J]. 环境工程学报, 2021,15(07):2344-2355.

[49] 马明燕, 张东丽, 王玉洁, 等. 碱活化条件对粉煤灰合成不同类型沸石的影响[J]. 吉林大学学报(地球科学版), 2006(04):663-667.

[50] 罗扬. 碱活化粉煤灰制备结构陶瓷应用基础研究[D]. 中国科学院大学(中国科学院过程工程研究所), 2020.

[51] 郭凌志, 周梅, 王丽娟, 等. 煤基固废地聚物注浆材料的制备及性能[J]. 建筑材料学报, 2022,25(10):1092-1100.

[52] 常瑞祺, 张建波, 李会泉, 等. 煤基固废制备胶凝材料研究进展及应用[J]. 洁净煤技术, 2024,30(02):316-330.

[53] 卢明阳, 庞来学, 杨达, 等. 钢渣-煤基固废可控低强度材料制备及热力学分析[J]. 硅酸盐通报, 2022,41(07):2344-2351.

[54] Ghandy L, António P C D, Rui V S, et al. Carbonation of Alkali-Activated Materials A Review[J]. Materials, 2023(16):3086.

[55] 郭振华, 王鑫, 贾亚可. 碱对粉煤灰的活化及吸附性能的研究: 第七届中国功能材料及其应用学术会议[C], 中国湖南长沙, 2010.

[56] 刘健, 李伟, 王立才, 等. 碱激发矿渣基泡沫混凝土的制备及其封存CO2可行性研究[J]. 中国矿业, 2024,33(01):218-225.

[57] 乔龙腾, 宋志峰. 碱激发粉煤灰基胶凝材料的水化过程及力学性能[J]. 金属矿山, 2023(11):179-185.

[58] Jani P, Imqam A. Class C Fly Ash-Based Alkali Activated Cement as a Potential Alternative Cement for CO2 Storage Applications[J]. Journal of Petroleum Science & Engineering, 2021,201:108408.

[59] 刘浪, 方治余, 王双明, 等. 煤矿充填固碳理论基础与技术构想[J]. 煤炭科学技术, 2024,02(52):292-308.

[60] 李子涵, 潘栋彬, 陈晨, 等. 采空区对CO2置换开采海域天然气水合物置换效果影响的实验研究[J]. 钻探工程, 2022,49(01):88-95.

[61] 张毅, 秦容军. 神东矿区地下空间评估与利用方向探索[J]. 煤炭科学技术, 2022,50(S2):196-203.

[62] 丁洋, 陈文彬, 林海飞, 等. 煤矿采空区碳封存CO2泄漏地表扩散规律研究[J]. 西安科技大学学报, 2023,43(04):705-714.

[63] Loizzo M, Lombardi S, Deremble L, et al. Monitoring CO2 Migration in an Injection Well: Evidence from MovECBM[J]. Energy Procedia, 2011,4:5203-5210.

[64] Huang X, Li X, Li H, et al. Study on the Movement of Overlying Rock Strata and Surface Movement in Mine Goaf under Different Treatment Methods Based on PS-InSAR Technology[J]. Applied Sciences, 2024,14(6):2651.

[65] 何学秋, 田向辉, 宋大钊. 煤层CO2安全封存研究进展与展望[J]. 煤炭科学技术, 2022,50(01):212-219.

[66] Espinoza D N, Kim S H, Santamarina J C. CO2 Geological Storage — Geotechnical Implications[J]. KSCE Journal of Civil Engineering, 2011,15(4):707-719.

[67] Qi S, Zheng B, Wang Z, et al. Geological Evaluation for the Carbon Dioxide Geological Utilization and Storage (CGUS) Site: A Review[J]. Science China. Earth Sciences, 2023,66(9):1917-1936.

[68] Liu Y, Xu J, Peng S. An Experimental Investigation of the Risk of Triggering Geological Disasters by Injection under Shear Stress[J]. Scientific Reports, 2016,6(38810):38810.

[69] Cappa F, Rutqvist J. Impact of CO2 Geological Sequestration on the Nucleation of Earthquakes[J]. Geophysical Research Letters, 2011,38:L17313.

[70] 时雅倩, 关渝珊, 葛伟哲, 等. 粉煤灰建材化增值利用:最新技术与未来展望[J]. 煤炭学报, 2023,1-19. doi:10.13225/j.cnki.jccs.ZZ23.1224.(网络首发)

[71] Uliasz-Bocheńczyk A, Mokrzycki E. The Potential of FBC Fly Ashes to Reduce CO2 Emissions[J]. Scientific Reports, 2020,10(1):9469.

[72] Velandia D F, Lynsdale C J, Provis J L, et al. Evaluation of Activated High Volume Fly Ash Systems Using Na2SO4, Lime and Quicklime in Mortars with High Loss on Ignition Fly Ashes[J]. Construction and Building Materials, 2016,128:248-255.

[73] Van Deventer J S J, Provis J L, Duxson P, et al. Reaction Mechanisms in the Geopolymeric Conversion of Inorganic Waste to Useful Products[J]. Journal of Hazardous Materials, 2007,139(3):506-513.

[74] Liu M, Gadikota G. Integrated CO2 Capture, Conversion, and Storage to Produce Calcium Carbonate Using an Amine Looping Strategy[J]. Energy & Fuels, 2018,33(3):1722-1733.

[75] 黎帅, 周凤娇, 谭新宇, 等. 二氧化碳浓度对低钙固碳胶凝材料性能影响及机理研究[J]. 硅酸盐通报, 2023,42(09):3109-3116.

[76] Fu X, Wang A, Krawczynski M. Characterizing Amorphous Silicates in Extraterrestrial Materials: Polymerization Effects on Raman and Mid-IR Spectral Features of Alkali and Alkali Earth Silicate Glasses[J]. Journal of Geophysical Research-Planets, 2017,122(5):839-855.

[77] Chen H, Khalili N. Fly-Ash-Modified Calcium-Based Sorbents Tailored to CO2 Capture[J]. Industrial & Engineering Chemistry Research, 2017,56(7):1888-1894.

[78] 何兰兰. 碱性工业废弃物在CCUS中的应用研究[D]. 华中科技大学, 2014.

[79] Patel A, Basu P, Acharya B. An Investigation into Partial Capture of CO2 Released from a Large Coal/petcoke Fired Circulating Fluidized Bed Boiler with Limestone Injection Using Its Fly and Bottom Ash[J]. Journal of Environmental Chemical Engineering, 2017,5(1):667-678.

[80] 王晓龙, 刘蓉, 纪龙, 等. 利用粉煤灰与可循环碳酸盐直接捕集固定电厂烟气中二氧化碳的液相矿化法[J]. 中国电机工程学报, 2018,38(19):5787-5794.

[81] Montes-Hernandez G, Perez-Lopez R, Renard F, et al. Mineral Sequestration of CO2 by Aqueous Carbonation of Coal Combustion Fly-Ash[J]. J Hazard Mater, 2009,161(2-3):1347-1354.

[82] 程爱华, 李治, 刘晓河, 等. 制备方法对铜镁铝类水滑石吸附性能的影响[J]. 环境工程学报, 2023,17(10):3303-3313.

[83] Ukwattage N L, Ranjith P G, Yellishetty M, et al. A Laboratory-Scale Study of the Aqueous Mineral Carbonation of Coal Fly Ash for CO2 Sequestration[J]. Journal of Cleaner Production, 2015,103:665-674.

[84] Wang T, Huang H, Hu X, et al. Accelerated Mineral Carbonation Curing of Cement Paste for CO2 Sequestration and Enhanced Properties of Blended Calcium Silicate[J]. Chemical Engineering Journal, 2017,323:320-329.

[85] Chang E, Pan S, Yang L, et al. Accelerated Carbonation Using Municipal Solid Waste Incinerator Bottom Ash and Cold-Rolling Wastewater: Performance Evaluation and Reaction Kinetics[J]. Waste Management, 2015,43:283-292.

[86] 张弛, 李克非, 王俊杰. 水泥净浆非碳化区与脱钙碳化区的微观力学表征[J]. 材料导报, 2023,37(02):54-61.

[87] Pan X, Shi C, Hu X, et al. Effects of CO2 Surface Treatment on Strength and Permeability of One-Day-Aged Cement Mortar[J]. Construction & Building Materials, 2017,154:1087-1095.

[88] 王晓龙, 刘蓉, 王琪, 等. 电厂烟气低浓度CO2的粉煤灰直接液相矿化技术[J]. 热力发电, 2021,50(01):104-109.

[89] 杨涛, 胡婧妍, 韩世勇, 等. 煤矿CO2矿化充填技术研究进展[J]. 华北科技学院学报, 2023,20(05):30-35.

[90] 王双明, 孙强, 胡鑫, 等. 不同气氛下富油煤受热的裂隙演化及热解动力学参数变化[J]. 煤炭科学技术, 2024,01(52):15-24.

[91] 高影, 涂亚楠, 王卫东, 等. 含钙镁煤基固废CO2矿化封存及其产物性能研究进展[J]. 煤炭科学技术, 2023,1-18.(网络首发)

[92] 王吉云. 再生骨料碳化处理对再生混凝土渗透性和界面的影响[D]. 湖南大学, 2017.

[93] Mollah M Y A, Kesmez M, Cocke D L. An X-ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopic (FT-IR) Investigation of the Long-Term Effect on the Solidification/stabilization (S/S) of Arsenic(V) in Portland Cement Type-V[J]. Science of The Total Environment, 2004,325(1):255-262.

[94] Pan X, Shi Z, Shi C, et al. Interactions Between Inorganic Surface Treatment Agents and Matrix of Portland Cement-Based Materials[J]. Construction & Building Materials, 2016,113:721-731.

[95] 王双明, 刘浪, 朱梦博, 等. “双碳”目标下煤炭绿色低碳发展新思路[J]. 煤炭学报, 2024,01(49):152-171.

[96] 刘浪, 谢磊, 朱梦博, 等. 超高流动性改性镁渣基充填材料的性能[J]. 工程科学学报, 2023,45(08):1324-1334.

[97] 王双明, 申艳军, 孙强, 等. “双碳”目标下煤炭开采扰动空间CO2地下封存途径与技术难题探索[J]. 煤炭学报, 2022,47(01):45-60.

[98] 刘浪, 阮仕山, 方治余, 等. 镁渣的改性及其在矿山充填领域的应用探索[J]. 煤炭学报, 2021,46(12):3833-3845.

[99] 许广辉, 张杨, 李鹤鹤, 等. 考虑采空区压实度的端面顶板稳定性数值模拟[J]. 陕西煤炭, 2024,43(03):17-20.

[100] 李斓堃. 弓长岭露天矿采空区稳定性多因素影响的数值模拟[D]. 东北大学, 2021.

[101] 余伟健, 郭涵潇, 李可, 等. 厚硬顶板采场诱发逆断层失稳的力学机制研究[J]. 煤炭科学技术, 2024,1-12.(网络首发)

[102] 张平松, 许时昂, 傅先杰, 等. 煤层采动巨厚松散层全断面监测及内部变形特征[J]. 煤炭学报, 2024,49(01):628-644.

[103] 和递, 孔祥国, 李树刚, 等. 低速冲击载荷扰动煤体破裂动力学特征与能量耗散规律研究[J]. 煤炭科学技术, 2024,1-13.(网络首发)

[104] 吴鹏. 地下开采对上覆围岩稳定性的数值模拟研究[J]. 采矿技术, 2023,23(06):22-27.

中图分类号:

 TQ536.4;X701;TD327    

开放日期:

 2025-06-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式