论文中文题名: |
面向锂离子电池硅基负极应用的 硼类电解液添加剂研究
|
姓名: |
曾富宝
|
学号: |
20211025002
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
0805
|
学科名称: |
工学 - 材料科学与工程
|
学生类型: |
硕士
|
学位级别: |
工学硕士
|
学位年度: |
2023
|
培养单位: |
西安科技大学
|
院系: |
材料科学与工程学院
|
专业: |
材料科学与工程
|
研究方向: |
新能源材料与器件
|
第一导师姓名: |
卢海
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2023-06-20
|
论文答辩日期: |
2023-06-04
|
论文外文题名: |
Research on Boron-based Electrolyte Additives for Silicon-based Anode Applications in Lithium-Ion Batteries
|
论文中文关键词: |
锂离子电池 ; 硅基负极 ; 含硼添加剂 ; 固体电解质界面膜 ; 电解液
|
论文外文关键词: |
Lithium-ion batteries ; Silicon based anode ; Boron containing additive ; Solid electrolyte interphase film ; Electrolyte
|
论文中文摘要: |
︿
硅基负极因具有高的理论比容量而成为极具发展潜力的下一代锂离子电池负极材料,但是其在充放电期间存在巨大的体积波动,导致固态电解质界面(SEI)反复破裂/再生,界面膜不断增厚、阻抗持续增大,甚至出现电极破碎/粉化,严重缩短了电池的使用寿命,制约了该负极的实用化进程。为此,本文拟通过在电解液中引入成膜添加剂,缓解因硅体积波动而导致的上述界面问题。本文分别选择了硼酸三苯酯(TPB)、苯硼酸(PBA)和4-氟苯硼酸酐(TFTB)作为电解液添加剂应用在硅基锂离子电池中,详细探究了各款添加剂对电解液基本理化性质、电极/电解液界面化学和电池电化学性能的影响规律,获得的主要研究结论如下:
1)电解液中适量添加TPB可以明显提高人造石墨和硅碳负极的可逆容量和库仑效率,并改善这两种负极的循环和倍率性能,这是由于TPB能够优先于电解液其他溶剂,在负极表面发生还原分解,形成的含硼产物有效稳定了负极表面,抑制了界面副反应的发生。当TPB的质量百分数为1%时,石墨负极在200次循环后的容量保持率达到97.2%,硅碳负极经50次循环后的容量保持率达到98.1%。
2)添加剂PBA能够在硅碳负极和LiNi0.5Co0.2Mn0.3O2(NCM523)正极上形成稳定的界面膜,减少电解液的不可逆分解,进而同时提升正负极两侧的循环稳定性。在电解液中添加质量百分数为1%的PBA时,硅碳负极首次库伦效率达到89.4%,在100次循环后的容量保持率为83.8%;NCM523正极在0.5C电流密度下恒流充放电200次后的容量保持率达到81.7%,并具有良好的倍率特性(5 C放电比容量达103 mAh/g)。
3)将TFTB作为多功能添加剂引入电解液中,显著提高了硅基锂离子电池的稳定循环能力。理论计算结合实验表征证明了该添加剂能够优先还原分解,参与硅碳负极表面SEI膜的形成,。同时,TFTB与H2O/HF具有强的结合作用,能够抑制锂盐水解,减少有害HF的产生。此外,TFTB还有助于在正极侧形成致密且均匀的界面钝化膜。当电解液中添加质量百分数为1% TFTB时,硅碳负极在100次后容量保持率为82.1%,平均库伦效率为99.3%;NCM523正极首次放电比容量为180.3 mAh/g,在循环300次后的容量保持率达到87.6%。
﹀
|
论文外文摘要: |
︿
Silicon-based anodes have become the next-generation lithium-ion battery anode materials with great development potential due to their high theoretical specific capacity. However, there are huge volume fluctuations during charge and discharge, resulting in repeated rupture/regeneration of the solid electrolyte interface (SEI), continuous thickening of the interface film, continuous increase in impedance, and even electrode breakage/pulverization, which seriously shortens the service life of the battery and restricts the practical process of the anode. Therefore, this paper intends to alleviate the above interface problems caused by the fluctuation of silicon volume by introducing film-forming additives into the electrolyte. In this paper, triphenyl borate (TPB), phenylboronic acid (PBA) and 4-fluorophenylboronic anhydride (TFTB) were selected as electrolyte additives in silicon-based lithium-ion batteries. The effects of various additives on the basic physical and chemical properties of the electrolyte, the interface chemistry of the electrode/electrolyte and the electrochemical performance of the battery were investigated in detail. The main conclusions are as follows:
1) The addition of appropriate amount of TPB in the electrolyte can significantly improve the reversible capacity and coulombic efficiency of the artificial graphite and silicon-carbon anodes, and improve the cycle and rate performance of the two anodes. This is due to the fact that TPB can take precedence over other solvents in the electrolyte, and the reduction decomposition occurs on the surface of the anode electrode. The boron-containing products formed effectively stabilize the surface of the anode electrode and inhibit the occurrence of interfacial side reactions. When the mass percentage of TPB is 1 %, the capacity retention of graphite anode reaches 97.2% after 200 cycles, and the capacity retention of silicon-carbon anode reaches 98.1% after 50 cycles.
2) The additive PBA can form a stable interface film on the silicon carbon anode and the LiNi0.5Co0.2Mn0.3O2 (NCM523) cathode, reducing the irreversible decomposition of the electrolyte, thereby improving the cycle stability on both sides of the cathode and anode electrodes. When PBA with a mass percentage of 1% was added to the electrolyte, the initial coulombic efficiency of the silicon-carbon anode reached 89.4 %, and the capacity retention after 100 cycles was 83.8 %. The capacity retention of NCM523 cathode reaches 81.7 % after 200 cycles of constant current charge and discharge at a current density of 0.5 C, and it has good rate performance (discharge specific capacity of 103 mAh/g at 5 C).
3) The introduction of TFTB as a multifunctional additive into the electrolyte significantly improves the stable cycling ability of silicon-based lithium-ion batteries. Theoretical calculation combined with experimental characterization proves that the additive can preferentially reduce and decompose, and participate in the formation of SEI film on the surface of silicon carbon anode. At the same time, TFTB has a strong binding effect with H2O/HF, which can inhibit the hydrolysis of lithium salt and reduce the production of harmful HF. In addition, TFTB also helps to form a dense and uniform interfacial passivation film on the cathode side. When the mass percentage of TFTB added to the electrolyte is 1 %, the capacity retention of the silicon carbon anode is 82.1% after 100 cycles, and the average coulomb efficiency is 99.3%. The initial discharge specific capacity of NCM523 cathode is 180.3 mAh/g, and the capacity retention reaches 87.6% after 300 cycles.
﹀
|
参考文献: |
︿
[1] 刘卓然, 陈健, 林凯等. 国内外电动汽车发展现状与趋势 [J]. 电力建设, 2016, 36(7): 25-32. [2] 丁搏. 基于电动汽车技术发展趋势及前景分析 [J]. 山东工业技术, 2016, 3: 231. [3] D Bruce, K Haresh, JM Tarascon, et al. Electrical energy storage for the grid: a battery of choices [J]. Science, 2011, 344(6058): 928-935. [4] Tarascon, JM Armand, M. Issues and challenges facing rechargeable lithium batteries [J]. Nature, 2011, 414(6861): 359-367. [5] 戴永年, 杨斌, 姚耀春等. 锂离子电池的发展状况 [J]. 电池, 2005, 3: 193-195. [6] B Horstmann, J Shi, R Amine, et al. Strategies towards enabling lithium metal in batteries: interphases and electrodes [J]. Energy Environ. Sci., 2021, 14(10): 5289-5314. [7] X Fan, C Wang. High-voltage liquid electrolytes for Li batteries: progress and perspectives [J]. Chem. Soc. Rev., 2021, 50(18): 10486-10566. [8] T Chen, Y Jin, H Lv, et al. Applications of lithium-ion batteries in grid-scale energy storage systems [J]. Trans Tianjin Univ, 2020, 26(3): 208-217. [9] V Etacheri, R Marom, R Elazari, et al. Challenges in the development of advanced Li-ion batteries: a review [J]. Energy Environ. Sci., 2011, 4(9): 3243-3262. [10] 毛舒岚, 武倩, 王卓雅等. 三元NCM锂离子电池高电压电解质的研究进展 [J]. 储能科学与技术, 2020, 9(02): 538-550. [11] H Zheng, X Zhou, S Cheng, et al. High-voltage LiNi0.5Mn1.5O4 cathode stability of fluorinated ether based on enhanced separator wettability [J]. J. Electrochem. Soc., 2019, 166(8): A1456-A1462. [12] F Xiang, P Wang, H Cheng. Methyl 2,2‐difluoro‐2‐(fluorosulfonyl) acetate as a novel electrolyte additive for high‐voltage LiCoO2/graphite pouch Li‐ion cells [J]. Energy Technol., 2020, 8(5): 1901277. [13] M He, C C Su, C Peebles, et al. Mechanistic insight in the function of phosphite additives for protection of LiNi0.5Co0.2Mn0.3O2 cathode in high voltage Li-ion cells [J]. ACS Appl. Mater. Interfaces, 2016, 8(18): 11450-11458. [14] J Ahn, T Yim. Ni-rich LiNi0.8Co0.1Mn0.1O2 oxide functionalized by allyl phenyl sulfone as high-performance cathode material for lithium-ion batteries [J]. J. Alloys Compd., 2021, 867: 195153. [15] 杨凯欣. 磷酸铁锂正极材料制备研究进展 [J]. 信息记录材料, 2022, 23(05): 37-40. [16] 刘琦, 郝思雨, 冯东等. 锂离子电池负极材料研究进展 [J]. 复合材料学报, 2022, 39(04): 1446-1456. [17] H Lu, F Zeng, Y. Ma, et al. Triphenyl borate as an effective film-modification additive for regulating the solid electrolyte interphase formed on graphite and silicon based anode [J]. Mater. Today Commun., 2023, 35: 23-28. [18] L Peng, Q He, F Zeng, et al. Improved electrochemical performance of a LiCoO2/MCMB cell by regulating fluorinated electrolytes [J]. RSC Adv., 2021, 11(49): 30763-30770. [19] X Liu, X Sun, X Shi, et al. Low-temperature and high-performance Si/graphite composite anodes enabled by sulfite additive [J]. Chem. Eng. J., 2021,421: 1385-8947. [20] 张玉坤. 锂离子电池用隔膜材料研究进展 [J]. 汽车工艺与材料, 2022, 10: 34-41. [21] 王立超, 张晓虎, 张熊等. 高功率锂离子电池负极材料研究进展 [J]. 电源技术, 2021, 45(09): 1213-1215. [22] AM Haregewoin, AS Wotango, BJ Hwang. Electrolyte additives for lithium ion battery electrodes: progress and perspectives [J]. Energy Environ. Sci.,2016, 9(6): 1955-1988. [23] Q Zhang, X Zhang, H Yuan, et al. Thermally stable and nonflammable electrolytes for lithium metal batteries: Pprogress and perspectives [J]. Small Science, 2021, 1(10): 2100058. [24] S Chen, K Wen, J Fan, et al. Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries: from liquid to solid electrolytes [J]. J. Mater. Chem. A, 2018, 6(25): 11631-11663. [25] 冯东, 郝思语, 谢于辉等. 锂离子电池电解质研究进展 [J]. 化工新型材料, 2023, 51(02): 35-41. [26] F Baskoro, HQ Wong, HJ Yen. Strategic structural design of a gel polymer electrolyte toward a high efficiency lithium-ion battery [J]. ACS Appl. Energy Mater., 2019, 2(6): 3937-3971. [27] H Wu, H Jia, C Wang, et al. Recent progress in understanding solid electrolyte interphase on lithium metal anodes [J]. Adv. Energy Mater., 2020, 11(5): 2003092. [28] L Wang, Z Wu, J Zou, et al. Li-free cathode materials for high energy density lithium batteries [J]. Joule, 2019, 3(9): 2086-2102. [29] D He, J Lu, G He, et al. Recent advances in solid-electrolyte interphase for Li metalanode [J]. Front. Chem., 2022, 10: 916132. [30] JF Ding, R Xu, C Yan, et al. A review on the failure and regulation of solid electrolyte interphase in lithium batteries [J]. J. Energy Chem., 2021, 59: 306-319. [31] H Zhang, S Zhao, F Huang. A comparative overview of carbon anodes for nonaqueous alkali metal-ion batteries [J]. J. Mater. Chem. A, 2021, 9(48): 27140-27169. [32] R Wang, W Cui, F Chu, et al. Lithium metal anodes: Present and future [J]. J. Energy Chem., 2020, 48: 145-159. [33] 彭盼盼, 来雪琦, 韩啸等. 锂离子电池负极材料的研究进展 [J]. 有色金属工程, 2021, 11(11): 80-91. [34] YX Yao, C Yan, Q Zhang. Emerging interfacial chemistry of graphite anodes in lithium-ion batteries [J]. Adv. Mater., 2020, 56(93): 14570-14584. [35] S Bian, M Liu, Y Shi, et al. Tea polyphenols as a novel reaction-type electrolyte additive in lithium-ion batteries [J]. Ionics, 2018, 24(7): 1919-1928. [36] 郭明, 王金才, 吴连波等. 锂离子电池负极材料纳米碳纤维研究 [J]. 电池, 2004, 5: 384-385. [37] TT Zuo, XW Wu, CP Yang, et al. Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity Li anodes [J]. Adv. Mater., 2017, 29(29): 1700389. [38] J Asenbauer, T Eisenmann, M Kuenzel, et al. The success story of graphite as a lithium-ion anode material fundamentals, remaining challenges, and recent developments including silicon (oxide) composites [J]. Sustainable Energy Fuels, 2020, 4(11): 5387-5416. [39] H Cheng, JG Shapter, Y Li, et al. Recent progress of advanced anode materials of lithium-ion batteries [J]. J. Energy Chem., 2021, 57: 451-468. [40] AM Divakaran, M Minakshi, PA Bahr, et al. Rational design on materials for developing next generation lithium-ion secondary battery [J]. Prog. Solid State Chem., 2021, 62: 0079-6786. [41] L Sun, Y Liu, J Wu, et al. A review on recent advances for boosting initial coulombic efficiency of silicon anodic lithium ion batteries [J]. Small, 2022, 18(5): e2102894. [42] C Zhang, F Wang, J Han, et al. Challenges and recent progress on silicon‐based anode materials for next‐generation lithium‐ion batteries [J]. Small Struct., 2021, 2(6): 2100009. [43] C Li, W Zhu, B Lao, et al. Lithium difluorophosphate as an effective additive for improving the initial coulombic efficiency of a silicon anode [J]. ChemElectroChem, 2020, 7(18): 3743-3751. [44] H Jia, L Zou, P Gao, et al. High‐performance silicon anodes enabled by nonflammable localized hgh‐concentration electrolytes [J]. Adv. Energy Mater., 2019, 9(31): 1900784. [45] Z Cao, X Zheng, Q Qu, et al. Electrolyte design enabling a high-safety and high-performance Si anode with a tailored electrode-electrolyte interphase [J]. Adv. Mater., 2021, 33(38): e2103178. [46] Z Chen, A Soltani, Y Chen, et al. Emerging organic surface chemistry for Si anodes in lithium‐ion batteries: advances, prospects, and beyond [J]. Adv. Energy Mater., 2022, 12(32): 2200924. [47] DZ Shen, CF Huang, LH Gao, et al. Rational design of Si@SiO2C composites using sustainable cellulose as a carbon resource for anodes in lithium-ion batteries [J]. ACS Appl. Mater. Interfaces, 2018, 10(9): 7946-7954. [48] C Yang, Y Zhang, J Zhou, et al. Hollow Si/SiOx nanosphere/nitrogen-doped carbon superstructure with a double shell and void for high-rate and long-life lithium-ion storage [J]. J. Mater. Chem. A, 2018, 6(17): 8039-8046. [49] Y He, X Yu, Y Wang, et al. Alumina-coated patterned amorphous silicon as the anode for a lithium-ion battery with high coulombic efficiency [J]. Adv. Mater., 2011, 23(42): 4938-41. [50] Y Ren. Tris (trimethylsilyl) phosphate as electrolyte additive for lithium‐ion batteries with graphite anode at elevated temperature [J]. Int. J. Electrochem. Sci., 2018, (2018), 13: 664-674. [51] R Yi, J Zai, F Dai, et al. Dual conductive network-enabled graphene/Si–C composite anode with high areal capacity for lithium-ion batteries [J]. Nano Energy, 2014, 6 : 211-218. [52] YJ Wu, RH Tang, WC Li, et al. A high-quality aqueous graphene conductive slurry applied in anode of lithium-ion batteries [J]. J. Alloys Compd., 2020, 830: 154575. [53] X Wang, L Sun, R Agung Susantyoko, et al. Ultrahigh volumetric capacity lithium ion battery anodes with CNT–Si film [J]. Nano Energy, 2014, 8: 71-77. [54] W Zeng, L Wang, X Peng, et al. Enhanced ion conductivity in conducting polymer binder for high-performance silicon anodes in advanced lithium-ion batteries [J]. Adv. Energy Mater., 2018, 8(11): 1702314. [55] G Mu, D Mu, B Wu, et al. Pomegranate-like shell structured Si@C with tunable inner-space as an anode material for lithium-ion battery [J]. J. Power Sources, 2019, 441: 0378-7753. [56] G Feng, Z Li, L Mi, et al. Polypropylene/hydrophobic-silica-aerogel-composite separator induced enhanced safety and low polarization for lithium-ion batteries [J]. J. Power Sources, 2018, 376: 177-183. [57] CY Fu, V Venturi, J Kim, et al. Universal chemomechanical design rules for solid-ion conductors to prevent dendrite formation in lithium metal batteries [J]. Nat. Mater., 2020, 19(7): 758. [58] XB Cheng, TZ Hou, R Zhang, et al. Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries [J]. Adv. Mater., 2016, 28(15): 2888-95. [59] M Ge, C Cao, GM Biesold, et al. Recent advances in silicon-based electrodes: From fundamental research toward practical applications [J]. Adv. Mater., 2021, 33(16): e2004577. [60] 秦凯, 郑钧元, 杨良君. 锂离子电池电解液功能添加剂研究进展 [J]. 冶金与材料, 2020, 40(04): 7-8. [61] 马国强, 王莉, 张建君等. 含有氟代溶剂或含氟添加剂的锂离子电解液 [J]. 化学进展, 2016, 28(09): 1299-1312. [62] J Huang, J Liu, J He, et al. Optimizing electrode/electrolyte interphases and li-ion flux/solvation for lithium-metal batteries with qua-functional heptafluorobutyric anhydride [J]. Angew. Chem., Int. Ed., 2021, 60(38): 20717-20722. [63] F Li, J He, J Liu, et al. Gradient solid electrolyte interphase and lithium-ion solvation regulated by bisfluoroacetamide for stable lithium metal batteries [J]. Angew. Chem., Int. Ed., 2021, 60(12): 6600-6608. [64] 蒋志敏, 王莉, 沈旻等. 锂离子电池正极界面修饰用电解液添加剂 [J]. 化学进展, 2019, 31(05): 699-713. [65] Q Dong, F Guo, Z Cheng, et al. Insights into the dual role of lithium difluoro(oxalato)borate additive in improving the electrochemical performance of NMC811||graphite cells [J]. ACS Appl. Energy Mater., 2019, 3(1): 695-704. [66] B Jiang, J Li, B Luo, et al. LiPO2F2 electrolyte additive for high-performance Li-rich cathode material [J]. J. Energy Chem., 2021, 60: 564-571. [67] YR Zhu, T Yi. Recent progress in the electrolytes for improving the cycling stability of LiNi0.5Mn1.5O4 high-voltage cathode [J]. Ionics, 2016, 22(10): 1759-1774. [68] Q.Ma, X Zhang, A Wang, et al. Stabilizing solid electrolyte interphases on both anode and cathode for hgh areal capacity, high‐voltage lithium metal batteries with high Li utilization and leanelectrolyte [J]. Adv. Funct. Mater., 2020, 30(32): 2002824. [69] T Yim, YK Han. Tris(trimethylsilyl) phosphite as an efficient electrolyte additive to improve the surface stability of graphite anodes [J]. ACS Appl. Mater. Interfaces, 2017, 9(38): 32851-32858. [70] 胡华坤, 薛文东, 霍思达等. 锂离子电池电解液SEI成膜添加剂的研究进展 [J]. 化工学报, 2022, 73(04): 1436-1454. [71] R Guo, Y Che, G Lan, et al. Tailoring low-temperature performance of a lithium-ion battery via rational designing interphase on an anode [J]. ACS Appl. Mater. Interfaces, 2019, 11(41): 38285-38293. [72] B Zhang, N Laszczynski, BL Lucht. Investigation of 2, 3-epoxypropyl methanesulfonate (OMS) as an electrolyte additive for lithium ion batteries [J]. Electrochim. Acta, 2018, 281: 405-409. [73] W Zhao, Y Ji, Z Zhang, et al. Recent advances in the research of functional electrolyte additives for lithium-ion batteries [J]. Curr. Opin. Electrochem., 2017, 6(1): 84-91. [74] C Wang, L Yu, W Fan, et al. 3,3'-(Ethylenedioxy)dipropiononitrile as an electrolyte additive for 4.5 V LiNi1/3Co1/3Mn1/3O2/graphite cells [J]. ACS Appl. Mater. Interfaces, 2017, 9(11): 9630-9639. [75] X Yan, C Chen, X Zhu, et al. Aminoalkyldisiloxane as effective electrolyte additive for improving high temperature cycle life of nickel-rich LiNi0.6Co0.2Mn0.2O2/graphite batteries [J]. J. Power Sources, 2020, 461: 228099. [76] X Chen, Q Zhang. Atomic insights into the fundamental interactions in lithium battery electrolytes [J]. Acc. Chem. Res., 2020, 53(9): 1992-2002. [77] Z Qin, S Hong, B Hong, et al. Triisopropyl borate as an electrolyte additive for improving the high voltage stability of LiNi0.6Co0.2Mn0.2O2 cathode [J]. J. Electroanal. Chem., 2019, 854: 113506. [78] YK Han, K Lee, J Yoo, et al. Virtual screening of borate derivatives as high-performance additives in lithium-ion batteries [J]. Theor. Chem. Acc., 2014, 133(10): 1562. [79] WG Kidanu, TN Vo, S So, et al. Enabling high-performance aqueous rechargeable Li-ion batteries through systematic optimization of TiS2/LiFePO4 full cell [J]. Appl. Surf. Sci., 2021, 553: 149496. [80] X Liao, Q Huang, S Mai, et al. Self-discharge suppression of 4.9 V LiNi0.5Mn1.5O4 cathode by using tris(trimethylsilyl)borate as an electrolyte additive [J]. J. Power Sources, 2014, 272: 501-507. [81] T Yim, SH Jang, YK Han. Triphenyl borate as a bi-functional additive to improve surface stability of Ni-rich cathode material [J]. J. Power Sources, 2017, 372: 24-30. [82] H Lu, FB Zeng, L He, et al. Advanced perfluorinated electrolyte with synergistic effect of fluorinated solvents for high-voltage LiNi0.5Mn1.5O4/Li cell [J]. Electrochim. Acta, 2022, 421: 140472. [83] Y Yuan, X Peng, B Wang, et al. Solvate ionic liquid-derived solid polymer electrolyte with lithium bis(oxalato) borate as a functional additive for solid-state lithium metal batteries [J]. J. Mater. Chem. A, 2023, 11(3): 1301-1311. [84] K Lu, S Lu, T Gu, et al. Onium salts-derived B and P dual-doped carbon microspheres as anode material for high-performance sodium-ion batteries [J]. Electrochem. Commun., 2019, 103: 22-26. [85] Z Li, Y Zhang, T Liu, et al. Silicon anode with high initial coulombic efficiency by modulated trifunctional binder for high‐areal‐capacity lithium‐ion batteries [J]. Adv. Energy Mater., 2020, 10(20): 1903110. [86] J Wang, L Zhang, H Zhang. Effects of electrolyte additive on the electrochemical performance of Si/C anode for lithium-ion batteries [J]. Ionics, 2018, 24(11): 3691-3698. [87] Z Wen, F Wu, L Li, et al. Electrolyte design enabling stable solid electrolyte interface for high-performance silicon/carbon anodes [J]. ACS Appl. Mater. Interfaces, 2020, 14(34): 38807-38814. [88] G Liu, J Gao, M Xia, et al. Strengthening the interfacial stability of the silicon-based electrode via an electrolyte additive horizontal line allyl phenyl sulfone [J]. ACS Appl. Mater. Interfaces, 2022, 14(33): 38281-38290.. [89] K Duan, J Ning, L Zhou, et al. Synergistic inorganic-organic dual-additive electrolytes enable practical high-voltage lithium-ion batteries [J]. ACS Appl. Mater. Interfaces, 2022, 14(8): 10447-10456. [90] KN Wood, M Noked, NP Dasgupta. Lithium metal anodes: Toward an improved understanding of coupled morphological, electrochemical, and mechanical behavior [J]. ACS Energy Lett., 2017, 2(3): 664-672. [91] X Shi, T Zheng, J Xiong, et al. Stable electrode/electrolyte interface for high-voltage NCM523 cathode constructed by synergistic positive and passive approaches [J]. ACS Appl. Mater. Interfaces, 2021, 13(48): 57107-57117. [92] J Xiong, T Zheng, YJ Cheng, et al. Sulfur is a New high-performance additive toward high-voltage LiNi0.5Co0.2Mn0.3O2 cathode: Tiny amount, Huge impact [J]. ACS Appl. Mater. Interfaces, 2021, 13(16): 18648-18657.
﹀
|
中图分类号: |
TQ152
|
开放日期: |
2023-06-20
|