论文中文题名: |
TP/VC高吸水凝胶抑制煤自燃特性实验研究
|
姓名: |
王昕
|
学号: |
20220226145
|
保密级别: |
保密(1年后开放)
|
论文语种: |
chi
|
学科代码: |
085224
|
学科名称: |
工学 - 工程 - 安全工程
|
学生类型: |
硕士
|
学位级别: |
工学硕士
|
学位年度: |
2023
|
培养单位: |
西安科技大学
|
院系: |
安全科学与工程学院
|
专业: |
安全工程
|
研究方向: |
消防科学与工程
|
第一导师姓名: |
马砺
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2023-06-18
|
论文答辩日期: |
2023-06-03
|
论文外文题名: |
Experimental study on Inhibition of Coal Spontaneous Combustion by TP/VC superabsorbent hydrogel
|
论文中文关键词: |
煤自燃 ; TP/VC高吸水凝胶 ; 阻化特性 ; 活性官能团 ; 热动力学
|
论文外文关键词: |
Coal spontaneous combustion ; TP/VC superabsorbent hydrogel ; Inhibitory properties ; Active functional groups ; Thermodynamics.
|
论文中文摘要: |
︿
阻化剂防治煤自燃是抑制煤自燃事故的主要技术手段之一。针对单一阻化剂阻化效果差、作用时间短的问题,需要改进当前阻化剂的阻化效果。本文制备了以高吸水凝胶为物理阻化成分,高效抗氧化型茶多酚(TP)、维生素C(VC)作为化学阻化成分的TP/VC高吸水凝胶并进行性能表征,研究对煤自燃的抑制效果。
采用水溶液聚合法将茶多酚、维生素C、高吸水性树脂制备为TP/VC高吸水凝胶。利用单因素法确定TP/VC高吸水凝胶配比,研究了TP/VC高吸水凝胶的吸液率、保水率、重复吸液率及黏度。制得的最优配比下高吸水凝胶在纯水和盐水中的吸液倍率分别为782.4 g/g、132.5 g/g。当高吸水性树脂、茶多酚、维生素C复配比例为2:2:1时,TP/VC高吸水凝胶的吸水率达到了829 g/g;140 ℃下的保水率仍为常温的69%。TP/VC高吸水凝胶的最大分解速率温度点为496.1 ℃;温度大于548.9 ℃时,TP/VC高吸水凝胶的内部结构被破坏。
通过程序升温-色谱联用实验研究TP/VC高吸水凝胶对煤样氧化特性的抑制效果。分析原煤和经TP/VC高吸水凝胶处理处理煤样的交叉点温度、耗氧速率、CO/CO2产生率、阻化率以及活化能,确定TP/VC高吸水凝胶的优选复合比例为2:2:1。利用热重-差式量热实验对比分析原煤及经TP/VC高吸水凝胶处理煤样的特征温度点、燃烧特性参数、放热量、动力学参数等氧化特性参数。结果表明在氧化升温过程中,经TP/VC高吸水凝胶处理的煤样氧化过程中的六个特征温度点均低于原煤,质量损失减少1.9%;低温氧化过程煤体吸热量增加166.33 J/mg,高温阶段放热量减少295.74 J/mg;可燃指数及综合燃烧指数分别降低40%、39%;阻化煤样在氧化过程四个阶段的表观活化能分别提高21.41 kJ/mol、41.02 kJ/mol、92.58 kJ/mol、133.70 kJ/mol。表明TP/VC高吸水凝胶在煤样失水失重和吸氧增重阶段发挥主要作用的是高吸水性树脂;在热解和燃烧阶段是茶多酚/维生素C发挥主要作用抑制煤自燃。
采用傅里叶红外光谱实验对TP/VC高吸水凝胶处理前后煤样的红外光谱进行分峰拟合,分析了煤中活性官能团(-OH、-CH3/-CH2-、C=C、C-O、C-H)在氧化过程中的变化规律。TP/VC高吸水凝胶有效减少煤中-OH、-CH3/-CH2-含量,提高了煤中C=C、C-O、C-H的含量。通过活化能与官能团含量的相关性分析,煤中-OH、-CH3/-CH2-的减少与C=C、C-O、C-H官能团的增加能够有效延缓煤氧化自燃。煤低温氧化过程中TP/VC高吸水凝胶可降低煤温、隔绝氧气抑制煤自燃;随煤温升高 TP/VC高吸水凝胶中茶多酚、维生素C的羟基会消耗煤体表面活性基团生成醚键,减少或中断化学反应进程起到抑制作用。
﹀
|
论文外文摘要: |
︿
Adding inhibitor is one of the main ways to prevent coal spontaneous combustion. In order to further improve the inhibitory effect of single inhibitor with short duration of action. In this thesis, based on the inhibition characteristics of different substances at different stages, a superabsorbent antioxidant inhibitor was prepared by using superabsorbent resin as physical inhibitor, high-efficiency antioxidant tea polyphenols and vitamin C as chemical inhibitor, and characterizes its performance to study the effect of inhibiting coal spontaneous combustion. The research has theoretical guiding significance for further prevention and control of coal spontaneous combustion disasters.
The TP/VC superabsorbent hydrogel were prepared by grafting tea polyphenols and vitamin C onto the three-dimensional superabsorbent resin network via polymerization in aqueous solution. The TP/VC superabsorbent hydrogel ratio was determined using the univariate method. Investigated the fluid uptake, water retention rate, repeat uptake rate, and viscosity of the TP/VC superabsorbent hydrogel. Infrared spectroscopy and thermogravimetry experiments are used to characterize it. In order to determine the optimum ratio of superabsorbent resin, the absorption ratios of the superabsorbent resin in deionized water and in normal saline solution were 782.4 g/g and 132.5 g/g, respectively. With a 1:1 tea polyphenol/vitamin C ratio, the rate of water absorption of the superabsorbent antioxidant inhibitor rose to 829 g/g. At 140 °C, when the ratio of superabsorbent resin, tea polyphenols, and vitamin C was 2:2:1, the rate of water retention was again 69%. In conclusion, the temperature point of maximum decomposition rate of the TP/VC superabsorbent hydrogel was 496.1 °C, and the structure is destroyed at temperatures above 548.9 °C.
The inhibitory effect of the TP/VC superabsorbent hydrogel on the oxidation characteristics of coal samples was studied by programmed heating-chromatography experiments. The intersection temperature, oxy gen consumption rate, CO/CO2 generation rate, resistive rate and activation energy of raw coal and superabsorbent resin, tea polyphenol and vitamin C composite ratio were analyzed, and the preferred composite ratio of TP/VC superabsorbent hydrogel was determined to be 2:2:1. This demonstrated that TP/VC superabsorbent hydrogel had a significant inhibiting effect on the spontaneous combustion of the coal. In the TP/VC superabsorbent hydrogel, the superabsorbent resin acted on the water loss and weight gain stage of the oxygen absorption during the coal oxidation process, and tea polyphenols/vitamin C were found to act on the pyrolysis and combustion steps in the coal oxidation process. In the oxidation process, the six characteristic temperature points of the sample of the inhibiting coal were lower than those of the raw coal, and the loss in quality was reduced by 1.9%. During the low temperature oxidation process, the heat uptake of the coal increased by 166.33 J/mg, and the heat release in the high-temperature stage decreased by 295.74 J/mg. Both the combustible index and the combustion index of the coal were significantly reduced; In the four oxidation process steps, the apparent activation energy of the samples of the inhibiting coal increased by 21.41 kJ/mol, 41.02 kJ/mol, 92.58 kJ/mol, and 133.7 kJ/mol, respectively.
﹀
|
参考文献: |
︿
[1] 国家发展改革委国家能源局. 煤炭工业发展“十四五”规划.(2021-2025) [EB/OL]. [2] 徐精彩. 煤自燃危险区域判定理论[M]. 北京: 煤炭工业出版社, 2001. [3] Deng J, Lei C, Xiao Y, et al. Determination and prediction on “three zones” of coal spontaneous combustion in a gob of fully mechanized caving face[J]. Fuel, 2018, 211:458-470. [4] 煤矿安全网. 唐阳煤矿“12.7”采空区自燃热解气体爆炸事故调查报[2019-08-25]. [5] 张培森, 张晓乐, 董宇航, 等. 2008-2021年我国煤矿事故规律分析及预测研究[J]. 矿业安全与环保, 2023, 27(04):1-6. [6] Ren L, Li Q, Deng J, et al. Inhibiting effect of CO2 on the oxidative combustion thermodynamics of coal[J]. RSC Advances, 2019, 9:41126-41134. [7] Zhou F, Shi B, Cheng J, et al. A new approach to control a serious mine fire with using liquid nitro gen as extinguishing media[J]. Fire Technology, 2015, 51:325-334. [8] 赵建会, 张辛亥. 矿用灌浆注胶防灭火材料流动性能的实验研究[J]. 煤炭学报, 2015, 40(02):383-388. [9] 邓军, 刘磊, 任晓东, 等. 粉煤灰动压灌浆防灭火技术[J]. 煤矿安全, 2013, 44(08):64-66. [10] 武福生, 黄林华, 何敏, 等. 均压防灭火自动变频调控系统设计[J]. 工矿自动化, 2014, 40(05):84-87. [11] 任万兴, 郭庆, 左兵召, 等. 近距离易自燃煤层群工作面回撤期均压防灭火技术[J]. 煤炭科学技术, 2016, 44(10):48-52. [12] 王雪峰, 邓汉忠, 邓存宝, 等. 煤自燃阻化剂选择及喷洒工艺研究[J]. 中国安全科学学报, 2013, 23(10):105-109. [12] 张勋, 邓存宝, 王雪峰, 等. 煤自燃阻化剂浓度优选及高效喷洒系统应用[J]. 中国安全科学学报, 2014, 24(11):72-76. [14] 庾苹. 探讨防止煤炭自燃化学阻化剂的实验结果[J]. 低碳世界, 2019, 9(04):70-71. [15] 张嬿妮, 侯云超, 刘博, 等. 卤盐载体无机盐阻化煤自燃的机理及性能[J]. 工程科学学报, 2021, 43(10):1295-1303. [16] 马砺, 任立峰, 艾绍武, 等. 氯盐阻化剂抑制煤初次和二次氧化特性的实验研究[J]. 矿业安全与环保, 2015, 42(01):1-4. [17] Pandey J, Mohalik N.K, Mishra R.K, et al. Investigation of the role of fire retardants in preventing spontaneous heating of coal and controlling coal mine fires[J]. Fire Technology, 2015, 51:227-245. [18] 王宏飞, 王继仁, 郝朝瑜, 等. 几种无机盐类脱氧型阻化剂耗氧速率试验研究[J]. 中国安全科学学报, 2017, 27(02):47-52. [19] Fan S, Wen H, Zhang D, et al. Experimental research on the performance of the macromolecule colloid fire-extinguishing material for coal seam spontaneous combustion[J]. Advances in Materials Science and Engineering, 2019, 2019:1-10. [20] Huang Z, Sun C, Gao Y, et al. R&D of colloid components of composite material for fire prevention and extinguishing and an investigation of its performance[J]. Process Safety and Environmental Protection, 2018, 113: 357-368. [21] 董凯丽, 王俊峰, 梁择文, 等. 矿用CMC/ZrCit/GDL防灭火凝胶特性研究[J]. 中国安全科学学报, 2020, 30(01):114-120. [22] Ren X, Hu X, Xue D, et al. Novel sodium silicate/polymer composite gels for the prevention of spontaneous combustion of coal[J]. Journal of hazardous materials, 2019, 371:643-654. [23] Qin B, Jia Y, Lu Y, et al. Micro fly-ash particles stabilized Pickering foam and its combustion-retardant characteristics[J]. Fuel, 2015, 154:174-180. [24] 欧盛南, 刘建国, 金龙哲, 等. CO2与N2对筒仓混煤低温自燃与爆炸的抑制作用[J].中国矿业大学学报, 2020, 49(02):387-394. [25] 褚廷湘, 余明高, 王少坤. 高温煤体注气降温及自燃抑制实验研究[J]. 中国安全科学学报, 2016, 26(03):64-70. [26] Xue D, Hu X, Cheng W, et al. Fire prevention and control using gel-stabilization foam to inhibit spontaneous combustion of coal: Characteristics and engineering applications[J]. Fuel, 2020, 264:116903. [27] Zhang L, Qin B. Development of a new material for mine fire control[J]. Combustion Science Technology, 2014, 186:928-942. [28] Dou G, Wang D, Zhong X, et al. Effectiveness of catechin and poly(ethylene glycol) at inhibiting the spontaneous combustion of coal[J]. Fuel processing technology, 2014, 120:123-127. [29] Zhong X, Qin B, Dou G, et al. A chelated calcium pro-cyanidine attapulgite composite inhibitor for the suppression of coal oxidation[J]. Fuel,2018, 217:680-688. [30] Qin B, Dou G, Wang Y, et al. A superabsorbent hydrogel–ascorbic acid composite inhibitor for the suppression of coal oxidation[J]. Fuel, 2017, 190:129-135. [31] Li J, Li Z, Yang Y, et al. Laboratory study on the inhibitory effect of free radical scavenger on coal spontaneous combustion[J]. Fuel Processing Technology 2018, 171:350-360. [32] Song Y, Feng W, Li N, et al. Effects of demineralization on the structure and combustion properties of Shengli lignite[J]. Fuel, 2016, 183:659-667. [33] 王福生, 张朝阳, 刘向群, 等. 金属离子螯合剂抑制煤自燃实验研究[J]. 煤炭科学技术, 2023, 28(02):1-9. [34] 梁择文, 王俊峰, 董凯丽, 等. 高价态金属离子交联体系防灭火性能影响研究[J]. 中国安全科学学报, 2021, 31(07):113-119. [35] 肖旸, 吕慧菲, 邓军, 等. 煤自燃阻化机理及其应用技术的研究进展[J]. 安全与环境工程, 2017, 24(01):176-182. [36] Wang L, Xu Y, Jian g S, et al. Imidazolium based ionic liquids affecting functional groups and oxidation properties of bituminous coal[J]. Safety Science, 2012, 50:1528-1534. [37] 邓军, 吕慧菲, 李达江, 等. [BMIM][BF4]对不同变质程度煤自燃热行为的影响研究[J]. 煤炭学报, 2019, 44(01):254-262. [38] 马砺, 何铖茂, 魏泽, 等. 离子液体对不粘煤煤粉自燃特性的影响[J]. 工程科学学报, 2022, 44(12):2008-2016. [39] 孙培涛, 费俊豪, 王成, 等. 高吸盐水率和加压吸收率的有机-无机复合SAP[J]. 塑料工业, 2023, 51(01):30-35. [40] 马砺, 刘西西, 周莎莎, 等. 淀粉基接枝丙烯酸钠复合高吸水树脂材料的制备及性能测试[J]. 材料导报, 2021, 35(22):22172-22177. [41] Liu D, Zhong T, Chang P, et al. Starch composites reinforced by bamboo cellulosic crystals[J]. Bioresour Technol, 2010, 101:2529-2536. [42] 乔宇杭, 王桂萍, 钱石川, 等. 淀粉接枝丙烯酸高吸水树脂制备及性能[J]. 沈阳理工大学学报, 2019, 38(02):70-74. [43] 陈利维, 陈慧, 戴睿, 等. 碱溶解玉米淀粉制备高吸水性树脂[J]. 精细化工, 2019, 36(10):2109-2115. [44] 贺龙强, 付克明, 侯皓议. 绿色耐盐性淀粉基高吸水性树脂的制备及抑尘效果研究[J]化工新型材料, 2019, 47(02):256-259. [45] 申艳敏, 李志博, 赵培侠, 等. 淀粉/蒙脱石/丙烯酸/2-丙烯酰胺基-2-甲基丙烷磺酸高吸水性树脂的制备和性能研究[J]. 化学工程, 2022, 50(07):17-21. [46] 张楠, 苏姗, 朱佳诗, 等. 淀粉-丙烯酸-丙烯酰胺高吸水性树脂的制备与性能[J]. 合肥工业大学学报(自然科学版), 2021, 44(08):1100-1105. [47] Klemm D, Heublein B, Fink H, et al. Cellulose: Fascinating biopolymer and sustainable raw material[J]. Angewandte Chemie International Edition, 2005, 44: 3358-3393. [48] Ma J, Li X, Bao Y. Advances in cellulose-based superabsorbent hydrogels[J]. RSC Advances, 2015, 5:59745-59757. [49] 马东卓, 祝宝东, 王鉴, 等. 纤维素基高吸水材料研究进展[J]. 化工进展, 2014, 33(07):1786-1790. [50] 孙慧慧, 余元善, 吴继军, 等. 柚子皮纤维素基高吸水性树脂的合成与应用[J]. 现代食品科技, 2018, 34(08):180-186. [51] 李辉, 冷莹梦, 郑博英, 等. 杨木-膨润土基复合高吸水树脂的制备、表征和性能[J]. 南昌大学学报(理科版), 2021, 45(05):494-501. [52] 包聘成, 王通震, 徐秋军. 麦秸秆基高吸水性树脂的制备及性能研究[J]. 化工技术与开发, 2022, 51(11):7-10. [53] Kong W, Li Q, Li X, et al. Removal of copper ions from aqueous solutions by adsorption onto wheat straw cellulose-based polymeric composites[J]. Journal of Applied Polymer Science, 2018, 135:46680. [54] 赵洪凯, 赵培培, 芮守鹏, 等. 羟丙基甲基纤维素掺杂秸秆吸水材料的制备与分析[J]. 化工新型材料, 2020, 48(08):249-253. [55] 张燕, 来水利, 穆冰硕, 等. CMC/NC复合高吸水性树脂的制备及其性能[J]. 陕西科技大学学报, 2021, 39(06):90-96. [56] Kim H.J, Kim S.H, Koo J.M, et al. Synthesis of super absorbent polymer using citric acid as a bio-based monomer[J]. Polymer Degradation and Stability, 2017, 144:128-136. [57] 张景迅, 魏雨, 韩枚江, 等. 改性聚丙烯酸类吸水性树脂性能比较及在植物种植中的应用研究[J]. 化工新型材料, 2017, 45(12):205-208. [58] 余明高, 张晓刚, 于水军. 高吸水树脂的制备及防灭火特性试验[J]. 煤炭科学技术, 200890. [59] Ma L, Wang D, Wang Y, et al. Synchronous thermal analyses and kinetic studies on a caged-wrapping and sustained-release type of composite inhibitor retarding the spontaneous combustion of low-rank coal [J]. Fuel Processing Technology, 2017, 157:65-75. [60] 薛海波. 抑制煤自燃过程关键活性基团的抗氧化型复合阻化剂研究[D]. 徐州: 中国矿业大学, 2018. [61] 王婕, 张玉龙, 王俊峰, 等. 无机盐类阻化剂和自由基捕获剂对煤自燃的协同抑制作用[J]. 煤炭学报, 2020, 45 (12):4132-4143. [62] Huang Z, Li J, Liu X, et al. Development and performance study of a new physicochemical composite inhibitor for coal spontaneous combustion control[J]. Combustion Science and Technology, 2022, 194:1-24. [63] Ma L, Wang D, Wang Y, et al. Experimental investigation on a sustained release type of inhibitor for retarding the spontaneous combustion of coal[J]. Energy & Fuels, 2016, 30:8904-8914. [64] 白子明. 防治煤自燃的微胶囊化复合阻化剂研究 [D]. 徐州: 中国矿业大学, 2019. [65] 王婕, 李琨, 张玉龙, 等. 氯化镁和碳/氧自由基捕获剂协同阻化煤自燃的实验研究[J]. 矿业安全与环保, 2021, 48(03):6-11+16. [66] Guo S, Yuan S, Geng W, et al. Preparation and optimization of thermosensitive hydro gels for inhibiting coal oxidation[J]. International Journal of Energy Research, 2021, 45:7783-7796. [67] 姜峰, 孙雯倩, 李珍宝, 等. 复合阻化剂抑制煤自燃过程的阶段阻化特性[J]. 煤炭科学技术, 2022, 50(10):68-75. [68] Guo S, Yan Z, Yuan S, et al. Inhibitory effect and mechanism of l-ascorbic acid combined with tea polyphenols on coal spontaneous combustion[J]. Energy, 2021, 229:120651. [69] 张燕, 来水利, 穆冰硕. 海藻酸钠/改性锂皂石基高吸水性树脂的制备研究[J]. 化工新型材料, 2022, 50(10): 154-159. [70] 姜洁, 郭雅妮, 徐斗均, 等. 腐植酸基高吸水性树脂的制备及其性能[J]. 西安工程大学学报, 2019, 33(01):51-56. [71] 孙培涛, 费俊豪, 王成, 等. 高吸盐水率和加压吸收率的有机-无机复合SAP[J]. 塑料工业, 2023, 51(01):30-35. [72] 王国贺, 于洁, 李平, 等. SA-P(AA/AMPS)-高岭土耐盐性高吸水性树脂的制备及性能研究[J]. 化工新型材料, 2021, 49(11):183-187. [73] 茹桦, 王宇欣, 王平智. 有机硼交联纤维素基高吸水性树脂的制备及性能表征[J]. 中国农业大学学报, 2022, 27(03):194-201. [74] 黄绪德, 刘欣. 利用维生素C和茶多酚还原氧化石墨烯及其表征[J]. 材料导报, 2021, 35(S1):83-86. [75] 步允川, 徐永亮, 陈蒙磊, 等. 氧气体积分数对不同粒径烟煤低温氧化燃烧特性的影响研究[J]. 河南理工大学学报(自然科学版), 2022, 41(05):38-45. [76] 王寅, 王海晖. 基于交叉点温度法煤自燃倾向性评定指标的物理内涵[J]. 煤炭学报, 2015, 40(02):377-382. [77] 安靖宇, 张健, 季德阁, 等. 基于分段拟合的煤自燃指标气体优选研究[J]. 中国安全生产科学技术, 2021, 17(10): 25-31. [78] 邢旭东, 王继仁, 郝朝瑜, 等. 抑制煤自燃的脱氧剂耗氧与阻化效果试验研究[J]. 煤炭科学技术, 2018, 46(04):158-163. [79] 王庆国, 周亮, 秦汝祥, 等. 不同预氧化程度焦煤CO2冷却后自燃特性研究[J]. 工矿自动化, 2023, 49(02):109-114. [80] 朱建国, 戴广龙, 唐明云, 等. 水浸长焰煤自燃预测预报指标气体试验研究[J]. 煤炭科学技术, 2020, 48(05): 89-94. [81] 马砺, 马武阳, 魏泽, 等. 钠盐微胶囊制备及其阻化性能研究[J]. 煤矿安全, 2022, 53(09):94-99. [82] Qi X, Wen C, Li Q, et al. Controlled-release inhibitor for preventing the spontaneous combustion of coal[J]. Natural Hazards, 2016, 82:891-901. [83] Deng J, Wang K, Zhai X. Study on the oxidation and spontaneous combustion characteristics of jurassic coal in north shaan’xi[J]. Advanced Materials Research. Trans Tech Publications Ltd, 2014, 977:124-128. [84] Deng J, Zhao J, Zhan g Y, et al. Thermal analysis of spontaneous combustion behavior of partially oxidized coal[J]. Process Safety & Environmental Protection, 2016, 104:218-224. [85] Zhang Y, Liu Y, Shi X, et al. Risk evaluation of coal spontaneous combustion on the basis of auto-ignition temperature[J]. Fuel, 2018, 233:68-76. [86] 贾海林, 崔博, 焦振营, 等. 基于TG/DSC/MS技术的煤氧复合全过程及气体产物研究[J]. 煤炭学报, 2022, 47(10):3704-3714. [87] Qin B, Dou G, Wang D. Thermal analysis of vitamin C affecting low-temperature oxidation of coal[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2016, 31:519-522. [88] Qin B, Dou G, Wang Y, et al. A superabsorbent hydrogel-ascorbic acid composite inhibitor for the suppression of coal oxidation[J]. Fuel, 2017, 190:129-135. [89] 舒森辉, 张雷林. 基于茶多酚的阻化泡沫制备及阻燃性能研究[J]. 煤矿安全, 2022, 53(08):50-55. [90] Wu T, Gong M, Lester Edward, et al. Characteristics and synergistic effects of co-firing of coal and carbonaceous wastes[J]. Fuel, 2013, 104:194-200. [91] Meng F, Yu J, Tahmasebi A, et al. Pyrolysis and combustion behavior of coal gangue in O2/CO2 and O2/N2 mixtures using thermogravimetric analysis and a drop tube furnace[J]. Energy & Fuels, 2013, 27:2923-2932. [92] Wang Z, Hong C, Xing Y, et al. Combustion behaviors and kinetics of sewage sludge blended with pulverized coal: with and without catalysts[J]. Waste Management, 2018, 74:288-296. [93] Liu X, Chen M, Yu D. Oxygen enriched co-combustion characteristics of herbaceous biomass and bituminous coal[J]. Thermochimica Acta, 2013, 569: 17-24. [94] 李珍宝, 王凤双, 魏高明, 等. 液态CO2溶浸无烟煤的氧化动力学特征[J]. 煤炭学报2020, 45(S1):330-335. [95] 邓军, 张宇轩, 赵婧昱, 等. 基于程序升温的不同粒径煤氧化活化能试验研究[J]. 煤炭科学技术, 2019, 47(01):214-219. [96] Ma L, Guo R, Gao Y, et al. Study on coal spontaneous combustion characteristics under methane-containing atmosphere[J]. Combustion Science and Technology, 2019 191:1456-1472. [97] 余明高, 袁壮, 褚廷湘, 等. 不同自燃性煤氧化阶段的表征差异[J]. 重庆大学学报, 2017, 40(02):37-44. [98] Tang Y. Experimental investigation of applying MgCl2 and phosphates tosynergistically inhibit the spontaneous combustion of coal[J]. Journal of the Energy Institute, 2018, 91:639-645. [99] 许红英. 复合阻化剂抑制煤自燃的热重动力学实验研究[J]. 矿业研究与开发, 2019, 39(06):79-84. [100]邓军, 周佳敏, 白祖锦, 等. 瓦斯对煤低温氧化过程微观结构及热反应性的影响研究[J]. 煤炭科学技术, 2023, 51(01):304-312. [101]赵婧昱, 卢世平, 宋佳佳, 等. 基于微观结构和气体产物特征的风化煤与氧化煤自燃差异研究[J]. 煤矿安全, 2022, 53(06):26-36. [102]郝宏德, 张玉龙, 吕宁, 等. 不同形态水分对煤自燃过程微观作用机制研究[J].燃料化学学报, 2021, 49(03):282-291. [103]张玉涛, 杨杰, 李亚清, 等. 煤自燃特征温度与微观结构变化及关联性分析[J/OL].煤炭科学技术: 2023, 4:1-8. [104]Cheldani S.C, Hower J.C. Relationships between noble metals as potential coal combustion products and conventional coal properties [J]. Fuel, 2018, 226:345–349. [105]Huang Z, Song D, Hu X, et al. A novel nano-modified inhibitor of tert-butyl hydroquinone/sodium polyacrylate for inhibiting coal spontaneous combustion[J]. Energy, 2022, 256:124439. [106]贾廷贵, 殷悦, 曲国娜, 等. 羟基对煤中桥键活性官能团氧化反应特性的影响[J]. 安全与环境学报, 2023, 22(03):1-9. [107]许红英, 苗梦露, 陈鹏. 复合阻化剂抑制煤自燃的红外光谱实验研究[J]. 矿业安全与环保, 2019, 46(04):40-44. [108]张嬿妮, 侯云超, 刘博等. 卤盐载体无机盐阻化煤自燃的机理及性能[J]. 工程科学学报, 2021, 43(10):1295-1303.
﹀
|
中图分类号: |
TD752.2
|
开放日期: |
2024-06-19
|