论文中文题名: | 岸基GNSS-R潮位监测方法研究 |
姓名: | |
学号: | 18210062018 |
保密级别: | 保密(2年后开放) |
论文语种: | chi |
学科代码: | 081601 |
学科名称: | 工学 - 测绘科学与技术 - 大地测量学与测量工程 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2021 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | GNSS-R遥感 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2021-06-11 |
论文答辩日期: | 2021-06-01 |
论文外文题名: | Research on Shore-Based GNSS-R in Tide Level Monitoring |
论文中文关键词: | |
论文外文关键词: | GNSS-R ; SNR ; Tide Level Monitoring ; BDS |
论文中文摘要: |
随着GNSS应用的扩展,全球卫星导航系统反射(GNSS-R)技术已成为潮位监测的重要技术手段之一。本文基于非洲东海岸的MAYG站2019-2020年的观测数据,利用导航卫星信号的信噪比(SNR)的变化来反演天线相位中心到海平面的垂直距离,通过高程基准转换归算到以zero_hydrographic为基准的潮位高度,并与DZAOUDZI验潮站提供的实测潮位高度进行对比。本文具体研究内容如下: (1)简介GPS、GLONASS、Galileo和BDS四大导航卫星系统,结合SNR与多路径的关系详细介绍GNSS-R技术监测潮位的基本理论,并阐述LSP谱分析的原理。 (2)基于GNSS-R技术融合多系统多SNR进行潮位监测时,为剔除监测结果的冗余性,将同一时刻不同SNR类型反演结果取均值。通过2020年DOY300和DOY321-DOY327潮位监测的实验,验证潮位监测的可行性与周期性。基于2019-2020年潮位监测的实验,验证潮位监测的可靠性与连续性。连续两年的实验结果表明,每天监测数量的中值增加到58,每天每两次有效潮位监测的时间间隔的中值缩减到16.00min,时间分辨率显著提高,监测的海平面高度的数量总计41860个,平均误差为0.0268m,相关系数为0.9130,均方根误差为0.4022,验证了GNSS-R技术监测的潮位与验潮站实测的潮位具有较好的相关性。 (3)研究了2019-2020年不同系统不同SNR类型监测潮位的精度,GPS的精度对比为S5X>S2X>S1C>S2W,GLONASS的精度对比为S1P>S2P>S1C>S2C,Galileo的精度对比为S8X>S7X>S5X>S1X,BDS2-IGSO卫星的精度对比为S7I>S6I>S2I,BDS2-MEO卫星的精度对比为S7I>S6I>S2I,BDS3-MEO卫星的精度对比为S6I>S2I。2020年DOY268-DOY366接收机型号由TRIMBLE NETR9替换成了TRIMBLE ALLOY,需要对新增的SNR类型以及BDS3卫星进行精度分析。通过实验分析可得,GPS的精度对比为S5X>S2X>S2W>S1C>S1X,Galileo的精度对比为S6X>S1X>S7X>S5X>S8I,BDS2-IGSO的精度对比为S7I>S6I>S2I,BDS2-MEO的精度对比为S7I>S2I>S6I,BDS3-IGSO的精度对比为S1X>S6I>S5X>S2I,BDS3-MEO的精度对比为S6I>S5X>S1X>S2I。BDS2和BDS3的精度对比为BDS3-MEO>BDS2-MEO>BDS2-IGSO>BDS3-IGSO。 (4)通过BDS-R的研究实验可得,BDS-GEO卫星高度角没有变化,无法用于岸基测高;BDS-IGSO的卫星轨道持续时间比其他卫星星座更长,消除了快速变化的潮汐,潮位监测精度明显要差;BDS3-MEO的潮位监测精度优于其他各个系统的精度。 |
论文外文摘要: |
With the expansion of GNSS applications, Global Navigation Satellite System Reflection (GNSS-R) technology has become one of the important technical means for sea level monitoring. Based on the observation data of the MAYG station on the east coast of Africa in 2019-2020, the SNR of the navigation satellite signal is used to invert the vertical distance from the antenna phase center to the sea level, and then converted to the height based on zero_hydrographic through the elevation reference conversion. Then, it is compared with the measured tide height provided by the DZAOUDZI tide gauge station. The specific research content of this paper is as follows: (1) The four navigation satellite systems of GPS, GLONASS, Galileo and BDS are introduced. Combining the relationship between SNR and multipath, the basic theory of GNSS-R technology to monitor tide level is introduced and the principle of LSP spectrum analysis is explained. (2) When tide level monitoring is performed based on GNSS-R technology fusion of multiple system and multiple SNR, in order to eliminate the redundancy of the monitoring results, the inversion results of different SNR types at the same time are averaged. Through the tide level monitoring experiments in DOY300 and DOY321-DOY327 of 2020, the feasibility and periodicity of tide level monitoring are verified. Simultaneously, based on the experiment of tide level monitoring in 2019-2020, the reliability and continuity of tide level monitoring are verified. The experimental results for two consecutive years show that the median of the number of daily monitoring has increased to 58, the median of the effective tide level monitoring interval twice a day has been reduced to 16.00 min, and the time resolution has been significantly improved. The number of monitored tide level is 41860, with an average error of 0.0268m, a correlation coefficient of 0.9130, and a root mean square error of 0.4022, which verifies that the tide level monitored by the GNSS-R technology has a good correlation with the tide level measured by the tide gauge station. (3) The accuracy comparison of different SNR types of different systems in 2019-2020 is studied. The accuracy comparison of GPS is S5X>S2X>S1C>S2W, the accuracy comparison of GLONASS is S1P>S2P>S1C>S2C, and the accuracy comparison of Galileo is S8X>S7X>S5X>S1X, the accuracy comparison of BDS2-IGSO satellite is S7I>S6I>S2I, the accuracy comparison of BDS2-MEO satellite is S7I>S6I>S2I, and the accuracy comparison of BDS3-MEO satellite is S6I>S2I. In DOY268-DOY366 of 2020, the receiver model is replaced from TRIMBLE NETR9 to TRIMBLE ALLOY. It is necessary to analyze the accuracy of the newly added SNR types and BDS3 satellites. Through experimental analysis, the accuracy comparison of GPS is S5X>S2X>S2W>S1C>S1X, the accuracy comparison of Galileo is S6X>S1X>S7X>S5X>S8I, the accuracy comparison of BDS2-IGSO is S7I>S6I>S2I, the accuracy comparison of BDS2-MEO is S7I>S2I>S6I, the accuracy comparison of BDS3-IGSO is S1X>S6I>S5X>S2I, and the accuracy comparison of BDS3-MEO is S6I>S5X>S1X>S2I. The accuracy comparison between BDS2 and BDS3 is BDS3-MEO>BDS2-MEO>BDS2-IGSO>BDS3-IGSO. (4) Through the research experiment of BDS-R, it can be obtained that the elevation angle of BDS-GEO satellite has almost no change and cannot be used for shore-based altimetry. BDS-IGSO satellite orbit duration is longer than other satellite constellations, which eliminate the rapidly changing tides, and the accuracy of tide level monitoring is obviously poor. The tide level monitoring accuracy of BDS3-MEO is better than that of other systems. |
参考文献: |
[1] 邵连军, 张训械, 刘经南, 等. GNSS-R海面测高算法[J]. 海洋测绘, 2010, 30(2): 1–3. [2] 尹聪. GNSS-R信号测量海面有效波高的应用[D]. 南京信息工程大学, 2011. [3] 李黄, 夏青, 尹聪, 等. 我国GNSS-R遥感技术的研究现状与未来发展趋势[J]. 雷达学报, 2013, 2(4): 389–399. [4] 赵勇达. 基于GNSS-R信号的空中目标探测研究[D]. 中国地质大学(北京), 2016. [5] 白伟华. GNSS-R海洋遥感技术研究[D]. 中国科学院研究生院(空间科学与应用研究中心), 2008. [6] 孙剑. GNSS-R海洋反射接收机的控制设计及实现[D]. 中国科学院研究生院(空间科学与应用研究中心), 2010. [8] 张波, 王峰, 杨东凯. 基于线段二分法的GNSS-R镜面反射点估计算法[J]. 全球定位系统, 2013, 000(005): 11–16. [10] 金双根, 张勤耘, 钱晓东. 全球导航卫星系统反射测量(GNSS+R)最新进展与应用前景[J]. 测绘学报, 2017(10): 1389–1398. [12] 王杰, 何秀凤, 王笑蕾, 等. 小波分析在GNSS-IR潮位反演中的应用[J]. 导航定位学报, 2020, 008(002): 82–89. [13] 张化疑, 张双成, 贺正训, 等. 利用GPS-MR技术监测石浦港潮位的研究分析[J]. 海洋科学进展, 2019, 37(4): 689-695. [18] 敖敏思, 胡友健, 刘亚东, 等. GPS信噪比观测值的土壤湿度变化趋势反演[J]. 测绘科学技术学报, 2012(02): 140–143. [20] 李婷. 多系统组合的GNSS-MR土壤湿度反演研究[D]. 贵州大学, 2019. [21] 李婷, 张显云, 龙新, 等. 多卫星组合的GPS-MR土壤湿度反演[J]. 大地测量与地球动力学, 2019, 039(006): 643–647. [22] 敖敏思, 朱建军, 胡友健, 等. 利用SNR观测值进行GPS土壤湿度监测[J]. 武汉大学学报:信息科学版, 2015, 40(1): 117-120. [28] 王力福,张双成. 地基GPS用于阿勒泰积雪深度反演研究[J]. 沙漠与绿洲气象, 2019, 13(01): 93–98. [29] 南阳, 张双成, 张勤, 等. GNSS多径反射探测海平面变化初探[J]. 测绘科学, 2015, 40(012): 125–129. [44] 刘经南, 邵连军, 张训械. GNSS-R研究进展及其关键技术[J]. 武汉大学学报(信息科学版), 2007, 32(11): 955–960. [45] 杨东凯, 张其善. GNSS反射信号处理基础与实践[M]. 电子工业出版社, 2012. [46] 付俊明, 黄宇, 李时良, 等. GNSS-R遥感与成像探测技术综述[J]. 卫星应用, 2017, 000(007): 19–21. [47] 吴继忠, 杨荣华. 利用GPS接收机反射信号测量水面高度[J]. 大地测量与地球动力学, 2012, 32(6): 135–138. [52] 张双成, 南阳, 李振宇, 等. GNSS-MR技术用于潮位变化监测分析[J]. 测绘学报, 2016(9): 1042–1049. [53] 南阳. GPS信噪比用于潮位变化监测研究[D]. 长安大学, 2017. [54] 周威, 刘立龙, 黄良珂, 等. GLONASS卫星SNR信号的雪深探测[J]. 遥感学报, 2018, 22(05): 181–191. [59] 周威. 陆基多模多频GNSS反射信号的地表雪深监测研究[D]. 桂林理工大学, 2019. [61] 贺正训. GNSS-MR 技术用于潮位变化监测及软件设计[D]. 长安大学, 2019. [63] 王笑蕾. 地基GNSS近地空间水环境遥感监测研究[D]. 长安大学, 2018. [64] 刘凯. GPS-MR技术用于潮位监测算法研究[D]. 长安大学, 2019. [65] 高君萌. 基于BDS/INS融合的室内外定位关键技术研究[D]. 北京邮电大学, 2017. [66] 涂玉林. 基于网络RTK的无验潮测量系统研制及精度分析[D]. 东南大学, 2018. [67] 何义磊. 北斗三号最简系统卫星信号质量分析[J]. 武汉大学学报(信息科学版) , 2020, 45(3): 394–402. [70] 张皓, 郑南山, 丰秋林. BP神经网络辅助的GNSS反射信号NDVI反演[J]. 科学技术与工程, 2019, 19(36): 86–91. [71] 戴凯阳. GNSS-MR用于雪深监测研究[D]. 长安大学, 2017. [74] 尹潇, 柴洪洲, 向民志, 等. 附加运动学约束的BDS抗差UKF导航算法[J]. 测绘学报, 2020, 49(11): 1399-1406. [75] 祁云. BP神经网络辅助GPS-R遥感反演NDVI实验研究[D]. 中国矿业大学, 2018. [76] 苏晓容. 岸基GNSS单天线潮位高度小波分析反演的研究[D]. 上海海洋大学, 2019. [77] 李征航. GPS测量与数据处理[M]. 武汉大学出版社, 2013. [78] 张勤. GPS测量原理及应用[M]. 科学出版社, 2005. [81] 张小红, 丁乐乐. 北斗二代观测值质量分析及随机模型精化[J]. 武汉大学学报(信息科学版), 2013(07): 80–84. [82] 徐斌, 杨涛, 谭保华, 等. 基于Lomb-Scargle算法的周期信号探测的模拟研究[J]. 核电子学与探测技术, 2011(06): 111–114. [85] 陈发德, 刘立龙, 黄良珂, 等. 基于多模GNSS-MR海平面测高研究[J]. 地球物理学进展, 2018, 033(005): 1767–1772. |
中图分类号: | P228.4 |
开放日期: | 2023-06-17 |